
C-1

APPENDIX C
INSTRUCTION SET DESCRIPTIONS

This appendix provides reference information for the 80C186 Modular Core family instruction
set. Tables C-1 through C-3 define the variables used in Table C-4, which lists the instructions
with their descriptions and operations.

Tab
�

le C-1. Instruction Format Variables

Variable Description

dest A register or memory location that may contain data operated on by the instruction,
and which receives (is replaced by) the result of the operation.

src A register, memory location or immediate value that is used in the operation, but is not
altered by the instruction

target A label to which control is to be transferred directly, or a register or memory location
whose content is the address of the location to which control is to be transferred
indirectly.

disp8 A label to which control is to be conditionally transferred; must lie within –128 to +127
bytes of the first byte of the next instruction.

accum Register AX for word transfers, AL for bytes.

port An I/O port number; specified as an immediate value of 0–255, or register DX (which
contains port number in range 0–64K).

src-string Name of a string in memory that is addressed by register SI; used only to identify
string as byte or word and specify segment override, if any. This string is used in the
operation, but is not altered.

dest-string Name of string in memory that is addressed by register DI; used only to identify string
as byte or word. This string receives (is replaced by) the result of the operation.

count Specifies number of bits to shift or rotate; written as immediate value 1 or register CL
(which contains the count in the range 0–255).

interrupt-type Immediate value of 0–255 identifying interrupt pointer number.

optional-pop-value Number of bytes (0–64K, ordinarily an even number) to discard from the stack.

external-opcode Immediate value (0–63) that is encoded in the instruction for use by an external
processor.

INSTRUCTION SET DESCRIPTIONS

C-2

Table C-2. Instruction Operands

Operand Description

reg An 8- or 16-bit general register.

reg16 An 16-bit general register.

seg-reg A segment register.

accum Register AX or AL

immed A constant in the range 0–FFFFH.

immed8 A constant in the range 0–FFH.

mem An 8- or 16-bit memory location.

mem16 A 16-bit memory location.

mem32 A 32-bit memory location.

src-table Name of 256-byte translate table.

src-string Name of string addressed by register SI.

dest-string Name of string addressed by register DI.

short-label A label within the –128 to +127 bytes of the end of the instruction.

near-label A label in current code segment.

far-label A label in another code segment.

near-proc A procedure in current code segment.

far-proc A procedure in another code segment.

memptr16 A word containing the offset of the location in the current code segment to which
control is to be transferred.

memptr32 A doubleword containing the offset and the segment base address of the location in
another code segment to which control is to be transferred.

regptr16 A 16-bit general register containing the offset of the location in the current code
segment to which control is to be transferred.

repeat A string instruction repeat prefix.

C-3

INSTRUCTION SET DESCRIPTIONS

Table C-3. Flag Bit Functions

Name Function

AF Auxiliary Flag:

Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

CF Carry Flag:

Set on high-order bit carry or borrow; cleared otherwise.

DF Direction Flag:

Causes string instructions to auto decrement the appropriate index register
when set. Clearing DF causes auto increment.

IF Interrupt-enable Flag:

When set, maskable interrupts will cause the CPU to transfer control to an
interrupt vector specified location.

OF Overflow Flag:

Set if the signed result cannot be expressed within the number of bits in the
destination operand; cleared otherwise.

PF Parity Flag:

Set if low-order 8 bits of result contain an even number of 1 bits; cleared
otherwise.

SF Sign Flag:

Set equal to high-order bit of result (0 if positive, 1 if negative).

TF Single Step Flag:

Once set, a single step interrupt occurs after the next instruction executes. TF
is cleared by the single step interrupt.

ZF Zero Flag:

Set if result is zero; cleared otherwise.

INSTRUCTION SET DESCRIPTIONS

C-4

Table C-4. Instruction Set

Name Description Operation
Flags

Affected

AAA ASCII Adjust for Addition:

AAA

Changes the contents of register AL to
a valid unpacked decimal number; the
high-order half-byte is zeroed.

Instruction Operands:

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) + 6
(AH) ← (AH) + 1
(AF) ← 1
(CF) ← (AF)
(AL) ← (AL) and 0FH

AF �
CF �
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

AAD ASCII Adjust for Division:

AAD

Modifies the numerator in AL before
dividing two valid unpacked decimal
operands so that the quotient
produced by the division will be a valid
unpacked decimal number. AH must
be zero for the subsequent DIV to
produce the correct result. The
quotient is returned in AL, and the
remainder is returned in AH; both high-
order half-bytes are zeroed.

Instruction Operands:

none

(AL) ← (AH) × 0AH + (AL)
(AH) ← 0

AF ?
CF ?
DF –
IF –
OF ?
PF �
SF �
TF –
ZF �

AAM ASCII Adjust for Multiply:

AAM

Corrects the result of a previous multi-
plication of two valid unpacked
decimal operands. A valid 2-digit
unpacked decimal number is derived
from the content of AH and AL and is
returned to AH and AL. The high-order
half-bytes of the multiplied operands
must have been 0H for AAM to
produce a correct result.

Instruction Operands:

none

(AH) ← (AL) / 0AH
(AL) ← (AL) % 0AH

AF ?
CF ?
DF –
IF –
OF ?
PF �
SF �
TF –
ZF �

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed	

the flag is updated after the instruction is executed

C-5

INSTRUCTION SET DESCRIPTIONS

AAS ASCII Adjust for Subtraction:

AAS

Corrects the result of a previous
subtraction of two valid unpacked
decimal operands (the destination
operand must have been specified as
register AL). Changes the content of
AL to a valid unpacked decimal
number; the high-order half-byte is
zeroed.

Instruction Operands:

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) – 6
(AH) ← (AH) – 1
(AF) ← 1
(CF) ← (AF)
(AL) ← (AL) and 0FH

AF

CF �
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

ADC Add with Carry:

ADC dest
�

, src

Sums the operands, which may be
bytes or words, adds one if CF is set
and replaces the destination operand
with the result. Both operands may be
signed or unsigned binary numbers
(see AAA and DAA). Since ADC incor-
porates a carry from a previous
operation, it can be used to write
routines to add numbers longer than
16 bits.

Instruction Operands:

ADC reg, reg
ADC reg, mem
ADC mem, reg
ADC reg, immed
ADC mem, immed
ADC accum, immed

if
(CF) = 1

then
(dest) ← (dest) + (src) + 1

else
(dest) ← (dest) + (src)

AF �
CF �
DF –
IF –
OF �
PF �
SF �
TF –
ZF �

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-6

ADD Addition:

ADD dest, src

Sums two operands, which may be
bytes or words, replaces the
destination operand. Both operands
may be signed or unsigned binary
numbers (see AAA and DAA).

