
EECE 379 : DESIGN OF DIGITAL AND MICROCOMPUTER SYSTEMS

2000/2001 WINTER SESSION, TERM 1

RTL Design with VHDL
This chapter covers some features of VHDL that are useful for logic synthesis. You should learn to:

� make library packages visible
� declare components in architectures and packages
� declare constants
� instantiate components into an architecture
� declare std logic, std logic vector, signed and unsigned signals
� declare enumerated types and subtypes of array types in architectures and packages
� declare and use entities with generics
� use conditional signal assignments
� convert between std logic vector, unsigned and integer types
� instantiate tri-state outputs
� create RAM and ROM memories
� classify a VHDL description as a behavioral, structural, or dataflow (RTL) description

We will also learn an approach to logic design called Register Transfer Level (RTL) or “dataflow” design. This is the
method currently used for the design of complex logic circuits such as microprocessors.
You should be able to:

� select a sufficient set of registers and logic/arithmetic functions required to implement an algorithm
� convert the algorithm into a sequence of register transfers through logic/arithmetic functions
� write synthesizeable VHDL RTL code to implement the algorithm

We also cover three topics related to the design of interfaces to logic circuits: metastability, input synchronization
and glitches. You should be able to: identify circuits where metastable behaviour is possible; compute the mean time
between metastable outputs; identify circuits that could fail due to asynchronous inputs; add synchronizer flip-flops
to reduce the probability of metastability; remove race conditions by registering inputs; and use registered outputs to
eliminate glitches.

Reserved Words

Table ?? lists the 97 reserved words that cannot be
used as VHDL identifiers.

Libraries, Packages and Components

When designing complex logic circuits it helps to de-
compose a design into simpler parts. Each of these
parts can be written and tested separately, perhaps
by different people. If the parts are sufficiently gen-
eral then it’s often possible to re-use them in future
projects. In VHDL, design re-use is done by us-
ing “components.” A component can be a general-
purpose building-block (e.g. an adder or a counter),

or it can be sub-system of your design.

Before we use a component, we first need to de-
clare it. A component declaration is very similar to
an entity declaration — it defines the input and out-
put signals, not the functionality.

In order to avoid declaring each component in ev-
ery architecture where it is used, we typically place
component declarations in “packages.” A package
typically contains a set of component declarations
for a particular application. Packages are themselves

lec3.tex 1

abs access after alias all and architecture ar-
ray assert attribute begin block body buffer bus
case component configuration constant discon-
nect downto else elsif end entity exit file for func-
tion generate generic group guarded if impure in
inertial inout is label library linkage literal loop
map mod nand new next nor not null of on open
or others out package port postponed procedure
process pure range record register reject rem re-
port return rol ror select severity signal shared
sla sll sra srl subtype then to transport type un-
affected units until use variable wait when while
with xnor xor

Table 1: VHDL reserved words.

stored in “libraries”:
Library

component

component

Package

component

component

Package

In the Synopsys Design Compiler1 and
Max

�
PlusII VHDL implementations, a library

is a directory and each package is a file in that
directory. The package file is a database containing
information about the components in the package
(the component inputs, outputs, types, etc).

To use a component in a design, we use library
statements to specify the libraries to be searched and
a use statement for each package we need to use.
The two most commonly used libraries are called
IEEE and WORK.

The WORK library is always available without hav-
ing to use a library statement. In Design Compiler
the WORK library is a subdirectory of the current di-
rectory called WORK while in Max

�
PlusII it is the

current project directory.
library and use statements must be used before

each design unit (entity or architecture) that uses
those packages2 . For example, if you wanted to use
the numeric_bit package in the ieee library you
would use:

1The logic synthesizer used to create the schematics in these
lecture notes.

2An exception: when an architecture immediately follows its
entity you need not repeat the library and use statements.

library ieee ;
use ieee.numeric_bit.all ;

and if you wanted to use the dsp package in the WORK
library you would use:

use work.dsp.all ;

Exercise 35: Why is there no library statement in the second

example?

Note that a component defines an interface to an-
other device. That device may not have been de-
signed with VHDL so there may not necessarily be a
corresponding entity declaration.

Creating Components

A component declaration is similar to an entity dec-
laration and defines the input and output signals.

Component declarations can be placed in an ar-
chitecture before the begin. But it’s usually more
convenient to put component declarations within a
package declaration. When we compile (or “ana-
lyze”) the package declaration the information about
the components in the package is saved in a file in the
WORK library. The components in the packages can
then be used in an architecture (in that same file or in
other files) by using the appropriate use statements.

For example, the following code declares a pack-
age called flipflops. This package contains only
one component, rs, with inputs r and s and an out-
put q:

package flipflops is
component rs

port (r, s : in bit ; q : out bit) ;
end component ;

end flipflops ;

Exercise 36: If this code was stored in a file called ff.vhd, how

many files would be created? What would they contain? Where

would they be placed?

