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Modulation- Part2

Afterthislecture youshouldbe ableto:
o for thecommondigital phase/fequencymodulationsnmethod{BPSK,DBPSK,QPSK,GMSK):

— givetheequationfor thesignal

— givesignal-spacéasisfunctionsandconstellation

— list someimplementatioradvantagjesanddisadvantges
— computetheerror ratein an AWGNchannel

e computeperformanceof thesemodulationtechniquesover a flat, slow-fadingchannel

552 Raised-Cosind-ilter e impulseresponsalsoGaussian:
¢ usedto smoothout the basebandnodulating N -]
. . . . . o 2
signal to limit the bandwidthwithout causing h(t) = 5 &P <_¥t )

ISI (it meetsthe Nyquistcriteriafor no ISI).

e doesnotmeetNyquistcriteria,sowill introduce

e transferfunctionis givenin Equationl andthe S|

impulseresponseén Equation2:

. . . symmetricalnon-causal
e for a = Othisis arectangulafbrick-wall” filter * Sy n

from 0 to -+ (theminimumbandwidth . .
7, ( ) Probability of Err or Analysis 56

e for a = 1 this is a half-cycle of raisedcosine
extendingfrom 0 to Tis (double the minimum
bandwidth)

e using orthonormalbasisfunctionswe can ex-
presseachof the M possibletransmittedsym-
bolsasM setsof N coordinateslongN dimen-

e root raised-cosingRRC) filter has a transfer sions

functionthatis the squarerootof aRCfilter so the orthonormabasisfunctionsaretypically si-
thatwe canplacehalf of thefilter at the trans- nusoids:

mitter andhalf attherecever

- - 2
ss3 GaussianFilter @i(t) = /?cos(2nfct+e) 0<t<T,
. . . b
e hasGaussiartransferfunction andimpulsere-
sponses: wheref;, Ty andB arechosersoasto make the
sinusoidsorthogonal.
2¢2
HG(f) = @(p(—a f ) Exercise: What values of © make these basis functions
orthogonal? What values of fc make these basis functions
where orthogonal?
o for example, if we chooseN = 2 one choice
vIn2 05887 ’
0=——=—— would beto use® = 0 and8 = 11/2.
V2B B

e thento eachof theM symbolswe would assign
andB is the-3dB bandwidthof thefilter apair of numbers

lec5. tex 1
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e the recever converts the receved waveform e
into N coordinatesusingN matchedfilters and
thenchooseshe symbolthatlies nearesthere-
cevedcoordinate

e eachmatchedfilter multipliesthereceved sig-
nal by oneof the basisfunctionsandintegrates
overthe symbolduration, Ty b

e a boundon the probability of symbol(not bit)
errorgivensymbols is transmitteds: ®

P(els) < £Q<\/02|2”Wo) ¢
=
J#

whereQ(+) is “Markum’s Q function” and No
is the power spectraldensityof the noiseat the
inputto the matchedilters.

e for equally-likely symbolswe canjust average
theindividual symbolerrorprobabilities:

M
P(e) = 15 3, Plels)

57, Linear and Constant-EnvelopeModulation

5.8

e typically linearmodulation! multipliesthe car
rier with the modulatingsignal:

s(t) = Rem(t)e’?™!]

e theresultingenvelope(magnitude)may not be
fixed, in which caseary subsequenamplifier
mustbelinear(e.g.ClassA, AB, etc)

aphase-modulatesignal:
S(t) — RqejZT[fct+m(t)]

is anexampleof non-lineatmodulation

this signaldoeshave a constanenvelope(mag-
nitude)

signalswith constantervelope do not require
linearpower amplifiers

a non-linearRF power generatorge.g. a class
C “amplifier”) is usually more power-efficient
and lessexpensve than a linear amplifier and
lessexpensve than“linearized” PAs

note that linear modulation can also be
constant-evelope (if the envelope of m(t) is
fixed)

Exercise:  Give an example of an m(t) that results in
constant-envelope linear modulation.

mary constant-evelopevariantsof phasemod-
ulationhave beendeveloped

they differ in the way the datais filtered before
modulatingthe phaseof the carrierandin their
modulationindex (ratio of frequeng deviation
to bit rate)

the pre-modulationfilter is a compromisebe-
tween spectrum main-lobe width (bit rate),
spectrum roll-off (adjacent channel inter
ference), BER performance and transmit-
ter/recever compleity

BPSK

ILinearity requiresthat superpositionapply: if m(t) =
my (t) +mp(t) thens(t) = s1(t) +sp(t) °

Binary PhaseShift Keying

57.1



¢ if wehave onesinusoidabasisfunction(N = 1)
andtwo symbolsM = 2, we canchoose:

m(t), / ZT—Iib cog 2rfct)

wherem(t) consistof pulsesof durationT, and
amplitude+1.

o theadwantageof differentialencodings thatwe
dont needan absolutephasereferenceto de-
modulatehesignal-we justcomparghephase
differencerom onebit to thenext (e.g.by using
adelayanda complex multiplier).

s(t) =

e theprobabilityof errorof DBPSKin anAWGN
channels worsethanBPSK:

1 Ep
"o )

Exercise: Is this a type of linear modulation? Is it a

constant-envelope signal?

e The power spectrumof the envelope (without

filtering) is: however, this assumeghe BPSK has perfect
synchronizationand that the DBPSK recever

sin(TtfTp) ) 2 only looks at oneprevious symbol. In practice

P(f) =2E - both systemsanbe madeto performaboutthe

same
e this spectrums very wide, andtypically a low-
passfilter (e.g. RC) is usedto limit theband- QPSK
width

