ELEX 4550 : Wide Area Networks
2017 Fall Session

UDP and TCP

This lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol
(UDP) and the Transmission Control Protocol (TCP).

After this lecture you should be able to:

predict the values of the following UDP and TCP header fields: source and destination port numbers, checksum, length,
sequence number, acknowledgment, flags and window; predict the change of TCP state machine state as a result of a socket
API call or receiving a frame with specific bits set; predict the maximum amount of data that will be sent in the next TCP

segment based on the sequence numbers of queued data and the values in a received TCP header.

Introduction

So far we have studied some data link layer protocols
such as PPP which are responsible for getting data
from one end of a channel to the other, and the IP net-
work layer protocol which is responsible for getting
IP packets from one host to another. In this lecture
we look briefly at two transport layer protocols that
make it easier to write networking applications.

The transport layer serves to connect client appli-
cations on one host to the desired server processes
on another. In addition, some transport protocols
provide other services such as reliable, in-sequence
message delivery and congestion control that are not
provided by IP.

Applications that make use of transport layer
services include clients such as web browsers or
servers such as file servers.

The two transport-layer protocols in common use
are:

UDP - sends a packet from a port on one machine
to a port on another machine but, like IP, does not
ensure delivery; relatively simple

TCP - use a “connection-oriented” model that
provides reliable byte pipe from a process on one
machine to process on another; relatively complex

Other abstractions, such as a reliable datagram
protocol, would be possible but having only two
transport protocols keeps things simple for imple-
menters.

Transport Layer Functions

The most important features we might like to get
from a transport protocol include:

lecl5.tex

« reliable delivery: sender receives an acknowledg-
ment that the data was received

« sequencing: packets are guaranteed to arrive in the
same order they were sent

« no duplication: data is not duplicated

o fragmentation: arbitrarily-long byte sequences can
be broken down into smaller packets (called “seg-
ments” in TCP) and reassembled at the destination

« flow control: the receiver can be told (or can infer
that it should) slow down the rate at which it sends
data to a destination

« multiplexing: we can have multiple simultaneous
connections between hosts, even to the same
service

In the same way that IP addresses are used to
specify a particular host, a server can provide mul-
tiple types of services. Each such service needs an
“address” or “service access point” (SAP). In TCP/IP
SAPs are defined by an associated 16-bit numbered
“port”. The Internet Assigned Numbers Authority
(IANA) assigns port numbers to protocols (e.g. 80
for HTTP, 25 for SMTP, ...).

Each transport-layer IP connection is uniquely
defined by the combination of 4 things: host and
destination addresses and host and destination port
numbers. Each different 4-tuple defines a different
connection. This explains how, for example, multiple
users on the same client can contact the same service
on the same server.

Exercise 1: Two users on the same client connect to the
same web server. Which of the addresses and ports are the

same? Which are different?

2017-11-16 10:05

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

uUDP

The UDP (User Datagram Protocol),defined in RFC-
768, is a simple! protocol that provides little more
that is provided by IP. UDP does not offer flow con-
trol, reliable delivery, un-duplicated or in-sequence
delivery. Instead,these features must be provided by
the application. This allows more flexibility at cost of
additional complexity in the application.

UDP Header

The following diagram, from RFC-768, shows the
UDP header:
0 78

15 16 23 24 31

Destination |
Port |

| Source |
| Port |

| | |
| Length | Checksum |

| data octets ...

User Datagram Header Format

The header has four 16-bit words: source and
destination ports, length, and a checksum. The main
purpose of the header is to specify the destination
SAP (port or service) that should handle the packet.
For example, a DNS server “listens” on port 53 and a
DHCP server on port 67. The source port is included
so a client can listen for a UDP datagram sent as a
response.

The length is the number of bytes in the UDP
datagram, including this UDP header. The checksum
is the regular IP 16-bit one’s complement checksum
applied to the header, data and three 32-bit words
from the IP header (the IP “pseudoheader”) as
shown below:

0 78

15 16 23 24 31

| source address |

| destination address |

| zero |protocoll UDP length |

Exercise 2: What are the minimum and maximum values for
the UDP length field?

"The RFC is only 2 pages.

Examples of UDP-Based Applications

A typical UDP-based application is the DNS. A single
UDP packet containing the query is sent to a DNS
server and a single UDP response is received with
the response. The application must handle delayed,
duplicated or lost frames.

Another class of applications for UDP is interactive
applications such as VoIP (voice over IP). Latency is
very important for interactive applications - some-
times more important than avoiding loss of data. The
reliable-delivery and congestion control features of
TCP can sometimes result in long delays. Interactive
applications often use UDP so they can implement
their own error- and congestion-control algorithms.