Instruction Operands:

ADD reg, reg
ADD reg, mem
ADD mem, reg
ADD reg, immed
ADD mem, immed
ADD accum, immed

(dest) ← (dest) + (src) AF �
CF �
DF –
IF –
OF �
PF �
SF �
TF –
ZF �

AND And Logical:

AND dest
�

, src

Performs the logical "and" of the two
operands (byte or word) and returns
t
�
he result to the destination operand. A

bit in the result is set if both corre-
sponding bits of the original operands
are set; otherwise the bit is cleared.

Instruction Operands:

AND reg, reg
AND reg, mem
AND mem, reg
AND reg, immed
AND mem, immed
AND accum, immed

(dest) ← (dest) and (src)
(CF) ← 0
(OF) ← 0

AF ?
CF �
DF –
IF –
OF �
PF �
SF �
TF –
ZF

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed!

the flag is
�

updated after the instruction is executed

C-7

INSTRUCTION SET DESCRIPTIONS

BOUND Detect Value Out of Range:

BOUND dest, src

Provides array bounds checking in
hardware. The calculated array index
is placed in one of the general purpose
registers, and the upper and lower
bounds of the array are placed in two
consecutive memory locations. The
contents of the register are compared
wit" h the memory location values, and if
t
�
he register value is less than the first

location or greater than the second
memory location, a trap type 5 is
generated.

Instruction Operands:

BOUND reg, mem

if
((dest) < (src) or (dest) > ((src) + 2)
then

(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← (CS)
(CS) ← (1EH)
(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← (IP)
(IP) ← (1CH)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CALL Call Procedure:

CALL procedure# -name

Activates an out-of-line procedure,
saving information on the stack to
permit a RET (return) instruction in the
procedure to transfer control back to
t
�
he instruction following the CALL. The

assembler generates a different type
of CALL instruction depending on
w" hether the programmer has defined
t
�
he procedure name as NEAR or FAR.

Instruction Operands:

CALL near-proc
CALL far-proc
CALL memptr16
CALL regptr16
CALL memptr32

if
Inter-segment

then
(SP) ← (SP) – 2
((SP) +1:(SP)) ← (CS)
(CS) ← SEG
(SP) ← (SP) – 2
((SP) +1:(SP)) ← (IP)
(IP) ← dest

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed$

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-8

CBW Convert Byte to Word:

CBW

Extends the sign of the byte in register
AL throughout register AH. Use to
produce a double-length (word)
dividend from a byte prior to
performing byte division.

Instruction Operands:

none

if
(AL) < 80H

then
(AH) ← 0

else
(AH) ← FFH

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CLC Clear Carry flag:

CLC

Zeroes the carry flag (CF) and affects
no other flags. Useful in conjunction
wit" h the rotate through carry left (RCL)
and the rotate through carry right
(RCR) instructions.

Instruction Operands:

none

(CF) ← 0 AF –
CF %
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CLD Clear Direction flag:

CLD

Zeroes the direction flag (DF) causing
t
�
he string instructions to auto-

increment the source index (SI) and/or
destination index (DI) registers.

Instruction Operands:

none

(DF) ← 0 AF –
CF –
DF &
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed'

the flag is
�

updated after the instruction is executed

C-9

INSTRUCTION SET DESCRIPTIONS

CLI Clear Interrupt-enable Flag:

CLI

Zeroes the interrupt-enable flag (IF).
When the interrupt-enable flag is
cleared, the 8086 and 8088 do not
recognize an external interrupt request
t
�
hat appears on the INTR line; in other

words maskable interrupts are
disabled. A non-maskable interrupt
appearing on NMI line, however, is
honored, as is a software interrupt.

Instruction Operands:

none

(IF) ← 0 AF –
CF –
DF –
IF (
OF –
PF –
SF –
TF –
ZF –

CMC Complement Carry Flag:

CMC

Toggles complement carry flag (CF) to
its opposite state and affects no other
f
)
lags.

Instruction Operands:

none

if
(CF) = 0

then
�

(CF) ← 1
else

(CF) ← 0

AF –
CF *
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed+

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-10

CMP Compare:

CMP dest, src

Subtracts the source from the desti-
nation, which may be bytes or words,
but does not return the result. The
operands are unchanged, but the flags
are updated and can be tested by a
subsequent conditional jump
instruction. The comparison reflected
in the flags is that of the destination to
t
�
he source. If a CMP instruction is

f
)
ollowed by a JG (jump if greater)

instruction, for example, the jump is
t
�
aken if the destination operand is

greater than the source operand.

Instruction Operands:

CMP reg, reg
CMP reg, mem
CMP mem, reg
CMP reg, immed
CMP mem, immed
CMP accum, immed

(dest) – (src) AF ,
CF -
DF –
IF –
OF .
PF /
SF 0
TF –
ZF 1

CMPS Compare String:

CMPS dest-string, src-string

Subtracts the destination byte or word
f
)
rom the source byte or word. The

destination byte or word is addressed
by the destination index (DI) register
and the source byte or word is
addresses by the source index (SI)
register. CMPS updates the flags to
reflect the relationship of the
destination element to the source
element but does not alter either
operand and updates SI and DI to
point to the next string element.

Instruction Operands:

CMP dest-string, src-string
CMP (repeat) dest-string, src-string

(dest-string) – (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
(DI) ← (DI) + DELTA

else
(SI) ← (SI) – DELTA
(DI) ← (DI) – DELTA

AF 2
CF 3
DF –
IF –
OF 4
PF 5
SF 6
TF –
ZF 7

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed8

the flag is
�

updated after the instruction is executed

C-11

INSTRUCTION SET DESCRIPTIONS

CWD Convert Word to Doubleword:

CWD

Extends the sign of the word in register
AX throughout register DX. Use to
produce a double-length (doubleword)
dividend from a word prior to
performing word division.

Instruction Operands:

none

if
(AX) < 8000H

then
(DX) ← 0

else
(DX) ← FFFFH

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

DAA Decimal Adjust for Addition:

DAA

Corrects the result of previously
adding two valid packed decimal
operands (the destination operand
must have been register AL). Changes
t
�
he content of AL to a pair of valid

packed decimal digits.