Component Instantiation

Once a component has been declared, it can be used
(“instantiated”) in an architecture. A component in-
stantiation describes how the component is “hooked

2

up” to the other signals in the architecture. It is a con-
current statement (as is a selected assignment state-
ment).

The following example shows how three 2-input
exclusive-or gates can be used to build a 4-input
parity-check circuit using component instantiation.
This type of description is called structural VHDL
because we are defining the structure rather than the
behaviour of the circuit.

In this case we have put the component declaration
into the file mypackage.vhd. The xor_pkg contains
the xor2 component (although a typical package de-
fines more than one component):

-- define an xor2 component in a package

package xor_pkg is
component xor2

port (a, b : in bit ; x : out bit) ;
end component ;

end xor_pkg ;

A second file, parity.vhd, describes the parity
entity that uses the xor2 component:

-- parity function built from xor gates

use work.xor_pkg.all ;

entity parity is
port (a, b, c, d : in bit ; p : out bit) ;

end parity ;

architecture rtl of parity is
-- internal signals
signal x, y : bit ;

begin
x1: xor2 port map (a, b, x) ;
x2: xor2 port map (c, x, y) ;
x3: xor2 port map (d, y, p) ;

end rtl ;

The resulting top-level schematic for the parity en-
tity is:

Exercise 37: Label the connections within the parity generator

schematic with the signal names used in the architecture.

When the parity.vhd file is analyzed (“com-
piled”), the synthesizer will search the (WORK) direc-
tory for the xor_pkg package.

We could also have put the xor_pkg package dec-
laration in the parity.vhd file (the package file

would then be recreated every time we analyzed
parity.vhd).

Although components don’t necessarily have to be
created using VHDL, we could have done so by us-
ing the following entity/architecture pair in file called
xor2.vhd:

-- xor gate

entity xor2 is
port (a, b : in bit ; x : out bit) ;

end xor2 ;

architecture rtl of xor2 is
begin

x <= a xor b ;
end rtl ;

VHDL versus C Terminology

The following comparison shows some rough equiv-
alents between the VHDL concepts described above
and C programming3 .

VHDL C
analyze compile
elaborate link
component function
instantiate call
use #include
package DLL
library directory

std logic Packages

The IEEE library contains two useful packages.
These packages define alternatives to the bit and
bit_vector types for logic design.

The first package, std_logic_1164, de-
fines the types std_logic (similar to bit) and
std_logic_vector (similar to bit_vector). The
advantage of the std_logic types is that they can
have values other than ’0’ and ’1’. For example, an
std_logic signal can also have undefined (’X’) and
high-impedance values (’Z’). The std_logic_1164
package also redefines (“overloads”) the standard

3The effect of a call is rather different than a component in-
stantiation: in VHDL we get an extra copy of the component
each time it is used. In C we get only one copy of a function no
matter how many times it is called.

3

boolean operators (and, or, not, etc.) so that they
work with std_logic signals.

The second package, std_logic_arith4 defines
the types signed and unsigned. These are sub-
types of std_logic_vector with overloaded oper-
ators that allow them to be used both as vectors of
logic values and as as binary numbers (in signed
two’s complement or unsigned representations). The
hierarchy of these logic types could be drawn as fol-
lows:

std_logic std_logic_vector

signed unsigned

declared in
 std_logic_1164

declared in
 std_logic_arith

The standard arithmetic operators (+, -, *, /, **,
>, <, <=, >=, =, /=) can be applied to signals of type
signed or unsigned. Note that it may not be practi-
cal or possible to synthesize complex operators such
as multiplication, division or exponentiation.

For example, we could generate the combinational
logic to build a 4-bit adder using the following archi-
tecture:

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity adder4 is
port (
a, b : in unsigned (3 downto 0) ;
c : out unsigned (3 downto 0)) ;

end adder4 ;

architecture rtl of adder4 is
begin

c <= a + b ;
end rtl ;

The resulting (rather messy) schematic is:

4The IEEE standard is really numeric std but it’s not widely
used.

Constants

You can declare symbolic constants in the same way
as signals. For example:

constant zero_bits : unsigned (3 downto 0) := "0000" ;

A constant declared in a package is available to all
design units (packages, entities and architectures)
that use that package. You should use symbolic con-
stants for any values that are likely to change or if it
makes your code easier to read or easier to modify.

Integers

VHDL also includes an integer type which is use-
ful for specifying small constants (e.g. next x <=
x + 1 ;). However, signals should be declared
std_logic or one of its subtypes, not integer.
Declarations sometimes use the natural (values
��� 0), and positive (values � 0) types. Integer
constants can be specified in non-decimal base. For
example, the value 2000 hex can be specified as:
16#2000#.