TCP

Transmission Control Protocol (TCP) is the most
commonly-used transport-layer protocol. It is
defined in RFC 7937,

Like UDP, TCP connections are established
between ports that allow multiple simultaneous
connections between hosts and also allow selection
of the service that clients connect to.

Unlike UDP, TCP supplies a reliable byte pipe
even though the underlying network can delete,
reorder and even duplicate packets.

TCP is a full duplex protocol - it provides reliable
byte streams in both directions.

A TCP connection has state that needs to be main-
tained for each connection (host/port addresses,
sequence numbers, buffers, timers, ...). This state,
stored in a “Transmission Control Block”, needs to
be initialized when the connection is set up and the
memory used to store this state must be released
when the connection is terminated.

To deal with highly variable network delays
and data rates, TCP uses a “sliding window” ARQ
protocol to:

« control congestion - excessive traffic on links which
results in buffer overflows, and

o implement flow control - to prevent traffic being
generated faster than it can be processed at the
destination host.

It is important to understand that although the
TCP frame format and the protocol state machine are

>TCP is much more complex than UDP, RFC 793 is 85 pages.

http://tools.ietf.org/html/rfc768h
http://tools.ietf.org/html/rfc768h
http://tools.ietf.org/html/rfc793

defined in RFC 793, there is considerable variation
in TCP implementations because:

« TCP allows for options to be negotiated at the start
of the connection; hosts may implement different
sets of options, and

o the algorithms used to, for example, decide how
long to wait before transmitting or retransmitting
a frame are implementation-dependent.

TCP Header

The following diagram, from RFC-793, shows the
contents of the TCP header:

[1 2 3
01234567890123456789012345678901

| Source Port | Destination Port |

| Sequence Number |

| Acknowledgment Number |

Data	IUIAIPIRISIFI	
Offset	Reserved	RICISISIYIII Window
	IGIKIHITININ	

| Checksum | Urgent Pointer |

| Options | Padding

| data |

The source and destination ports have the same
meaning as in UDP.

The TCP protocol treats the data as two contin-
uous sequences of numbered bytes flowing in the
two directions. These sequences of bytes are divided
into “segments,” each of which is transmitted in a
separate IP frame.

The Sequence Number represents the number of
bytes already transmitted. This is a number relative
to the initial Sequence Number sent in the starting
SYN frame. This is typicallly a random value. It is
also incremented by 1 by a SYN or FIN frame.

The Acknowledgment Number is the number of
bytes received (including SYN and FIN), also relative
to the starting sequence number.

The Window value can be interpreted to mean
how many bytes of bufter space the receiver currently
has available. The other host uses this to decide how
much more data can be sent.

Note that Sequence number refers to the data
being transmitted in the same frame while Acknowl-
edgment and Window refer to the data flowing in the
opposite direction (from the other host).

Sequence numbers are also incremented before

the first byte (after SYN) and after the last byte (after

FIN) even though no extra data bytes are sent. This
allows acknowledgement of the start and end of a
connection.

Note that sequence numbers do not normally be-
gin with 0. The Sequence Number value transmitted
with the SYN packet determines the starting value.
Exercise 3: The most recently received TCP packet for a
connection had an Acknowledgement Number value of 1000
and a Window value of 64. Assuming 1024 bytes are ready
to be sent, what will be the value of Sequence Number in the
next packet transmitted for that connection? What will be the
length of the IP packet?

The Data Offset the number of 32-bit words in the
TCP header (including options).

The 6 bits in the flag field are used to manage the
TCP connection:

« the URG and ACK bits indicate that the values in
the Urgent Pointer and Acknowledgment Number
fields are valid.

o the SYN and FIN bits are used to start and
terminate a connection.

o The PuSH bits can be used to indicate the end of a
message defined by a higher-level protocol.

o The RST bit is used to indicate a loss of synchro-
nization (e.g. Acknowledgment of data not sent)
and causes the connection to be closed.

The checksum is computed over the TCP header,
an IP pseudo-header as with UDP, and the data.

The URG bit and the Urgent pointer were meant
to allow high-priority data to be sent ahead of
lower-priority data within the same TCP connection.
It is rarely used.

TCP State Machine

The ASCII diagram below, taken from RFC-793,
describes the TCP state machine. The text in each
block labels that state. The labels on the state
transition path state the action or received flag bits
that cause the transition (above the line) and the
bits that are set in the frame that is sent in response
(below the line). Other labels are x (send nothing),
active/passive OPEN (client/server socket creation),
create/delete TCB (allocate/release data structures
for the connection) and a Timeout (2 x 120 seconds).

Study of the diagram shows that setup and
tear-down of a TCP connections requires a 3-way
handshake { SYN, SYN+ACK, ACK } or { FIN,
FIN+ACK, ACK }.

