
ELEC 464 : MICROCOMPUTER SYSTEM DESIGN

1996/97 WINTER SESSION TERM 1

The SCSI Interface
This lecture describes the behaviour of a basic SCSI interface.
After this lecture you should be able to list some advantages and disadvantages of the SCSI peripheral interface and
give the values of the signals on the SCSI bus during the various bus phases.

Introduction

In a previous lecture we studied the “Centronics”
parallel printer interface. This interface is limited to
driving one device per interface, it is unidirectional
and it is limited to one type of peripheral – a printer.

The Small Computer Systems Interface (SCSI) is
a more flexible parallel interface. This interface can
control up to 8 devices from the same interface, can
transfer data both to- and from- the peripheral and
can control many different types of devices. Both
the physical and logical aspects of the SCSI inter-
face have been standardized in enough detail that
similar types of devices from different manufacturers
will work with the same device driver software. For
example, different manufacturers’ SCSI disk drives
all have the same connectors, accept the same com-
mands, issue the same status messages, etc.

The SCSI standard defines conceptual models and
commands for ten classes of devices including disk
drives, tape drives, printers, scanners, and others.

The SCSI interface makes life easier for the con-
sumer and system integrator by making it possible
to use peripherals from many different manufactur-
ers and by eliminating the need to re-write device
driver software for each new model. However, the
additional parts and NRE costs of the SCSI controller
(and possibly the need to add a host interface to the
computer) can add significantly to the cost.

Enhancements to the original SCSI standard have
increased the bus width to 32 bits and added addi-
tional features to increase the transfer rate. All of
these additions are backwards compatible. In this
lecture we will study a basic SCSI interface and
briefly mention some of the extensions at the end.

SCSI Bus Operation

Initiators, Targets, LUNs and SCSI IDs

The SCSI bus connects a host adapter in a computer
with one or more peripheral controllers attached to
peripherals such as disk drives. The host adapter is
also called an initiator because it initiates an I/O pro-
cedure and the controller is called a target because it
is the target of the host’s commands.

Each device on the SCSI bus is assigned an ad-
dress (or “SCSI ID”) between 0 and 7 by means of a
switch. In addition, each controller can support up to
eight logical units (LUN - Logical Unit Number) as
shown in the diagram below:

H
os

t A
da

pt
er

C
on

tr
ol

le
r

S
C

S
I B

us

.

.

.

Peripheral Device (LUN=0)

Peripheral Device (LUN=7)

T
er

m
in

at
or

s

C
on

tr
ol

le
r

Peripheral Device

(initiator)
(target)

(target)

Physical Characteristics

Each device on the SCSI bus has two 50-pin connec-
tors which allow the devices to be daisy-chained into
a parallel bus.

Since the signals on the SCSI bus switch at sev-
eral MHz and the total cable length can be several
metres, the bus must be treated as a transmission line
and terminated at both ends to minimize reflections
and the resulting signal distortion. An unterminated
SCSI bus will usually not work reliably.

The signals on the SCSI bus are at TTL levels (0 to
5 volts). Two of the signals (BSY* and SEL*) must
be open-collector outputs because they can be driven

1

simultaneously by multiple devices. The other sig-
nals can be either tri-state or open-collector outputs.

The terminators consist of a 330 ohm resistor to
+5V and a 220 ohm resistor to ground.

Exercise: What is the impedance of these terminators?

What would be a good choice for the impedance of the

cables?

Control Signals

The basic pins on the SCSI bus and their functions
are described below. Note that all the signals are
active-low.

in
iti

at
or

ta
rg

et

C/D*
I/O*

SEL*
BSY*

REQ*
ACK*

DB0* to DB7* - these 8 parallel data bits are
used to transfer commands, data and status dur-
ing various phases of a SCSI operation. Dur-
ing the SELECTION bus phase the data bits are
also used by the initiator to select a particular
target.

SEL[ect]* - a signal driven by the initiator dur-
ing the SELECTION bus phase to select a par-
ticular target. For example, if DB7 is asserted
when SEL* is asserted then the target with SCSI
ID 7 becomes the active target.

B[u]SY* - a signal asserted by the selected tar-
get to indicate that it is using the bus.

CONTROL*/DATA (C*/D) - a signal driven by
the target to indicate whether data or control
(command or status) information is to be trans-
ferred between the initiator and target.

INPUT*/OUTPUT (I*/O) - also driven by tar-
get, and defines whether the initiator is to do an
input or output operation to the data bus. The ta-
ble below summarizes the meanings of the four
combinations of C*/D and I*/O.

C*/D I*/O Meaning
CONTROL OUTPUT command from initiator

DATA INPUT data from target
DATA OUTPUT data to target

CONTROL INPUT status byte from the target

REQ* and ACK* - two signals used for hand-
shaking for the four types of information trans-
fer over the data bus. REQ* is driven by the
target and ACK* is driven by the initiator.

Bus Phases

The basic operation of the SCSI bus proceeds
through four bus states:

SELECTION PHASE In this phase the initiator se-
lects a particular target. The initiator waits until
the bus is free (as indicated by BSY* not be-
ing asserted), asserts one of the bits on the data
bus and SEL*. The addressed target device then
recognizes it is being selected and takes control
of the bus by asserting BSY*.

The timing diagram below shows how an ini-
tiator selects a target and how the target takes
control of the bus.

SEL*

BSY*

Exercise: A tape drive set to SCSI ID 1 and a disk

drive set to SCSI ID 5 are both connected to a SCSI

bus. If the host controller puts the (logical) value

020H on the data bus and asserts SEL* which de-

vice will take control of the bus? What do you think

would happen if this device was turned off?