5.7.3

e Quadraturd’haseshift Keying

Exercise: Does filtering m(t) change the answers to the

in thiscaseN =2 andM =4

previous exercise? L4

e a BPSKrecever hasto generatea local signal e the basisfunctionsaretwo carriersin quadra-

(@(t)) of thecorrectfrequeng andphase ture:

e this is difficult on a multipath channel be- 2E n
causethereare mary time-varying pathsbeing s(t) = Ts cog2mfct +i E}
summed S

fori=0,1,2,3

¢ for mobile applicationstypically a pilot signal
or pilot symbolsaretransmittedo allow there-
ceiverto estimateandremovethenetphaseshift
appliedby thechannel °

Exercise: Draw the constellation diagram for QPSK.

errorperformances sameasBPSK:

e theprobabilityof erroris:

1 2Ep
Pe= = —
e cantransmit2 bits persymbolwithoutincreas-
7> DBPSK ing the bandwidthor errorrate!
« DifferentialBinary PhaseShift Keying e canalsousedifferentialcoding(DQPSK)

e whenthephasas changingquickly or asimpler
receveris necessarywe canencodghedataas
a phasedifferencefrom symbolto symbol. In
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0-QPSK and 11/4-QPSK

« althoughall QPSK points have the sameam- *"

thecaseof N = 2 we canrepresent 0 bit by no
changeof phaseanda 1 bit by a phasechange
of 180degrees.

plitude thetrajectoryfrom onepointto another
may not be along a constantradiusif | andQ
changingsimultaneoushandinstantaneously



¢ large changesin amplitude are thus possible

which causehe spectrunto broaden

¢ two alternatvesareoffsetQPSKandr/4 QPSK

which take slightly differentapproacheso try-
ing to constrainthe trajectoryto keepit along
thecircle

ss Constant-EnvelopeModulation

constantervelopemeansdon't needlinearam-
plifiers, resulting in higher transmitter effi-
cieng

pre-modulatiorfiltering is sufficient to reduce
adjacent-channdéhterferencdevelsto adequate
levels (-60 dB) sono additionalpost-modulator
filter is required

can use inexpensve discriminatorbased re-
ceiver

mary, mary variants(BFSK, MSK, GTFM, ...)

first-null spectrumis wider than BPSK or
QPSK,but steeperoll-off

sss GMSK

GaussiarFrequeng Shift Keying
usesGaussiariltering of basebangulse

filter introduceslISI but produceswell-defined
spectrum

Gaussiarfilter impulse responseand transfer
functiongivenabove

parameteBT is the productof bit period and
3dB filter bandwidth

lower BT providesmorefiltering, narrav band-
width but morelSl andhigherresidualerrorrate
floor

errorrate:

P(e)=Q<\/2N—y?’>

wherey is a parametedeterminedy BT rang-
ing from 0.68for BT = 0.25t0 0.85for BT =
(MSK).

transmitteris simply a filter with Gaussianm-
pulseresponsandanFM modulator

recever canbe coherent(synchronouspr non-
coheren{adiscriminator)

widely used(GSM, CDPD)

M-ary Modulation

with N = 2 we can createconstellationswith
morethanM = 4 pointsand so transmitmore
than2 bits/symbolneedM = 2" pointsto trans-
mit n bits/symbol)

thepointscanbeonacircle abouttheorigin (M-
aryPSK)oronarectangulagrid (M-ary QAM)

e commonon point-to-pointlinks, not aswidely

usedin fadingchannels

thesehigherlevel modulationsare more sensi-
tive to channelisturbancesincethe pointsare
closertogethemndrequiremoresignalprocess-
ing for accuratesynchronizatiorand equaliza-
tion but are being usedin newer systemsbe-
causeof increasedspectrakefficiency

Exercise: Draw 8-PSK and 16-QAM constellations.

CodedModulation

also knowvn as “trellis-coded modulation”
(TCM)

in larger (e.g. 8-PSK) constellationswhere
points are not equidistantsomesymbol errors
(e.g. betweenadjacentpoints) are much more
likely thanothers

by increasinghenumberof constellatiorpoints
andaddingredundang (“coding”) it's possible
to significantlyreducethe errorrate

Performanceof Modulation Schemesn Fad-
ing Multipath Channels

will differ from staticerrorrates

often bursty, needmorethanBER to character
ize (e.g.burstlengths)

59
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Slow, Flat Fading

if fadingis “slow” (relative to symbolperiod)
then the signal is approximatelyfixed during
onesymbolperiod:

r(t) = a(t)e ®Ws(t) +n(t)

wherea(t) is the instantaneousignal ampli-
tude

we canfind the averageerror probability (Pe)
by averagingover the distribution of the signal
SNR:

o | " P(X) p(X)dX

where X = a(t)2E,/No and the known BER
performancen noise,(Pe(X)):

if o is Rayleigh,a? hasa chi-squaredlistribu-
tion with two degreesof freedom:

whereln = ﬁ—gﬁ is themeanSNR

for BPSK:
1 I
=3 [1‘ Vier
for DBPSK:
1
P.—
€7 2(14T)
for GMSK:
1
P~ —
© 4or

whered depend®n BT

theseresultsare much worsethanthe AWGN
caseg(theerrorratedropsoff linearly ratherthan
exponentiallywith increasingSNR)

thisis becauserroreventsarealmostall caused
by deepfadeevents,so BER is dominatedby
pdf of thefading,notthenoise

only reducingthe probability of deepfadescan
improve BER (diversity, coding)

Frequency-Selectie Channels

e channeldelay spreadcausedSI| which causes

errors

e recever may needto measurechannelimpulse
responsanduseanequalizer

e time-varying Doppler spread causesrandom
FM noisewhich createsan error floor (limits
maximumSNR)

e BERTresultstypically derived by simulation
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