
ELEX 7660 : Digital System Design
2018 Winter Term

Introduction to Digital Design with Verilog HDL

is lecture introduces digital logic circuit design using the Verilog Hardware Description Language. It covers many topics
at a superficial level; we will revisit each in more detail.
Aer this lecture you should be able to: define amodulewith single- andmulti-bit logic inputs and outputs; write expressions
using logic variables and operators; use assign statements and always_comb procedural blocks to generate combina-
tional logic; use always_ff to model D flip-flops; use if and case statements to model multiplexers and arbitrary logic
functions; write Verilog numerical constants; instantiate a module into another module and into a testbench.

Introduction

Most of the functionality of modern electronics is de-
fined by its soware. However, sometimes soware
is too slow, or a processor is too expensive or con-
sumes toomuch power. In these caseswemay need to
implement some functions in digital hardware. is
course explains how to design such circuits.

Today, all but the simplest designs are written us-
ing a Hardware Description Language (HDL) rather
than bydrawing schematics. In this coursewewill use
System Verilog rather than the other popular HDL,
VHDL.

Combinational Logic

Consider the following Verilog description of an
AND gate:

// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Logic synthesis soware (e.g. Intel’s Quartus) can
convert this description into the following circuit:

a
y

b
y

Verilog includes most C operators includ-
ing arithmetic (+, -, *, /, %), bitwise
(&, |, ^, ~, <<, >>), comparison (>, >=, !=,
etc.), logical (&&, ||, !), array indexing ([]), and

ternary conditional (?:). C syntax is also used for
comments.
Exercise 1: What changeswould result in a 3-inputOR gate?

Exercise 2: What schematic would you expect if the state-

ment was assign y = a ? b : c ;?

Registers

e following Verilog:

module ex2 (input logic d, clk,
output logic q) ;

always_ff @(posedge clk) begin
q <= d ;

end

endmodule

synthesizes a D-flip-flop that transfers the d input to
the q output on the rising (positive) edge of clk:

d

clk q

...

D

CLK

SCLR
1'h0

Q

Multiplexers and Buses

Verilog’s if statement models a multiplexer. e fol-
lowing example selects one of two 4-bit inputs:

module ex3 (input logic sel,
input logic [3:0] a, b,
output logic [3:0] y) ;

always_comb begin
if (sel) y <= a ;
else y <= b ;

lec1.tex 1 2018-01-05 02:17

end

endmodule

which results in:
sel

b[3..0]
y[3..0]

...
0

1
a[3..0]

Arrays model buses. e array declaration spec-
ifies the range of possible index values. Each index
value corresponds to one bit of the bus. Index ranges
are usually specified in decreasing order so that when
buses represent integers the first array element is the
most significant (lemost) bit. In the example above
a[3] is the most significant bit of the 4-bit signal a.
Exercise 3: What change might produce a 4-bit 4-to-1 multi-

plexer controlled by a 2-bit sel input?

Exercise 4: If the signal i is declared as logic [2:0] i;,
what is the ‘width’ of i? If i has the value 6 (decimal), what is

the value of i[2]? Of i[0]?

Case Statements and Numeric Constants

A Verilog case statement can model arbitrary combi-
national logic.

e following code describes a 2-input/8-output
ROM memory (or “look-up table”):

module ex4 (input logic [1:0] a,
output logic [7:0] d) ;

always_comb begin
unique case (a)
0: d = 8'hc0 ;
1: d = 8'b1111_1001 ;
2: d = 'ha4 ;
3: d = 176 ;

endcase
end

endmodule

which synthesizes into:

d[5]~not
Decoder0

... ...
a[1..0]

d[6]~not

d[7..0]

0

...

1

...

Numeric constants in Verilog are written as the
number of bits (default 32), an optional quote (') fol-
lowed by the base (b=binary, x=hex, d=decimal), and
the value. Underscore separators (_) are optional.
Exercise 5: What are the values in decimal of the constants in

the code above?

Exercise 6: What is the output in binary when the input is

a=2'b10 ?

for-loops andMemory

Verilog’s for-loops replicate combinational logic.
is example:

module ex9 (input logic [3:0] data [0:3],
output logic [5:0] sum) ;

always_comb begin

sum = 0 ;

for (int i=0 ; i<4 ; i++) begin
sum += data[i] ;

end

end

endmodule

adds the four elements of an array of 4-bit numbers.
However, the resulting circuit:

+

...CIN

...