Type Conversion Functions

VHDL is a strongly-typed language – each opera-
tor must be supplied arguments of exactly the right
type or the synthesizer will give an error message.
Although many functions and operators (e.g. and)

4

are overloaded so that you can use the same func-
tion/operator with more than one type, in many cases
you will need to use type conversion functions.

The following type conversion functions are found
in the the std_logic_1164 package in the ieee li-
brary:

from to function
lv bv to bitvector(x)
bv lv to stdlogicvector(x)

The abbreviations bv, lv, un and in are used for
bit_vector, std_logic_vector, unsigned and
integer respectively.

The following type conversion functions are found
in the the std_logic_arith package in the ieee li-
brary.

from to function
lv un unsigned(x)
un lv std logic vector(x)
un in conv integer(x)
in un conv unsigned(x,len)
in lv conv std logic vector(x,len)

Functions in the std_logic_arith package
“overload” most of the arithmetic and comparison
operators (e.g. +, =) so that they take integer as well
as unsigned operands.

Note that when converting an integer you must
explicitly specify the number of bits in the result
(len).

For example:

constant awidth : integer := 24 ;
constant dwidth : integer := 8 ;
constant r1addr : std_logic_vector (awidth-1 downto 0)

:= to_stdlogicvector(X"1A_0002") ;
signal abus : unsigned (awidth-1 downto 0) ;
signal r1, d : std_logic_vector (dwidth-1 downto 0) ;

...
r1 <=

d when abus = unsigned(r1addr) else
"00000000" ;

Exercise 38: What is the type of the constant X"1A 0002"?

What is the purpose of the unsigned() function in the last line

of the above example? What conversion function(s) would you

need to use if r1addr was declared to be of type bit vector?

Type Declarations

It’s often useful to make up new types for a project.
We can do this in VHDL by using type declarations.
The most common uses for defining new types are
to create signals of a given width (i.e. a bus) and
to declare types that can only have one of a set of
possible values (called enumeration types).

Type declarations are often placed in packages
to make them available to multiple design units.
The following example shows a package called
dsp_types that declares two new types:

package dsp_types is
type mode is (slow, medium, fast) ;
subtype word is std_logic_vector (15 downto 0) ;

end dsp_types ;

Note that we need to use a subtype declaration in
the second example because the std_logic_vector
type is already defined.

Exercise 39: Write a declaration for a signal that controls

whether the value in a register should be loaded, incremented,

decremented, or held. Write the declaration for an 8-bit signal

type called byte.

Generics

An entity can be declared with a bus or register size
that is left undefined until the component is used
(“instantiated”) by adding a generic clause in its en-
tity and component declarations. For example, a reg-
ister with negated outputs could be declared in the
file nregister.vhd as:

-- register with negated output

entity nregister is
generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;
clk : in bit) ;

end nregister ;

architecture rtl of nregister is
signal tmp : bit_vector(width-1 downto 0) ;

begin
process(clk)
begin

if clk’event and clk=’1’ then
tmp <= d ;

end if ;
end process ;
q <= not tmp ;

end ;

5

you might declare the nregister component in a
package as:

package registers is
component nregister

generic (width : integer) ;
port (d : in bit_vector (width-1 downto 0) ;

q : out bit_vector (width-1 downto 0) ;
clk : in bit) ;

end component ;
end registers ;

and then use it in another architecture as follows:

use work.registers.all ;
...

r1: nregister
generic map (8)
port map (din, dout, clk) ;

...

You should use generics if your component might
have to be instantiated with various signal widths.

Attributes

Each signal has a number of properties associated
with it which can be extracted and used in expres-
sions by using VHDL’s attributes. For example,
the number of elements in an array x is given by
x’length. Other useful attributes are left, right,
high, low which extract the appropriate index limits
and range which extracts the index range.

Conditional Assignment

In the same way that a selected assignment statement
models a case statement in a sequential programming
language, a conditional assignment statement models
an if/else statement. Like the selected assignment
statement, it is also a concurrent statement.

For example, the following circuit outputs the po-
sition of the left-most ’1’ bit in the input:

library ieee ;
use ieee.std_logic_1164.all ;

entity nbits is port (
b : in std_logic_vector (3 downto 0) ;
n : out std_logic_vector (2 downto 0)) ;

end nbits ;

architecture rtl of nbits is

begin
n <=

"100" when b(3) = ’1’ else
"011" when b(2) = ’1’ else
"010" when b(1) = ’1’ else
"001" when b(0) = ’1’ else
"000" ;

end rtl ;

Note that the conditions are tested in the order that
they appear in the statement and only the first value
whose controlling expression is true is assigned.