Instruction Operands:

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) + 6
(AF) ← 1

if
(AL) > 9FH or (CF) = 1

then
(AL) ← (AL) + 60H
(CF) ← 1

AF 9
CF :
DF –
IF –
OF ?
PF ;
SF <
TF –
ZF =

DAS Decimal Adjust for Subtraction:

DAS

Corrects the result of a previous
subtraction of two valid packed
decimal operands (the destination
operand must have been specified as
register AL). Changes the content of
AL to a pair of valid packed decimal
digits.

Instruction Operands:

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) – 6
(AF) ← 1

if
(AL) > 9FH or (CF) = 1

then
(AL) ← (AL) – 60H
(CF) ← 1

AF >
CF ?
DF –
IF –
OF ?
PF @
SF A
TF –
ZF B

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedC

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-12

DEC Decrement:

DEC dest

Subtracts one from the destination
operand. The operand may be a byte
or a word and is treated as an
unsigned binary number (see AAA and
DAA).

Instruction Operands:

DEC reg
DEC mem

(dest) ← (dest) – 1 AF D
CF –
DF –
IF –
OF E
PF F
SF G
TF –
ZF H

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedI

the flag is
�

updated after the instruction is executed

C-13

INSTRUCTION SET DESCRIPTIONS

DIV Divide:

DIV src

Performs an unsigned division of the
accumulator (and its extension) by the
source operand.

If the source operand is a byte, it is
divided into the two-byte dividend
assumed to be in registers AL and AH.
The byte quotient is returned in AL,
and the byte remainder is returned in
AH.

If the source operand is a word, it is
divided into the two-word dividend in
registers AX and DX. The word
quotient is returned in AX, and the
w" ord remainder is returned in DX.

If the quotient exceeds the capacity of
its destination register (FFH for byte
source, FFFFH for word source), as
when division by zero is attempted, a
t
�
ype 0 interrupt is generated, and the

quotient and remainder are undefined.
Nonintegral quotients are truncated to
integers.

Instruction Operands:

DIV reg
DIV mem

When Source Operand is a Byte:

(temp) ← (byte-src)
if

(temp) / (AX) > FFH
then (type 0 interrupt is generated)

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AL) ← (temp) / (AX)
(AH) ← (temp) % (AX)

When Source Operand is a Word:

(temp) ← (word-src)
if

(temp) / (DX:AX) > FFFFH
then (type 0 interrupt is generated)

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AX) ← (temp) / (DX:AX)
(DX) ← (temp) % (DX:AX)

AF ?
CF ?
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedJ

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-14

ENTER Procedure Entry:

ENTER locals, levels

Executes the calling sequence for a
high-level language. It saves the
current frame pointer in BP, copies the
f
)
rame pointers from procedures below

t
�
he current call (to allow access to

local variables in these procedures)
and allocates space on the stack for
t
�
he local variables of the current

procedure invocation.

Instruction Operands:

ENTER locals, level

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)
(FP) ← (SP)
if

level > 0
then

repeat (level – 1) times
(BP) ← (BP) – 2
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)

end repeat
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (FP)

end if
(BP) ← (FP)
(SP) ← (SP) – (locals)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

ESC Escape:

ESC

Provides a mechanism by which other
processors (coprocessors) may
receive their instructions from the 8086
or 8088 instruction stream and make
use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does
a no operation (NOP) for the ESC
instruction other than to access a
memory operand and place it on the
bus.

Instruction Operands:

ESC immed, mem
ESC immed, reg

if
mod ≠K 11

then
data bus ← (EA)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedL

the flag is
�

updated after the instruction is executed

C-15

INSTRUCTION SET DESCRIPTIONS

HLT Halt:

HLT

Causes the CPU to enter the halt
state. The processor leaves the halt
state upon activation of the RESET
line, upon receipt of a non-maskable
interrupt request on NMI, or upon
receipt of a maskable interrupt request
on INTR (if interrupts are enabled).

Instruction Operands:

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedM

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-16

IDIV Integer Divide:

IDIV src

Performs a signed division of the
accumulator (and its extension) by the
source operand. If the source operand
is a byte, it is divided into the double-
length dividend assumed to be in
registers AL and AH; the single-length
quotient is returned in AL, and the
single-length remainder is returned in
AH. For byte integer division, the
maximum positive quotient is +127
(7FH) and the minimum negative
quotient is –127 (81H).

If the source operand is a word, it is
divided into the double-length dividend
in registers AX and DX; the single-
length quotient is returned in AX, and
t
�
he single-length remainder is returned

in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative
quotient is –32,767 (8001H).

If the quotient is positive and exceeds
t
�
he maximum, or is negative and is

less than the minimum, the quotient
and remainder are undefined, and a
t
�
ype 0 interrupt is generated. In

particular, this occurs if division by 0 is
attempted. Nonintegral quotients are
t
�
runcated (toward 0) to integers, and

t
�
he remainder has the same sign as

t
�
he dividend.

Instruction Operands:

IDIV reg
IDIV mem

When Source Operand is a Byte:

(temp) ← (byte-src)
if

(temp) / (AX) > 0 and
(temp) / (AX) > 7FH or
(temp) / (AX) < 0 and
(temp) / (AX) < 0 – 7FH – 1

then (type 0 interrupt is generated)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AL) ← (temp) / (AX)
(AH) ← (temp) % (AX)

When Source Operand is a Word:

(temp) ← (word-src)
if

(temp) / (DX:AX) > 0 and
(temp) / (DX:AX) > 7FFFH or
(temp) / (DX:AX) < 0 and
(temp) / (DX:AX) < 0 – 7FFFH – 1

then (type 0 interrupt is generated)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AX) ← (temp) / (DX:AX)
(DX) ← (temp) % (DX:AX)

AF ?
CF ?
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedN

the flag is
�

updated after the instruction is executed

C-17

INSTRUCTION SET DESCRIPTIONS

IMUL Integer Multiply:

IMUL src

Performs a signed multiplication of the
source operand and the accumulator.
If the source is a byte, then it is
multiplied by register AL, and the
double-length result is returned in AH
and AL. If the source is a word, then it
is multiplied by register AX, and the
double-length result is returned in
registers DX and AX. If the upper half
of the result (AH for byte source, DX
f
)
or word source) is not the sign

extension of the lower half of the
result, CF and OF are set; otherwise
t
�
hey are cleared. When CF and OF are

set, they indicate that AH or DX
contains significant digits of the result.