...

...
data[0][3..0]

data[1][3..0]

+

...CIN

...

...

...

data[2][3..0]

+

...CIN

...

...

...
sum[5..0]

data[3][3..0]

4:
0

3:
0

3:
0

3:
0

3:
0

is not what you may have expected. A C program
would add one element of the array at a time to a sum
variable (register). However, the synthesized circuit
has no registers and generates the result directly.

Memories can be modeled as arrays of multi-bit
flip-flops.

Hierarchy

Designs can be divided into modules. is allows de-
sign re-use and simplifies testing.

2

A module can instantiate (include) instances
(copies) of other modules. For example, if we had a
7-segment LED display decoder module called ex7
with a 4-bit input (n) and an 8-bit output (seg) we
could combine it with a 3-bit counter module (ex5)
to build a display that shows digits counting from 0
to 7:

module ex8 (input logic reset_n, clk,
output logic [7:0] seg) ;

logic [3:0] count ;

ex5 ex5_0 (.*, .x(count)) ;
ex7 ex7_0 (.n(count), .seg) ;

endmodule

emodule instantiation syntax allowsmapping of
the instantiated module’s port names to signals in the
instantiating module. e synthesized result is:

clk

ex5:ex5_0

clk

reset_n

x[3..0]

ex7:ex7_0

n[3..0] seg[7..0]

reset_n

seg[7..0]

Exercise7: Whichports aremappedby .* in the instantiation

of ex5?
Exercise 8: Write the module declaration for ex7.

Implementation

e process to implement a design using an FPGA
(Field Programmable Gate Array) IC is shown below.

netlist

Verilog

map

place&route

assemble

programming file

.sdc

.qsf

JTAG
 port

FPGA

program

Quartus
synthesis

delays

Aer the design is mapped to gates and flip-flops it
must be fit into a specific device. Additional informa-
tion the fitter needs to “place and route” the design is
supplied in two files. e .qsf (Quartus settings) file
device contains, among other things, the device type
(part number) and the pin assignments. For example:

set_global_assignment -name DEVICE EP4CE22F17C6
set_location_assignment PIN_A15 -to x[0]

...
set_location_assignment PIN_E1 -to reset_n

Timing constraints such as clock frequencies and ex-
ternal device setup/hold times are defined in a .sdc
(Synopsis Design Constraint) file. For example, the
following statement requires that the design meet
setup and hold requirements with a 50 MHz (20 ns
period) clock signal called CLOCK_50:

create_clock -period 20ns CLOCK_50

Finally, the placed and routed design is “assem-
bled” to a file that can program the FPGA, typi-
cally over a dedicated “JTAG” programming/diag-
nostic interface port on the FPGA.

Testbenches and Simulation

A circuit can be tested by simulating its operation. In
this example an executable Verilog module called a
“testbench” applies inputs to themodule being tested:

// synthesis translate_off
module ex6 ;

logic clk=0, reset_n=0 ;
logic [3:0] x ;

ex5 ex5_0 (.*);

initial begin
$dumpfile("ex6.vcd");
$dumpvars ;
@(negedge clk) reset_n = 1 ;
repeat (22) @(posedge clk) ;
$finish ;

end

always begin
#500ns clk = ~clk ;

end

endmodule
// synthesis translate_on

is testbench de-asserts the reset signal at the
clock’s first falling edge and waits 30 clock cycles be-
fore terminating. It also generates a 1 MHz clock.
In this example the waveforms are written to the file

3

ex6.vcd for viewing. Testbenches can also check the
outputs themselves.

e testbench is not synthesizable because it in-
cludes “system tasks” ($dumpfile and $finish)
and delays (#500ns), that cannot be implemented in
hardware. e translate_on/_off “pragmas” in
the comments disable processing of the testbench by
synthesis soware.
Exercise 9: Where in the code is the Device Under Test (DUT)

instantiated?

Other simulators read a file containing “test vec-
tors” – test inputs and the expected outputs. e sim-
ulator compares the module’s simulation output to
the expected values.

Simulations using netlists without delay annota-
tions are called “functional” simulations because they
verify that the design is correct. Simulations that in-
clude delays, called “timing” simulations, verify that
the design will work properly aer being placed and
routed and at the specified clock rate.

4