In the same way that we can view a selected as-
signment statement as the VHDL model for a ROM
or lookup table, a conditional assignment statement
can be viewed the VHDL description of a tree of
multiplexers. For example, the structure of the ex-
ample above could be drawn as:

"100"

"011"

"010"

"001"

"000"

b(0)=’1’

b(1)=’1’

b(2)=’1’

b(3)=’1’

n

Synthesizing the above description results in:

Exercise 40: Write a conditional assignment that models a 2-

to-1 multiplexer. Use an array x as the input, a signal sel to

select the input and a signal y as the output. Repeat for a 4-to-1

multiplexer (sel is now an array).

The choice of selected or conditional assignments
can affect the logic that is generated. A conditional
assignment implies an ordered sequence of two-way
decisions which results in the multiplexer tree as
shown above. A selected assignment implies a logic
circuit that evaluates all possible inputs simultane-
ously. This implies a single-stage sum-of-products
(or equivalent) circuit. The circuit generated by a se-
lected assignment will typically require less logic but
will incur a longer propagation delay.

However the logic synthesizer may need to opti-
mize the original circuit to meet either speed or space
constraints. The final circuit may not match either of
the above models.

6

Tri-State Buses

A tri-state output can be set to high and low logic lev-
els as well as to a third state: high-impedance (‘Z’).
This type of output is used where different devices’
outputs are connected together and drive a common
bus (hopefully at different times!). To specify that an
output should be set to the high-impedance state, we
use a signal of type std_logic and assign it a value
of ’Z’.

The following example shows an implementation
of a 4-bit buffer with an enable output. When the
enable is not asserted the output is in high-impedance
mode :

library ieee ;
use ieee.std_logic_1164.all ;

entity tbuf is port (
d : in std_logic_vector (3 downto 0) ;
q : out std_logic_vector (3 downto 0) ;
en : in std_logic
) ;

end tbuf ;

architecture rtl of tbuf is
begin

q <=
d when en = ’1’ else
"ZZZZ" ;

end rtl ;

The resulting schematic for the tbuf is:

Tri-state outputs are used primarily to implement
bidirectional bus signals. Bidirectional buses are de-
clared of type inout rather than in or out and their
values can be both ‘read’ and ‘written’ within the ar-
chitecture (unlike signals of type out). When the bus
is to act as an input, the bidirectional bus signals are
driven to the high-impedance state and in this case
it’s the value of other signals that determine the sig-
nal’s value.

The tri-state enable is usually controlled by an ad-
dress decoder or other enable input.

Memory Models

VHDL also allows the use of arrays with signal in-
dices to model random-access memory (RAM). The
following example demonstrates the use of VHDL
arrays as well as bi-directional buses. We must use
the type-conversion function conv_integer because
the address input, a, is of type unsigned while the
array index must be of type integer.

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

entity ram is port (
-- bi-directional data signal
d : inout std_logic_vector (7 downto 0) ;
-- address input
a : in unsigned (1 downto 0) ;
-- output enable and write strobe (clock)
oe, wr : in std_logic) ;

end ram ;

architecture rtl of ram is
subtype byte is std_logic_vector (7 downto 0) ;
type byte_array is array (0 to 3) of byte ;
signal ram : byte_array ;

begin
-- output value is the indexed array element
d <=

ram(conv_integer(a)) when oe = ’1’ else
"ZZZZZZZZ" ;

-- register the indexed array element
process(wr)
begin

if wr’event and wr = ’1’ then
ram(conv_integer(a)) <= d ;

end if ;
end process ;

end rtl ;

Exercise 41: Modify the design above to create a 16-element, 4-

bit wide RAM with separate input and output signals. How could

you model a ROM?

The result of synthesizing this description is:

7

For many implementation technologies (FPGAs,
gate arrays, or standard-cell ASICs) there are usu-
ally vendor-specific ways of implementing memory
arrays that give better results. However, using a
VHDL-only model with “random logic” as shown
above is more portable and may be practical for small
memories such as CPU “register files.”

Exercise 42: Why is portability desirable?

Design Strategies

There are a number of strategies that are useful when
designing complex logic circuits. You may recognize
similar strategies that are used in computer program-
ming.

One strategy is to design at the most abstract
(“highest”) level possible with the tools available.
For example, using a behavioral design style with
VHDL instead of a structural style (e.g. schemat-
ics) will make it easier to write, read, document, and

debug your design.

Another design strategy is hierarchical decompo-
sition. The device being designed should be de-
composed into a number of modules (represented as
VHDL entities) that interface through well-defined
interfaces (VHDL ports). The internal structure of
these modules should not be visible from outside the
module. Each of these modules should then be fur-
ther subdivided into other modules. The decomposi-
tion process should be repeated until the remaining
modules are simple enough to be easily written and
tested. This decomposition makes it easy to test the
modules individually, allows modules to be re-used
and allows more than one person to work on the same
project at the same time.