COMMAND PHASE This target then reads a 6-
byte “command descriptor block” from the ini-
tiator. This command specifies the type of op-
eration (e.g. read, write, seek, return status,
etc.), the LUN, information about the data to be
transferred (e.g. sector number) and the amount
of data to be transferred in the subsequent data
phase. To obtain the command the target asserts
OUT and CONTROL and uses REQ*/ACK*
handshaking to transfer 6 bytes. (The hand-
shake details are given in the next section).

2

DATA PHASE Based on the command received
from the initiator the target then performs the
requested operation (e.g. reads a sector) and/or
transfers the desired data to/from the initiator.
The target transfers the data by asserting DATA
and either IN or OUT depending on the transfer
direction.

STATUS PHASE When the data transfer is com-
plete the target transfers a status byte to the ini-
tiator. It does this by transferring one byte while
asserting CONTROL and IN. If this byte is zero
then the command completed successfully, oth-
erwise the initiator may issue a “request sense”
command to find out what went wrong.

BUS FREE PHASE When the status byte has been
transferred the target releases BSY* and this
makes the bus available for the next se-
lect/command/data/status transfer sequence.

Information Transfer Handshaking

All information transfer (command, data or status)
over the data bus between the initiator and target
is controlled by the target. The target transfers one
byte at a time using handshaking with the REQ* and
ACK* lines.

The target asserts REQ* to start a transfer and the
initiator responds with ACK* to acknowledge the
transfer. On transfers from the target to the initia-
tor the target asserts the data before asserting REQ*
and waits until ACK* is asserted before sending the
next byte. On transfers from the initiator to the tar-
get the target asserts REQ* and waits until ACK* is
asserted before reading the data from the bus.

The following timing diagram shows an example
of the handshaking during information transfer from
target to initiator:

REQ*

ACK*

C*/D, I*/O

Exercise: Which device (initiator or target) determines

the data transfer rate during the information transfer?

Command Parameter Blocks

The contents of SCSI command parameter blocks are
usually described in the form of a table showing the
meanings of the different bits. Table 2 shows an ex-
ample of the command block for disk read operation.

The first byte is the operation code (08H). The MS
3 bits of the second byte contain the LUN (typically
0 if only one disk is attached to the controller). The
next 20 bits give the starting logical block number to
be transferred and the fifth 8 bits are the number of
blocks to transfer. The bits in the last (control) byte
are used for optional control information and if not
used all of the bits may be set to zero.

Exercise: If each logical block holds 512 bytes, how

large a disk drive could this command support?

Enhancements to SCSI Protocol

Commands longer than 6 bytes. The SCSI stan-
dard defines command parameter blocks of 6,
10, and 12 bytes. The larger commands allow
longer block addresses and transfer counts to be
specified in the commands.

DB-25 connectors. The original SCSI interface
used a large 50-pin connector. A smaller and
less expensive DB-25 connector is often used
on PCs and low-cost SCSI peripherals.

Messages. The SCSI-II standard extends the SCSI
handshaking by allowing variable-length “mes-
sages” to be exchanged between target and ini-
tiator. The messages are used to control op-
tional parts of the SCSI protocol such a parity,
disconnect/reconnect and many other optional
features.

Messages are supported by two additional bus
handshaking signals: MSG* and ATN*. MSG*
is asserted by the target and allows it to transfer
message bytes to/from the initiator. The ATN*
signal allows the initiator to request that the tar-
get read a message from the initiator (the target
always has control of the bus after the selection
phase).

Disconnect/Re-Connect and Re-arbitration. In
high-performance systems it’s possible for the
host to interleave accesses to various devices.

3

==
Bit| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Byte | | | | | | | | |
==
0 | Operation Code (08h) |

-----|---|
1 | Logical Unit Number | (MSB) |

-----|------------------------------ ---|
2 | Logical Block Address |

-----|--- ---|
3 | (LSB) |

-----|---|
4 | Transfer Length |

-----|---|
5 | Control |

==

Table 1: Example of 6-Byte Command Parameter Block.

For example the host may issue a seek com-
mand to one disk drive, then disconnect from
that drive and issue a command to another disk
drive. It’s also possible for devices to reconnect
to the original host when data becomes avail-
able instead of having the host poll to check if
data is ready.

Synchronous mode. To speed up the data transfer
the target and initiator can negotiate to operate
in a “synchronous” mode. This speeds up the
handshaking by allowing a certain number of
un-ACK*nowledged REQ* strobes before sus-
pending the data transfer.

Wide mode. The SCSI II standard allows for trans-
fers of 16 or 32 bits in parallel.

Reset. The RESET* signal on the SCSI bus allows
a host adapter to reset all of the devices attached
to the bus.

Parity Bits. The SCSI bus can use parity bit (DBP*)
to attempt to catch errors. Use of parity is op-
tional.

Multiple Initiators. It’s possible to have multiple
initiators on the same SCSI bus. The selection
phase allows arbitration for control of the bus.
If there is contention between initiators then the
device with the highest SCSI ID gets control.

Non-Standard Commands

There are devices that use the electrical and low-
level protocols of the SCSI bus but which use non-
standard commands. One reason for this is that the
device may not be a good match to any of the ten
device models (disk, tape, etc) defined in the SCSI
standard. In this case the manufacturer may simply
have decided to use the SCSI interface as a high-
performance peripheral bus. In other cases the manu-
facturer uses proprietary commands because it’s eas-
ier than making their device conform to an existing
standard.

4

