
ELEX 7660 : Digital System Design
2018 Winter Term

Solutions to Final Exam

Question 1

The two versions of this question differed only in bus
width (16 or 32 bits). One of many possible solutions
is:
module examq1 (

input logic [15:0] max, min,
input logic clk,
output logic [15:0] y) ;

always_ff @(posedge clk)
y += y < min ? 1 : y > max ? -1 : 0 ;

endmodule

Question 2

The two versions of this question differed only in
the initialization values and the bits connected to the
XOR gate.
A straightforward conversion of the code to a

schematic would give:

D Q
8

8’h55 8
2

sr[3]

sr[0]

dup
reset

nb

sr

clk

8
...

[0]

[7]

1

0

1

0
8

8

8

1

The for-loop copies the 1-bit nb input to each bit
of the 8-bit input of the multiplexer.
The optimized schematic generated by Quartus,

shown in Figure 1, implements themultiply-and-add
as a left-shift concatenated with the xor result.

Question 3

The two versions of this question differred only in
how a and b were modified in each state.

The solution involves a state machine and two
counters.
The solution below uses button as a clock to con-

trol the state transitions. A better solution would be
to register the value of the button input and detect
rising edges by comparing the current and previous
values.
The question does not specify whether button is

asynchronouswith respect to clk. If button changed
too quickly to provide an acceptable MTBF and de-
bouncing logic didn’t provide synchronization then a
synchronizer would be needed.

module bcontrol(
input logic button, clk,
output logic [7:0] a, b) ;

logic [1:0] state ; // initial value assumed 0
logic [7:0] a_next, b_next ;

always_comb begin
a_next = a ;
b_next = b ;

`define v1
`ifdef v1 // first version of question

case (state)
0: a_next = a+1 ;
1: b_next = b+1 ;
2: begin

a_next = '0 ;
b_next = '0 ;
end

endcase
`else // second version of question

case (state)
0: begin

a_next = 8'hff ;
b_next = 8'h00 ;
end

1: begin
a_next = a-1 ;
b_next = a+1 ;
end

endcase
`endif

end

always_ff @(posedge clk) begin
a <= a_next ;
b <= b_next ;

end

always_ff @(posedge button)
state <= state == 2 ? 0 : state+1 ;

endmodule

examsol.tex 1 2018-04-22 12:07

dup

reset

sr_next~[8..1]
0

1

nb

sr_next[7..0]
0

18'h55

sr[0]~reg[7..0]

D

CLK

SCLR
8'h0

Q sr[7..0]

sr_next~0

clk

3

0

0:
6

Figure 1: Quartus-generated solution for Question 2.

Question 4

The algorithm described by the C functions uses
three variables (a, b, and done) which are imple-
mented as three registers in RTL.
The control flow in the C function algorithm is a

conditional loop controlled by done so the controller
for the System Verilog implementation is a state ma-
chine with two states (done=0 or done=1). State tran-
sitions happenwhen reset is asserted (done→0) and
when a==b (done→1).
The computation of the next values of a, b and

done in each state is taken from the C code.

module gcd (
input logic [31:0] a_in, b_in,
output logic [31:0] a, b,
output logic done,
input logic clk, reset) ;

logic done_next ;
logic [31:0] a_next, b_next ;

always_comb begin
if (reset)

begin
done_next = '0 ;
a_next = a_in ;
b_next = b_in ;

end
else

begin
done_next = done ;
a_next = a ;
b_next = b ;
if (! done)

if (a > b)
a_next = a - b ;

else if (a < b)
b_next = b - a ;

else
done_next = '1 ;

end
end

always_ff @(posedge clk) begin

done <= done_next ;
a <= a_next ;
b <= b_next ;

end

endmodule

Question 5

The question asks for the MTBF for a two-flip-flop
synchronizer without using the term “MTBF.” This
is given by:

MTBF = 𝑒ᄾቓ/ᄭᆬ

𝐶Ⴒ𝑓ᅈ𝑓ᅇ
where 𝐶Ⴒ = 𝐶Ⴓ = 2 ns, 𝑓ᅈ = 1 kHz and 𝑓ᅇ = 50MHz
are given in the question.
The slack time (𝑇ᅚ) is the amount by which a tim-

ing requirement is exceeded. For a two-flip-flop syn-
chronizer this requirement is the setup time of the
second flip-flop.
The setup slack time will be equal to the clock pe-

riod (20 ns)minus any combinational logic delays be-
tween the flip-flops, minus the minimum setup time
requirement (𝑡SU). A two-flop synchronizer connects
the output of the first flip-flop directly to the input of
the second flip-flop so the only combinational logic
delay is the clock-to-output delay (𝑡CO) of the first flip-
flop (5 ns). The setup time requirement of the sec-
ond flip-flop was not given. Any reasonable assump-
tion for 𝑡SU, even zero, was marked correct. Thus
𝑇ᅚ = 20 − 5 − 𝑡SU <= 15 ns and

MTBF ⩽ 𝑒ႲႶ/Ⴓ
2 × 10ႼႺ ⋅ 50 × 10Ⴗ ⋅ 1000 ≈ 18 seconds

2

	 Question 1
	 Question 2
	 Question 3
	 Question 4
	 Question 5