It’s also a good idea to keep the design as portable
as possible. Avoid using language features that are
specific to a particular manufacturer or target tech-
nology unless they are necessary to meet other re-
quirements. This will make it possible to use dif-
ferent manufacturing processes and different devices
with a minimum of redesign.

Structural Design

Structural design is the oldest digital logic design
method. In this method the designer does all the
work. The designer selects the low-level components
and decides exactly how they are to be connected.
The parity generator described previously is an ex-
ample of structural design.

A structural design can be represented as a parts
list and a list of the connections between the pins on
the components (for example: “pin 12 on chip 3 is
connected to pin 5 on chip 7”). This representation
of a circuit is called a netlist.

Schematic capture is the most common structural
design method. The designer works with a program
similar to a drawing program that allows components
to be inserted into the design and connected to other
components.

Exercise 43: What would be the most common type of state-

ment in a structural VHDL description?

8

Behavioral Design

At the other extreme, a behavioral design is meant
to demonstrate the functional behaviour of a device
without concerning itself about implementation de-
tails. Thus a behavioral design may include opera-
tions such as integer division or behaviour such as
propagation delays that are difficult or impossible to
synthesize.

However, every design should start with a behav-
ioral description. The behavioral description can be
simulated and used to verify that all of the required
aspects of the design have been identified. The out-
put of a behavioral description can be compared to
the output of a structural or RTL description to check
for errors.

Exercise 44: A VHDL description contains non-synthesizeable

constructs such as propagation delays. Is it a behavioural or

structural description?

RTL Design

Register Transfer Level, or RTL5 design lies between
a purely behavioral description of the desired circuit
and a purely structural one. An RTL description de-
scribes a circuit’s registers and the sequence of trans-
fers between these registers but does not describe the
hardware used to carry out these operations.

The steps in RTL design are: (1) determine the
number and sizes of registers needed to hold the
data used by the device, (2) determine the logic and
arithmetic operations that need to be performed on
these register contents, and (3) design a state ma-
chine whose outputs control how the register con-
tents are updated in order to obtain the desired re-
sults.

Producing an RTL design is similar to writing a
computer program in a conventional programming
language. Choosing registers is the same as choos-
ing variables. Designing the flow of data in the “dat-
apath” is analogous to writing expressions involv-
ing the variables (registers) and operators (combina-
tional functions). Designing the controller state ma-
chine is similar to deciding on the flow of control
within the program (if/then/else, while-loops, etc).

5The “L” in RTL sometimes stands for “Language” or
“Logic” – all refer to the same method of designing complex
logic circuits.

As a simple example, consider a device that needs
to add four numbers. In VHDL, given signals of the
correct type, we can simply write:

s <= ((a + b) + c) + d ;

This particular description is simple enough that
it can be synthesized. However, the resulting circuit
will be a fairly large combinational circuit compris-
ing three adder circuits as follows:

A behavioral description, not being concerned
with implementation details, would be complete at
this point.

However, if we were concerned about the cost of
the implementation we might decide to break down
the computation into a sequence of steps, each one
involving only a single addition:

s = 0
s = s + a
s = s + b
s = s + c
s = s + d

where each operation is executed sequentially. The
logic required is now one adder, a register to hold
the value of s in-between operations, a multiplexer
to select the input to be added, and a circuit to clear
s at the start of the computation.

Although this approach only needs one adder, the
process requires more steps and will take longer. Cir-
cuits that divide up a computation into a sequence
of arithmetic and logic operations are quite common
and this type of design is called Register Transfer
Level (RTL) or “dataflow” design.

9

An RTL design is composed of (1) registers and
combinational function blocks (e.g. adders and mul-
tiplexers) called the datapath and (2) a finite state
machine, called the controller that controls the trans-
fer of data through the function blocks and between
the registers.

In VHDL RTL design the gate-level design and
optimization of the datapath (registers, multiplexers,
and combinational functions) is done by the synthe-
sizer. However, the designer must design the state
machine and decide which register transfers are per-
formed in which state.

The RTL designer can trade off datapath complex-
ity (e.g. using more adders and thus using more chip
area) against speed (e.g. having more adders means
fewer steps are required to obtain the result). RTL
design is well suited for the design of CPUs and
special-purpose processors such as disk drive con-
trollers, video display cards, network adapter cards,
etc. It gives the designer great flexibility in choosing
between processing speed and circuit complexity.