[P + —mmmmme \ active OPEN
|

| CLOSED

o +Lmmm e \ \ create TCB
| - \ \ snd SYN
passive OPEN | | CLOSE AV
———————————— I B v
create TCB | | delete TCB AN
v | \
oo + CLOSE | \
| LISTEN | = —=——mm———- | |
o + delete TCB | |
rcv SYN | | SEND | |
----------- | | ————m- | v
4mmmmmmmem + snd SYN,ACK / \ snd SYN #mmmmmmmee +
| |<-=--mmmmmm - >| |
| syw | rcv SYN | syn |
| RCVD < | SENT
| | snd ACK | |
| |-——-mmm - | |
B + rcv ACK of SYN \ / rcv SYN,ACK o +
et | |
| x I | snd ACK
| v v
| CLOSE Hommmm—mo +
| == | ESTAB |
| snd FIN Fommmm e +
| CLOSE | | rcv FIN
v e | I =
R — + snd FIN / \ snd ACK e +
| FIN |Qemmmmmmmmmmmmmmmm e >| CLOSE |
| WAIT-1 |-======mmmmmmmmmee | WAIT |
Fommm + rcv FIN \ e +
| rev ACK of FIN ------- I CLOSE |
| === snd ACK M e |
v X v snd FIN V
o + o + oo +
|FINWAIT-2| | CLOSING | | LAST-ACKI|
o + o + o +

| - x v
\ snd ACK A +delete TCB oo +
>|TIME WAIT|------=——=---———-—- >| CLOSED |

TCP Connection State Diagram
Figure 6.

The above is a quick summary of how connections
are set up and torn down. There are many more de-
tails which we do not have time to cover in this course.
Exercise 4: According to the TCP state transition diagram,
what should happen if a host responds to an initial SYN frame
by sending back a frame with only SYN set?

Also note that connections can be closed in one
direction only.

Congestion Management In TCP

When more data arrives at a router than can be sent
out, the data will build up in queues. This is called
congestion. If the queues get too long then packets
will have to be dropped. These frames then have to be
retransmitted. This increases the load on the network
which can then become unstable. Rather than using
an explicit mechanism to monitor congestion, TCP
checks for it indirectly by measuring packet loss and
delay.

Since each packet is routed independently, the
network layer (IP) cannot determine packet delay or
loss. On the other hand, TCP sees acknowledgments

and so it can measure delays and detect lost frames
and take appropriate measures to deal with conges-
tion. The transport layer is thus made responsible for
congestion management and flow control.

One of the main purposes of TCP is to minimize
the likelihood of dropped frames by reducing the
rate at which frames are sent out when congestion is
detected. The algorithms to do this are fairly complex
and implementation-dependent. We will not cover
them here.

Exercise 5: How can a host reduce the rate at which data is
sent to it on a TCP connection?

Examples of TCP-Based Applications

Most internet applications use TCP. This includes
web browsers (the HTTP protocol, server on port
80), e-mail transfer (the SMTP protocol, port 25),
secure shell login (the SSH protocol, port 22) and
many others.

Most of these protocols are text-based which sim-
plifies writing and debugging the applications. For
example, an an HTTP client first establishes a TCP
connection and then sends a line starting with GET
followed by the URL, the HTTP version and a CR
character followed by headers. Here is an example of
how we can emulate the behaviour of a web browser
using the telnet utility from the command line:

telnet www.bcit.ca 80

Trying 142.232.77.1...

Connected to www.bcit.ca.

Escape character is '7]"'.

GET http://www.bcit.ca/study/ HTTP/1.1
Host: www.bcit.ca

The server responds with some headers, a blank
line and the page contents in the HTML markup
language.

Many other Internet protocols work similarly. For
example the SMTP protocol uses commands such as
HELO, FROM, MAIL and DATA to transfer e-mail
messages.

The Socket API

The “socket” library is commonly used to implement
network client and server software that uses the
TCP/IP protocol. An API (Application Program-
ming Interface) is a set of functions that can be called

by a program to implement the networking parts of
the program. Although you do not need to be able to
write such applications, it is useful to know how the
API is accessed and you should know which of these
calls cause changes of state in the TCP state machine.
The main functions are:

socket() - allocates and initializes the required data
structures (e.g. a TCB)

bind() - sets the local address (port) (typically used
only on the server side)

listen() - enables incoming connections (on server)
- the “passive open” described above

accept() - waits for incoming connections (on
server)

connect() - waits for outgoing connections (on
client) - the “active open” described above

send() write()] - sends bytes over the connection

receive()read() - reads bytes received over the
connection

close() - shuts down the connection and releases
memory - the “close” described above

Other library functions are often required. For ex-
ample, the gethostbyname () function can be used
by the application to convert a host name to an IP
address. The method is implementation-dependent,
but typically it's by querying the local host files
and/or using the DNS protocols.