Instruction Operands:

IMUL reg
IMUL mem
IMUL immed

When Source Operand is a Byte:

(AX) ← (byte-src) × (AL)
if

(AH) = sign-extension of (AL)
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

When Source Operand is a Word:

(DX:AX) ← (word-src) × (AX)
if

(DX) = sign-extension of (AX)
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

AF ?
CF O
DF –
IF –
OF P
PF ?
SF ?
TF –
ZF ?

IN Input Byte or Word:

IN accumQ , port#

Transfers a byte or a word from an
input port to the AL register or the AX
register, respectively. The port number
may be specified either with an
immediate byte constant, allowing
access to ports numbered 0 through
255, or with a number previously
placed in the DX register, allowing
vR ariable access (by changing the value
in DX) to ports numbered from 0
t
�
hrough 65,535.

Instruction Operands:

IN AL, immed8
IN AX, DX

When Source Operand is a Byte:

(AL) ← (port)

When Source Operand is a Word:

(AX) ← (port)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedS

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-18

INC Increment:

INC dest

Adds one to the destination operand.
The operand may be byte or a word
and is treated as an unsigned binary
number (see AAA and DAA).

Instruction Operands:

INC reg
INC mem

(dest) ← (dest) + 1 AF T
CF –
DF –
IF –
OF U
PF V
SF W
TF –
ZF X

INS In String:

INS dest
�

-string, port

Performs block input from an I/O port
t
�
o memory. The port address is placed

in the DX register. The memory
address is placed in the DI register.
This instruction uses the ES register
(which cannot be overridden). After the
data transfer takes place, the DI
register increments or decrements,
depending on the value of the direction
f
)
lag (DF). The DI register changes by 1

f
)
or byte transfers or 2 for word

t
�
ransfers.

Instruction Operands:

INS dest-string, port
INS (repeat) dest-string, port

(dest) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedY

the flag is
�

updated after the instruction is executed

C-19

INSTRUCTION SET DESCRIPTIONS

INT Interrupt:

INT interrupt-type

Activates the interrupt procedure
specified by the interrupt-type
operand. Decrements the stack pointer
by two, pushes the flags onto the
stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable
single-step and maskable interrupts.
The flags are stored in the format used
by the PUSHF instruction. SP is
decremented again by two, and the CS
register is pushed onto the stack.

The address of the interrupt pointer is
calculated by multiplying interrupt-
t
�
ype by four; the second word of the

interrupt pointer replaces CS. SP
again is decremented by two, and IP is
pushed onto the stack and is replaced
by the first word of the interrupt pointer.
If interrupt-type = 3, the assembler
generates a short (1 byte) form of the
instruction, known as the breakpoint
interrupt.

Instruction Operands:

INT immed8

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (interrupt-type × 4 + 2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (interrupt-type × 4)

AF –
CF –
DF –
IF Z
OF –
PF –
SF –
TF [
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed\

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-20

INTO Interrupt on Overflow:

INTO

Generates a software interrupt if the
overflow flag (OF) is set; otherwise
control proceeds to the following
instruction without activating an
interrupt procedure. INTO addresses
t
�
he target interrupt procedure (its type

is 4) through the interrupt pointer at
location 10H; it clears the TF and IF
flags and otherwise operates like INT.
INTO may be written following an
arithmetic or logical operation to
activate an interrupt procedure if
overflow occurs.

Instruction Operands:

none

if
(OF) = 1

then
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (12H)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (10H)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

IRET Interrupt Return:

IRET

Transfers control back to the point of
interruption by popping IP, CS, and the
flags from the stack. IRET thus affects
all flags by restoring them to previously
saved values. IRET is used to exit any
interrupt procedure, whether activated
by hardware or software.

Instruction Operands:

none

(IP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(CS) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
FLAGS ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF]
CF ^
DF _
IF `
OF a
PF b
SF c
TF d
ZF e

JA
JNBE

Jump on Above:
Jump on Not Below or Equal:

JA disp8
�

JNBE disp8

Transfers control to the target location
if the tested condition ((CF=0) or
(ZF=0)) is true.

Instruction Operands:

JA short-label
JNBE short-label

if
((CF) = 0) or ((ZF) = 0)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedf

the flag is
�

updated after the instruction is executed

C-21

INSTRUCTION SET DESCRIPTIONS

JAE
JNB

Jump on Above or Equal:
Jump on Not Below:

JAE disp8
�

JNB disp8

Transfers control to the target location
if the tested condition (CF = 0) is true.

Instruction Operands:

JAE short-label
JNB short-label

if
(CF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JB
JNAE

Jump on Below:
Jump on Not Above or Equal:

JB disp8
JNAE disp8

�

Transfers control to the target location
if the tested condition (CF = 1) is true.

Instruction Operands:

JB short-label
JNAE short-label

if
(CF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JBE
JNA

Jump on Below or Equal:
Jump on Not Above:

JBE disp8
�

JNA disp8
�

Transfers control to the target location
if the tested condition ((C =1) or
(ZF=1)) is true.

Instruction Operands:

JBE short-label
JNA short-label

if
((CF) = 1) or ((ZF) = 1)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JC Jump on Carry:

JC disp
�

8

Transfers control to the target location
if the tested condition (CF=1) is true.

Instruction Operands:

JC short-label

if
(CF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedg

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-22

JCXZ Jump if CX Zero:

JCXZ disp8

Transfers control to the target location
if CX is 0. Useful at the beginning of a
loop to bypass the loop if CX has a
zero value, i.e., to execute the loop
zero times.

Instruction Operands:

JCXZ short-label

if
(CX) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JE
JZ

Jump on Equal:
Jump on Zero:

JE disp8
JZ disp8

�

Transfers control to the target location
if the condition tested (ZF = 1) is true.

Instruction Operands:

JE short-label
JZ short-label

if
(ZF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JG
JNLE

Jump on Greater Than:
Jump on Not Less Than or Equal:

JG disp8
�

JNLE disp8
�

Transfers control to the target location
if the condition tested (SF = OF) and
(ZF=0) is true.

Instruction Operands:

JG short-label
JNLE short-label

if
((SF) = (OF)) and ((ZF) = 0)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JGE
JNL

Jump on Greater Than or Equal:
Jump on Not Less Than:

JGE disp8
JNL dis

�
p8

Transfers control to the target location
if the condition tested (SF=OF) is true.

Instruction Operands:

JGE short-label
JNL short-label

if
(SF) = (OF)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedh

the flag is
�

updated after the instruction is executed

C-23

INSTRUCTION SET DESCRIPTIONS

JL
JNGE

Jump on Less Than:
Jump on Not Greater Than or Equal:

JL disp8
�

JNGE disp8

Transfers control to the target location
if the condition tested (SF≠OF) is true.