The diagram below shows a generic component in
the datapath. Each RTL design will be composed of
one of the following building blocks for each regis-
ter. The structure allows the contents of each reg-
ister to be updated at the end of each clock period
with a value selected by the controller. The widths
of the registers, the types of combinational functions
and their inputs will be determined by the applica-
tion. A typical design will include many of these
components.

re
gi

st
er

m
ul

tip
le

xe
r

clock

arithmetic/logic
 function

arithmetic/logic
 function

arithmetic/logic
 function

...

fr
om

 r
eg

is
te

rs

...
...

...

from controller

RTL Design Example

To show how an RTL design is described in VHDL
and to clarify the concepts involved, we will design
a four-input adder. This design will also demonstrate
how to create packages of components that can be
re-used.

The datapath shown below can load the register
at the start of each clock cycle with one of: zero,
the current value of the register, or the sum of the
register and one of the four inputs. It includes one
8-bit register, an 8-bit adder and a multiplexer that
selects one of the four possible inputs as the value to
be added to the current value of the register.

m
ul

tip
le

xe
r

re
gi

st
er

clock

ad
de

r

m
ul

tip
le

xe
r

0

a
b
c
d

from controller

Exercise 45: Other datapaths could compute the same result.

Draw the block diagram of a datapath capable of computing the

sum of the four numbers in three clock cycles.

The first design unit is a package that defines a
new type, num, for eight-bit unsigned numbers and an
enumerated type, states, with six possible values.
nums are defined as a subtype of the unsigned type.

-- RTL design of 4-input summer

-- subtype used in design

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;

package averager_types is
subtype num is unsigned (7 downto 0) ;
type states is (clr, add_a, add_b, add_c,

add_d, hold) ;
end averager_types ;

The first entity defines the datapath. In this case
the four numbers to be added are available as inputs
to the entity and there is one output for the current
sum.

10

The inputs to the datapath from the controller are
a 2-bit selector for the multiplexer and two control
signals to load or clear (set to 0) the register.

-- datapath

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;

entity datapath is
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end datapath ;

architecture rtl of datapath is
signal mux_out, sum_reg, next_sum_reg : num ;
constant sum_zero : num :=

conv_unsigned(0,next_sum_reg’length) ;
begin

-- mux to select input to add
with sel select mux_out <=

a when "00",
b when "01",
c when "10",
d when others ;

-- mux to select register input
next_sum_reg <=

sum_reg + mux_out when load = ’1’ else
sum_zero when clear = ’1’ else
sum_reg ;

-- register sum
process(clk)
begin

if clk’event and clk = ’1’ then
sum_reg <= next_sum_reg ;

end if ;
end process ;

-- entity output is register output
sum <= sum_reg ;

end rtl ;

Exercise 46: Label the block diagram above with the bus widths
and signal names used in the entity.

What would happen if both clear and load inputs were as-
serted? Why do we need to define both sum reg and sum sig-
nals?

How many clock cycles will it take to compute the sum of the

four inputs?

The RTL design’s controller is a state machine
whose outputs control the multiplexers in the data-
path. The controller’s inputs are signals that control
the controller’s state transitions. In this case the only

input is an update signal that tells our device to re-
compute the sum (presumably because one or more
of the inputs has changed).

This particular state machine sits at the “hold”
state until the update signal is true. It then sequences
through the other five states and then stops at the hold
state again. The other five states are used to clear the
register and to add the four inputs to the current value
of the register.

-- controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

entity controller is
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end controller ;

architecture rtl of controller is
signal s, holdns, ns : states ;
signal tmp : std_logic_vector (3 downto 0) ;

begin

-- select next state
with s select ns <=

add_a when clr,
add_b when add_a,
add_c when add_b,
add_d when add_c,
hold when add_d,
holdns when others ; -- hold

-- next state if in hold state
holdns <=

clr when update = ’1’ else
hold ;

-- state register
process(clk)
begin

if clk’event and clk = ’1’ then
s <= ns ;

end if ;
end process ;

-- controller outputs
with s select sel <=

"00" when add_a,
"01" when add_b,
"10" when add_c,
"11" when others ;

load <= ’0’ when s = clr or s = hold else ’1’ ;

clear <= ’1’ when s = clr else ’0’ ;

end rtl ;

11

The next section of code is an example of how the
datapath and the controller entities can be placed in
a package, averager_components, as components.
In practice the datapath and controller component
declarations would probably have been placed in the
top-level architecture since they are not likely to be
re-used in other designs.

-- package for datapath and controller

library ieee ;
use ieee.std_logic_1164.all ;
use work.averager_types.all ;

package averager_components is

component datapath
port (
a, b, c, d : in num ;
sum : out num ;
sel : in std_logic_vector (1 downto 0) ;
load, clear, clk : in std_logic
) ;

end component ;

component controller
port (
update : in std_logic ;
sel : out std_logic_vector (1 downto 0) ;
load, clear : out std_logic ;
clk : in std_logic
) ;

end component ;

end averager_components ;

The top-level averager entity instantiates the two
components and interconnects them.

