State Machines

Exercise 1: Which signals in the above diagrams indicate the current state?

Exercise 2: Which outputs are registered? Which outputs could change whenever the input changes?

Exercise 3: Why?

One approach is to begin by listing all the required *combinations* of the outputs. For a Moore state machine that has only registered outputs each of these will correspond to a state.

Exercise 4: If we used 8-bits of state information, how many states could be represented? What if we used 8 bits of state but used a "one-hot" encoding?

Exercise 5: The link below describes a game. List the top-level game states. Decompose each of these into multiple states. Repeat.

Exercise 6: What happens if both reset and enable are asserted?

Exercise 7: Draw the state transition diagram.

Exercise 8: Rewrite the state transition table and the module using n and n+1.

Exercise 9: Write the state transition table for each state machine.