Instruction Operands:

JL short-label
JNGE short-label

if
(SF) ≠ K

(OF)
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JLE
JNG

Jump on Less Than or Equal:
Jump on Not Greater Than:

JGE disp8
JNL dis

�
p8

Transfers control to the target location
If the condition tested ((SF≠K OF) or
(ZF=0)) is true.

Instruction Operands:

JGE short-label
JNL short-label

if
((SF) ≠ K

(OF)) or ((ZF) = 1)
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JMP Jump Unconditionally:

JMP t
i
arget

Transfers control to the target location.

Instruction Operands:

JMP short-label
JMP near-label
JMP far-label
JMP memptr
JMP regptr

if
Inter-segment

then
(CS) ← SEG
(IP) ← dest

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNC Jump on Not Carry:

JNC dis
�

p8

Transfers control to the target location
if the tested condition (CF=0) is true.

Instruction Operands:

JNC short-label

if
(CF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedj

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-24

JNE
JNZ

Jump on Not Equal:
Jump on Not Zero:

JNE disp8
�

JNZ disp8

Transfers control to the target location
if the tested condition (ZF = 0) is true.

Instruction Operands:

JNE short-label
JNZ short-label

if
(ZF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNO Jump on Not Overflow:

JNO disp8
�

Transfers control to the target location
if the tested condition (OF = 0) is true.

Instruction Operands:

JNO short-label

if
(OF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNS Jump on Not Sign:

JNS disp8

Transfers control to the target location
if the tested condition (SF = 0) is true.

Instruction Operands:

JNS short-label

if
(SF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNP
JPO

Jump on Not Parity:
Jump on Parity Odd:

JNO disp8
�

JPO disp8

Transfers control to the target location
if the tested condition (PF=0) is true.

Instruction Operands:

JNO short-label
JPO short-label

if
(PF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedk

the flag is
�

updated after the instruction is executed

C-25

INSTRUCTION SET DESCRIPTIONS

JO Jump on Overflow:

JO disp8

Transfers control to the target location
if the tested condition (OF = 1) is true.

Instruction Operands:

JO short-label

if
(OF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JP
JPE

Jump on Parity:
Jump on Parity Equal:

JP disp8
JPE disp8

Transfers control to the target location
if the tested condition (PF = 1) is true.

Instruction Format:

JP short-label
JPE short-label

if
(PF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JS Jump on Sign:

JS disp8

Transfers control to the target location
if the tested condition (SF = 1) is true.

Instruction Format:

JS short-label

if
(SF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LAHF Load Register AH From Flags:

LAHF

Copies SF, ZF, AF, PF and CF (the
8080/8085 flags) into bits 7, 6, 4, 2 and
0, respectively, of register AH. The
content of bits 5, 3, and 1 are
undefined. LAHF is provided primarily
for converting 8080/8085 assembly
language programs to run on an 8086
or 8088.

Instruction Operands:

none

(AH) ← (SF):(ZF):X:(AF):X:(PF):X:(CF) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedl

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-26

LDS Load Pointer Using DS:

LDS dest, src

Transfers a 32-bit pointer variable from
t
�
he source operand, which must be a

memory operand, to the destination
operand and register DS. The offset
word of the pointer is transferred to the
destination operand, which may be
any 16-bit general register. The
segment word of the pointer is
t
�
ransferred to register DS.

Instruction Operands:

LDS reg16, mem32

(dest) ← (EA)
(DS) ← (EA + 2)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LEA Load Effective Address:

LEA dest, src

Transfers the offset of the source
operand (rather than its value) to the
destination operand.

Instruction Operands:

LEA reg16, mem16

(dest) ← EA AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LEAVE Leave:

LEAVE

Reverses the action of the most recent
ENTER instruction. Collapses the last
stack frame created. First, LEAVE
copies the current BP to the stack
pointer releasing the stack space
allocated to the current procedure.
Second, LEAVE pops the old value of
BP from the stack, to return to the
calling procedure's stack frame. A
return (RET) instruction will remove
arguments stacked by the calling
procedure for use by the called
procedure.

Instruction Operands:

none

(SP) ← (BP)
(BP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedm

the flag is
�

updated after the instruction is executed

C-27

INSTRUCTION SET DESCRIPTIONS

LES Load Pointer Using ES:

LES dest, src

Transfers a 32-bit pointer variable from
t
�
he source operand to the destination

operand and register ES. The offset
w" ord of the pointer is transferred to the
destination operand. The segment
word of the pointer is transferred to
register ES.

Instruction Operands:

LES reg16, mem32

(dest) ← (EA)
(ES) ← (EA + 2)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOCK Lock the Bus:

LOCK

Causes the 8088 (configured in
maximum mode) to assert its bus
LOCK signal while the following
instruction executes. The instruction
most useful in this context is an
exchange register with memory.

The LOCK prefix may be combined
wit" h the segment override and/or REP
prefixes.

Instruction Operands:

none

none AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedn

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-28

LODS Load String (Byte or Word):

LODS src-string

Transfers the byte or word string
element addressed by SI to register AL
or AX and updates SI to point to the
next element in the string. This
instruction is not ordinarily repeated
since the accumulator would be
overwritten by each repetition, and
only the last element would be
retained.

Instruction Operands:

LODS src-string
LODS (repeat) src-string

When Source Operand is a Byte:

(AL) ← (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
else

(SI) ← (SI) – DELTA

When Source Operand is a Word:

(AX) ← (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
else

(SI) ← (SI) – DELTA

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOOP Loop:

LOOP disp8

Decrements CX by 1 and transfers
control to the target location if CX is
not 0; otherwise the instruction
f
)
ollowing LOOP is executed.

Instruction Operands:

LOOP short-label

(CX) ← (CX) – 1
if

(CX) ≠ K 0
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOOPE
LOOPZ

Loop While Equal:
Loop While Zero:

LOOPE di
�

sp8
LOOPZ disp8

�

Decrements CX by 1 and transfers
control is to the target location if CX is
not 0 and if ZF is set; otherwise the
next sequential instruction is executed.

Instruction Operands:

LOOPE short-label
LOOPZ short-label

(CX) ← (CX) – 1
if

(ZF) = 1 and (CX) ≠ K 0
then

(IP)←(IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedo

the flag is
�

updated after the instruction is executed

C-29

INSTRUCTION SET DESCRIPTIONS

LOOPNE
LOOPNZ

Loop While Not Equal:
Loop While Not Zero:

LOOPNE di
�

sp8
LOOPNZ disp8

Decrements CX by 1 and transfers
control to the target location if CX is
not 0 and if ZF is clear; otherwise the
next sequential instruction is executed.