-- averager

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all ;
use work.averager_types.all ;
use work.averager_components.all ;

entity averager is port (
a, b, c, d : in num ;
sum : out num ;
update, clk : in std_logic) ;

end averager ;

architecture rtl of averager is
signal sel : std_logic_vector (1 downto 0) ;
signal load, clear : std_logic ;
-- other declarations (e.g. components) here

begin
d1: datapath port map (a, b, c, d, sum, sel, load,

clear, clk) ;
c1: controller port map (update, sel, load,

clear, clk) ;
end rtl ;

The result of the synthesizing the datapath is:

The register flip-flops are at the upper right, the adder
is in the middle and the input multiplexer is at the
lower left.

The result of the synthesizing the controller is:

The following timing diagram shows the datapath
output and the controller state over one computation.
Note that the state and output transitions take place
on the rising edge of the clock. Also note that the
output is updated at the end of the state in which a
particular operation is performed.

a+b+c+d

update

clock

state

sum

clear add_a add_b add_c add_d holdhold

0 a a+b a+b+c

hold

XX a+b+c+d

RTL Timing Analysis

As usual, the datapath should be designed as a syn-
chronous sequential circuit that uses the same clock
for all registers. All register contents thus change
at the same time. The controller also uses the same
clock as the datapath.

12

The result is that each datapath register loads the
values “computed” during one state at the end of that
state (which is then the start of the computation for
the next state).

We can guarantee that the correct results will be
loaded into registers if the longest propagation de-
lay (tPD) through any path through the combinational
logic that lies between register outputs and inputs is
less than the clock period (tclock) minus the regis-
ters’ setup time (ts) and clock-to-output (tCO) delays:

tPD
� tclock �

ts �
tCO

state n−1 state n state n+1

 clock edges
(change of state)

max. propagation
 delay

clock

timing margin
register setup time

register input

clock−to−
output delay

Using a single clock means we only need to com-
pute the delay through combinational logic blocks
which is much simpler than having to predict the
effect of propagation delays on clock signals. This
is why almost all large-scale digital circuits are syn-
chronous designs.

Synthesis tools can be asked to synthesize logic
that operates at a particular clock period. The syn-
thesizer is supplied with the propagation delay spec-
ifications for the combinational logic components
available in the particular technology being used and
it will then try to arrange the logic so that the longest
propagation delay between any register output and
any register input is less than the clock period (minus
setup and clock-to-output delays). This ensures that
the circuit will work properly at the specified clock
rate.

Behavioural Synthesis

It is possible to work at even higher levels of abstrac-
tion than RTL when design time is more important
than cost. Advanced synthesis programs (for exam-
ple, Synopsys’ Behavioral Compiler) can convert a
behavioral description of an algorithm into an RTL

description. The compiler does this by automatically
allocating registers and partitioning the processing
over as many clock cycles as are required to meet
high-level processing time requirements.

Metastability

Introduction

The proper operation of a clocked flip-flop depends
on the input being stable for a certain period of time
before (the setup time) and after (the hold time) the
clock edge. If the setup and hold time requirements
are met, the correct output will appear at a valid
output level (between VOL and VOH) at the flip-flop
output after a maximum delay of tCO (the clock-to-
output delay). However, if these setup and hold time
requirements are not met then the output of the flip-
flop may take much longer than tCO to reach a valid
logic level. This is called metastable behaviour or
metastability.

An invalid logic level at the output of the flip-flop
may be interpreted by some logic gates as a ’1’ and
by others as a ’0’. This leads to unpredictable and
usually incorrect behaviour of the circuit.

In the synchronous circuits we have studied thus
far we have been able to prevent metastability by
clocking all flip-flops from the same clock and ensur-
ing that the maximum propagation delay of any com-
binational logic path is less than the clock period mi-
nus the flip-flop setup time and clock-to-output de-
lay.

However, when inputs to a synchronous circuit are
not synchronized to the clock, it is impossible to en-
sure that the setup and hold times will be met. This
will eventually lead to the incorrect behaviour of the
device. It is important to realize that all practical
logic circuits will eventually fail due to metastabil-
ity. However, the designer should try to ensure that
these failures happen very infrequently (e.g. once per
103 or 106 years of operation) so that other causes of
failure predominate.

Computing MTBF

The average time between metastable outputs (mean
time between failures or ‘MTBF’) is given by the for-
mula:

13

MTBF �
eC2tMET

C1 fclk fdata

where C1 and C2 are constants that depend on the
technology used to build the flip-flop, tmet is the du-
ration of the metastable output, and fclk and fdata

are the frequencies of the synchronous clock and the
asynchronous input respectively.

Let’s compute the MTBF assuming we used the
lab FPGA board’s internal oscillator as a clock to
register the PC-104 bus IOR* signal. Since the clock
and the signal being registered are coming from dif-
ferent oscillators the input is asynchronous. The
clock frequency, fclk is 25.175 MHz. The exact
frequency of IOR* will depend on the program be-
ing executed, but let’s assume a value of fCLK2

�
4 �

8 � 333
�
4 � 2 � 08 MHz. For the Altera Flex10K fam-

ily C1
� 1 � 10 � 13 and C2

� 1 � 3 � 1010. For cor-
rect operation of our circuit the settling time of the
flip-flop output, the metastable time tMET , must be
less than the clock period minus the maximum prop-
agation delays through the combinational logic ele-
ments minus the setup times of the other flip-flops
in the circuit. The setup time of the -4 speed grade
10K20 input flip-flops, tIOSU , is is 3.2 ns, thus tMET

�

tclk �
tPD �

tIOSU . If we assume tPD is, for example,
30 ns, tMET

� 39 � 7
�

30
�

3 � 2 � 6 � 5ns and the MTBF
is:

MTBF �
e1 � 3 � 1010 � 6 � 5 � 10 � 9

1 � 10 � 13 � 25 � 175 � 106 � 2 � 08 � 106 s

which about 1033 seconds (a very long time).

Reducing Metastability

The simplest approach is to slow down the clock
since this provides a longer time for the output of
the flip-flop to reach a stable output value. Because
the MTBF increases exponentially with tMET a small
reduction in clock frequency will often be enough to
increase the MTBF to an acceptable value. However,
in other cases this approach will be unacceptable be-
cause the resulting clock rate will be too slow.

Another approach is to use flip-flops with shorter
setup and hold times (and correspondingly smaller
C1 and larger C2 values). Whenever possible, these

“metastable-hardened” flip-flops should be used on
asynchronous inputs.

If this does not result in the desired degree of re-
liability it is possible to use two or more flip-flops
in series. In this case the output of the second flip-
flop will only be metastable if both flip-flop outputs
were metastable. The disadvantage of this approach
is that the input will now be delayed by one to two
clock periods (instead of zero to one clock periods).

Input Synchronization

Inputs typically affect the results loaded into more
than one flip-flop. For example, an input that con-
trols state transitions in a state machine affects the
various flip-flops that hold the encoded state. If an
asynchronous input changes shortly before a clock
edge, it is possible that the outputs of the combina-
tional logic will not have reached their correct values
when the flip-flops are loaded. This will almost cer-
tainly lead to inconsistent and incorrect behaviour. A
circuit that exhibits unpredictable behaviour as a re-
sult of the timing of its inputs is said to have a race
condition.

Such problems can be avoided by registering
each asynchronous input using a single (preferably
metastable-hardened) flip-flop and using the output
of this flip-flop output to drive the rest of the logic.
This results in a delay of up to 1 clock period before
the circuit can respond to the changed input. Usually
this is an acceptable trade-off for improved reliabil-
ity.

Exercise 47: Draw the schematic of an input synchronizer.

As a general rule, always synchronize (register)
asynchronous inputs.

Glitches

Glitches are short temporary changes in outputs that
are caused by different propagation delays in a cir-
cuit. There are two reasons why glitches are undesir-
able.

The first set of problems is related to noise and
power. Since glitches are short pulses much of their
energy is at high frequencies and this power cou-
ples easily onto adjacent conductors. This induces

14

noise into other circuits and reduces their noise im-
munity. Glitches also cause power supply current
spikes which result in voltage transients on the power
supply lines. Another problem with glitches is that
in CMOS logic families current consumption is pro-
portional to the number of transistor switchings and
glitches lead to increased current consumption.

The second set of problems arises when the digi-
tal output of one circuit is used as a clock in another
circuit (e.g. to drive a counter or register). In this
case glitches cause undesired clock edges (similar to
switch bounce). In synchronous (single-clock) cir-
cuits these glitches are not a problem.

Glitches can be reduced by modifying the design
of the combinational logic. However, this usually in-
troduces additional logic. Glitches on signals that
are confined to short paths within a circuit or inside
a chip are usually tolerated. However, when outputs
are brought off a chip, board or system (e.g. onto a
bus) it is good practice to eliminate glitches.

The simplest way to eliminate glitches is to use
a registered output signal. The output of a flip-flop
changes only once, on the clock edge, and thus elim-
inates any glitches on its input. There are two ways
to register outputs. Often it is possible to use register
outputs directly such as when an output is already in
a data register or when the signals are state machine
state registers. The second method is to pass the sig-
nal through an additional flip-flop before it is output.
The disadvantage of this method is that the output
will be delayed by up to one clock period.

As a general rule, always register outputs.

15