Instruction Operands:

LOOPNE short-label
LOOPNZ short-label

(CX) ← (CX) – 1
if

(ZF) = 0 and (CX) ≠ K 0
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

MOV Move (Byte or Word):

MOV dest
�

, src

Transfers a byte or a word from the
source operand to the destination
operand.

Instruction Operands:

MOV mem, accum
MOV accum, mem
MOV reg, reg
MOV reg, mem
MOV mem, reg
MOV reg, immed
MOV mem, immed
MOV seg-reg, reg16
MOV seg-reg, mem16
MOV reg16, seg-reg
MOV mem16, seg-reg

(dest)←(src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedp

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-30

MOVS Move String:

MOVS dest-string, src-string

Transfers a byte or a word from the
source string (addressed by SI) to the
destination string (addressed by DI)
and updates SI and DI to point to the
next string element. When used in
conjunction with REP, MOVS
performs a memory-to-memory block
t
�
ransfer.

Instruction Operands:

MOVS dest-string, src-string
MOVS (repeat) dest-string, src-string

(dest-string) ← (src-string) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

MUL Multiply:

MUL src

Performs an unsigned multiplication of
t
�
he source operand and the accumu-

lator. If the source is a byte, then it is
multiplied by register AL, and the
double-length result is returned in AH
and AL. If the source operand is a
w" ord, then it is multiplied by register
AX, and the double-length result is
returned in registers DX and AX. The
operands are treated as unsigned
binary numbers (see AAM). If the
upper half of the result (AH for byte
source, DX for word source) is non-
zero, CF and OF are set; otherwise
t
�
hey are cleared.

Instruction Operands:

MUL reg
MUL mem

When Source Operand is a Byte:

(AX) ← (AL) × (src)
if

(AH) = 0
then
�

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

When Source Operand is a Word:

(DX:AX) ← (AX) × (src)
if

(DX) = 0
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

AF ?
CF q
DF –
IF –
OF r
PF ?
SF ?
TF –
ZF ?

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executeds

the flag is
�

updated after the instruction is executed

C-31

INSTRUCTION SET DESCRIPTIONS

NEG Negate:

NEG dest

Subtracts the destination operand,
which may be a byte or a word, from 0
and returns the result to the desti-
nation. This forms the two's
complement of the number, effectively
reversing the sign of an integer. If the
operand is zero, its sign is not
changed. Attempting to negate a byte
containing –128 or a word containing –
32,768 causes no change to the
operand and sets OF.

Instruction Operands:

NEG reg
NEG mem

When Source Operand is a Byte:

(dest) ← FFH – (dest)
(dest) ← (dest) + 1 (affecting flags)

When Source Operand is a Word:

(dest) ← FFFFH – (dest)
(dest) ← (dest) + 1 (affecting flags)

AF t
CF u
DF –
IF –
OF v
PF w
SF x
TF –
ZF y

NOP No Operation:

NOP

Causes the CPU to do nothing.

Instruction Operands:

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

NOT Logical Not:

NOT dest
�

Inverts the bits (forms the one's
complement) of the byte or word
operand.

Instruction Operands:

NOT reg
NOT mem

When Source Operand is a Byte:

(dest) ← FFH – (dest)

When Source Operand is a Word:

(dest) ← FFFFH – (dest)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedz

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-32

OR Logical OR:

OR dest,src

Performs the logical "inclusive or" of
t
�
he two operands (bytes or words) and

returns the result to the destination
operand. A bit in the result is set if
either or both corresponding bits in the
original operands are set; otherwise
t
�
he result bit is cleared.

Instruction Operands:

OR reg, reg
OR reg, mem
OR mem, reg
OR accum, immed
OR reg, immed
OR mem, immed

(dest) ← (dest) or (src)
(CF) ← 0
(OF) ← 0

AF ?
CF {
DF –
IF –
OF |
PF }
SF ~
TF –
ZF �

OUT Output:

OUT port,# accumulator

Transfers a byte or a word from the AL
register or the AX register, respec-
t
�
ively, to an output port. The port

number may be specified either with
an immediate byte constant, allowing
access to ports numbered 0 through
255, or with a number previously
placed in register DX, allowing variable
access (by changing the value in DX)
t
�
o ports numbered from 0 through

65,535.

Instruction Operands:

OUT immed8, AL
OUT DX, AX

(dest) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

C-33

INSTRUCTION SET DESCRIPTIONS

OUTS Out String:

OUTS port# , src_string

Performs block output from memory to
an I/O port. The port address is placed
in the DX register. The memory
address is placed in the SI register.
This instruction uses the DS segment
register, but this may be changed with
a segment override instruction. After
t
�
he data transfer takes place, the

pointer register (SI) increments or
decrements, depending on the value
of the direction flag (DF). The pointer
register changes by 1 for byte
t
�
ransfers or 2 for word transfers.

Instruction Operands:

OUTS port, src_string
OUTS (repeat) port, src_string

(dst) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

POP Pop:

POP dest
�

Transfers the word at the current top of
stack (pointed to by SP) to the
destination operand and then
increments SP by two to point to the
new top of stack.

Instruction Operands:

POP reg
POP seg-reg (CS illegal)
POP mem

(dest) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-34

POPA Pop All:

POPA

Pops all data, pointer, and index
registers off of the stack. The SP value
popped is discarded.

Instruction Operands:

none

(DI) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(SI) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(BP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(BX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(DX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(CX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(AX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

POPF Pop Flags:

POPF

Transfers specific bits from the word at
t
�
he current top of stack (pointed to by

register SP) into the 8086/8088 flags,
replacing whatever values the flags
previously contained. SP is then
incremented by two to point to the new
t
�
op of stack.

Instruction Operands:

none

Flags ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF �
CF �
DF �
IF �
OF �
PF �
SF �
TF �
ZF �

PUSH Push:

PUSH sr c

Decrements SP by two and then
t
�
ransfers a word from the source

operand to the top of stack now
pointed to by SP.

Instruction Operands:

PUSH reg
PUSH seg-reg (CS legal)
PUSH mem

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (src)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

C-35

INSTRUCTION SET DESCRIPTIONS

PUSHA Push All:

PUSHA

Pushes all data, pointer, and index
registers onto the stack. The order in
which the registers are saved is: AX,
CX, DX, BX, SP, BP, SI, and DI. The
SP value pushed is the SP value
before the first register (AX) is pushed.

Instruction Operands:

none

temp ← (SP)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (AX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (DX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (temp)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (SI)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (DI)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

PUSHF Push Flags:

PUSHF

Decrements SP by two and then
t
�
ransfers all flags to the word at the top

of stack pointed to by SP.

Instruction Operands:

none

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← Flags

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-36

RCL Rotate Through Carry Left:

RCL dest, count

Rotates the bits in the byte or word
destination operand to the left by the
number of bits specified in the count
operand. The carry flag (CF) is treated
as "part of" the destination operand;
t
�
hat is, its value is rotated into the low-

order bit of the destination, and itself is
replaced by the high-order bit of the
destination.

Instruction Operands:

RCL reg, n
RCL mem, n
RCL reg, CL
RCL mem, CL

(temp) ← count
do while (temp) ≠ 0

(tmpcf) ← (CF)
(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2 + (tmpcf)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CF)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF –
CF �
DF –
IF –
OF �
PF –
SF –
TF –
ZF –

RCR Rotate Through Carry Right:

RCR dest, count

Operates exactly like RCL except that
t
�
he bits are rotated right instead of left.

Instruction Operands:

RCR reg, n
RCR mem, n
RCR reg, CL
RCR mem, CL

(temp) ← count
do while (temp) ≠ 0

(tmpcf) ← (CF)
(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
high-order bit of (dest) ← (tmpcf)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF –
CF �
DF –
IF –
OF �
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

C-37

INSTRUCTION SET DESCRIPTIONS

REP
REPE
REPZ
REPNE
REPNZ

Repeat:
Repeat While Equal:
Repeat While Zero:
Repeat While Not Equal:
Repeat While Not Zero:

Controls subsequent string instruction
repetition. The different mnemonics
are provided to improve program
clarity.

REP is used in conjunction with the
MOVS (Move String) and STOS (Store
String) instructions and is interpreted
as "repeat while not end-of-string" (CX
not 0).

REPE and REPZ operate identically
and are physically the same prefix byte
as REP. These instructions are used
wit" h the CMPS (Compare String) and
SCAS (Scan String) instructions and
require ZF (posted by these instruc-
t
�
ions) to be set before initiating the

next repetition.

REPNE and REPNZ are mnemonics
f
)
or the same prefix byte. These

instructions function the same as
REPE and REPZ except that the zero
flag must be cleared or the repetition is
t
�
erminated. ZF does not need to be

initialized before executing the
repeated string instruction.

Instruction Operands:

none

do while (CX) ≠ 0
service pending interrupts (if any)
execute primitive string
Operation in succeeding byte
(CX) ← (CX) – 1
if

primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) ≠ 0

then
exit from while loop

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-38

RET Return:

RET optional-pop-value

Transfers control from a procedure
back to the instruction following the
CALL that activated the procedure.
The assembler generates an intra-
segment RET if the programmer has
defined the procedure near, or an
intersegment RET if the procedure has
been defined as far. RET pops the
word at the top of the stack (pointed to
by register SP) into the instruction
pointer and increments SP by two. If
RET is intersegment, the word at the
new top of stack is popped into the CS
register, and SP is again incremented
by two. If an optional pop value has
been specified, RET adds that value to
SP.

Instruction Operands:

RET immed8

(IP) ← ((SP) = 1:(SP))
(SP) ← (SP) + 2
if

inter-segment
then

(CS) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

if
add immed8 to SP

then
(SP) ← (SP) + data

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

ROL Rotate Left:

ROL dest
�

, count

Rotates the destination byte or word
left by the number of bits specified in
t
�
he count operand.

Instruction Operands:

ROL reg, n
ROL mem, n
ROL reg, CL
ROL mem CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2 + (CF)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CF)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF –
CF �
DF –
IF –
OF �
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

C-39

INSTRUCTION SET DESCRIPTIONS

ROR Rotate Right:

ROR dest, count

Operates similar to ROL except that
t
�
he bits in the destination byte or word

are rotated right instead of left.

Instruction Operands:

ROR reg, n
ROR mem, n
ROR reg, CL
ROR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
high-order bit of (dest) ← (CF)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF –
CF �
DF –
IF –
OF �
PF –
SF –
TF –
ZF –

SAHF Store Register AH Into Flags:

SAHF

Transfers bits 7, 6, 4, 2, and 0 from
register AH into SF, ZF, AF, PF, and CF,
respectively, replacing whatever
vR alues these flags previously had.

Instruction Operands:

none

(SF):(ZF):X:(AF):X:(PF):X:(CF) ← (AH) AF �
CF �
DF –
IF –
OF –
PF �
SF �
TF –
ZF �

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed�

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-40

SHL
SAL

Shift Logical Left:
Shift Arithmetic Left:

SHL dest,
�

 count
SAL dest, count

Shifts the destination byte or word left
by the number of bits specified in the
count operand. Zeros are shifted in on
t
�
he right. If the sign bit retains its

original value, then OF is cleared.

Instruction Operands:

SHL reg, n SAL reg, n
SHL mem, n SAL mem, n
SHL reg, CL SAL reg, CL
SHL mem, CL SAL mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CE)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF ?
CF �
DF –
IF –
OF �
PF
SF ¡
TF –
ZF ¢

SAR Shift Arithmetic Right:

SAR dest, count

Shifts the bits in the destination
operand (byte or word) to the right by
t
�
he number of bits specified in the

count operand. Bits equal to the
original high-order (sign) bit are shifted
in on the left, preserving the sign of the
original value. Note that SAR does not
produce the same result as the
dividend of an "equivalent" IDIV
instruction if the destination operand is
negative and 1 bits are shifted out. For
example, shifting –5 right by one bit
yields –3, while integer division –5 by 2
yields –2. The difference in the instruc-
t
�
ions is that IDIV truncates all numbers

t
�
oward zero, while SAR truncates

positive numbers toward zero and
negative numbers toward negative
infinity.

Instruction Operands:

SAR reg, n
SAR mem, n
SAR reg, CL
SAR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

 then
(OF) ← 1

else
(OF) ← 0

else
(OF) ← 0

AF ?
CF £
DF –
IF –
OF ¤
PF ¥
SF ¦
TF –
ZF §

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed¨

the flag is
�

updated after the instruction is executed

C-41

INSTRUCTION SET DESCRIPTIONS

SBB Subtract With Borrow:

SBB dest, src

Subtracts the source from the desti-
nation, subtracts one if CF is set, and
returns the result to the destination
operand. Both operands may be bytes
or words. Both operands may be
signed or unsigned binary numbers
(see AAS and DAS)

Instruction Operands:

SBB reg, reg
SBB reg, mem
SBB mem, reg
SBB accum, immed
SBB reg, immed
SBB mem, immed

if
(CF) = 1

then
(dest) = (dest) – (src) – 1

else
(dest) ← (dest) – (src)

AF ©
CF ª
DF –
IF –
OF «
PF ¬
SF
TF –
ZF ®

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed¯

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-42

SCAS Scan String:

SCAS dest-string

Subtracts the destination string
element (byte or word) addressed by
DI from the content of AL (byte string)
or AX (word string) and updates the
flags, but does not alter the destination
string or the accumulator. SCAS also
updates DI to point to the next string
element and AF, CF, OF, PF, SF and
ZF to reflect the relationship of the
scan value in AL/AX to the string
element. If SCAS is prefixed with
REPE or REPZ, the operation is
interpreted as "scan while not end-of-
string (CX not 0) and string-element =
scan-value (ZF = 1)." This form may be
used to scan for departure from a
given value. If SCAS is prefixed with
REPNE or REPNZ, the operation is
interpreted as "scan while not end-of-
string (CX not 0) and string-element is
not equal to scan-value (ZF = 0)."

Instruction Operands:

SCAS dest-string
SCAS (repeat) dest-string

When Source Operand is a Byte:

(AL) – (byte-string)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

When Source Operand is a Word:

(AX) – (word-string)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

AF °
CF ±
DF –
IF –
OF ²
PF ³
SF ´
TF –
ZF µ

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed¶

the flag is
�

updated after the instruction is executed

C-43

INSTRUCTION SET DESCRIPTIONS

SHR Shift Logical Right:

SHR dest, src

Shifts the bits in the destination
operand (byte or word) to the right by
t
�
he number of bits specified in the

count operand. Zeros are shifted in on
t
�
he left. If the sign bit retains its original

value, then OF is cleared.

Instruction Operands:

SHR reg, n
SHR mem, n
SHR reg, CL
SHR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

 then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF ?
CF ·
DF –
IF –
OF ¸
PF ¹
SF º
TF –
ZF »

STC Set Carry Flag:

STC

Sets CF to 1.

Instruction Operands:

none

(CF) ← 1 AF –
CF ¼
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

STD Set Direction Flag:

STD

Sets DF to 1 causing the string instruc-
t
�
ions to auto-decrement the SI and/or

DI index registers.

Instruction Operands:

none

(DF) ← 1 AF –
CF –
DF ½
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed¾

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-44

STI Set Interrupt-enable Flag:

STI

Sets IF to 1, enabling processor
recognition of maskable interrupt
requests appearing on the INTR line.
Note however, that a pending interrupt
will not actually be recognized until the
instruction following STI has executed.

Instruction Operands:

none

(IF) ← 1 AF –
CF –
DF –
IF ¿
OF –
PF –
SF –
TF –
ZF –

STOS Store (Byte or Word) String:

STOS dest-string

Transfers a byte or word from register
AL or AX to the string element
addressed by DI and updates DI to
point to the next location in the string.
As a repeated operation.

Instruction Operands:

STOS dest-string
STOS (repeat) dest-string

When Source Operand is a Byte:

(DEST) ← (AL)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

When Source Operand is a Word:

(DEST) ← (AX)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedÀ

the flag is
�

updated after the instruction is executed

C-45

INSTRUCTION SET DESCRIPTIONS

SUB Subtract:

SUB dest, src

The source operand is subtracted from
t
�
he destination operand, and the result

replaces the destination operand. The
operands may be bytes or words. Both
operands may be signed or unsigned
binary numbers (see AAS and DAS).

Instruction Operands:

SUB reg, reg
SUB reg, mem
SUB mem, reg
SUB accum, immed
SUB reg, immed
SUB mem, immed

(dest) ← (dest) – (src) AF Á
CF Â
DF –
IF –
OF Ã
PF Ä
SF Å
TF –
ZF Æ

TEST Test:

TEST dest, src

Performs the logical "and" of the two
operands (bytes or words), updates
t
�
he flags, but does not return the

result, i.e., neither operand is
changed. If a TEST instruction is
f
)
ollowed by a JNZ (jump if not zero)

instruction, the jump will be taken if
t
�
here are any corresponding one bits

in both operands.

Instruction Operands:

TEST reg, reg
TEST reg, mem
TEST accum, immed
TEST reg, immed
TEST mem, immed

(dest) and (src)
(CF) ← 0
(OF) ← 0

AF ?
CF Ç
DF –
IF –
OF È
PF É
SF Ê
TF –
ZF Ë

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedÌ

the flag is
�

updated after the instruction is executed

INSTRUCTION SET DESCRIPTIONS

C-46

WAIT Wait:

WAIT

Causes the CPU to enter the wait state
while its test line is not active.

Instruction Operands:

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

XCHG Exchange:

XCHG d
�

est, src

Switches the contents of the source
and destination operands (bytes or
w" ords). When used in conjunction with
t
�
he LOCK prefix, XCHG can test and

set a semaphore that controls access
t
�
o a resource shared by multiple

processors.

Instruction Operands:

XCHG accum, reg
XCHG mem, reg
XCHG reg, reg

(temp) ← (dest)
(dest) ← (src)
(src) ← (temp)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedÍ

the flag is
�

updated after the instruction is executed

C-47

INSTRUCTION SET DESCRIPTIONS

XLAT Translate:

XLAT trans
i

late-table

Replaces a byte in the AL register with
a byte from a 256-byte, user-coded
t
�
ranslation table. Register BX is

assumed to point to the beginning of
t
�
he table. The byte in AL is used as an

index into the table and is replaced by
t
�
he byte at the offset in the table corre-

sponding to AL's binary value. The first
byte in the table has an offset of 0. For
example, if AL contains 5H, and the
sixth element of the translation table
contains 33H, then AL will contain 33H
f
)
ollowing the instruction. XLAT is

useful for translating characters from
one code to another, the classic
example being ASCII to EBCDIC or
t
�
he reverse.

Instruction Operands:

XLAT src-table

AL ← ((BX) + (AL)) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

XOR Exclusive Or:

XOR des
�

t, src

Performs the logical "exclusive or" of
t
�
he two operands and returns the

result to the destination operand. A bit
in the result is set if the corresponding
bits of the original operands contain
opposite values (one is set, the other
is cleared); otherwise the result bit is
cleared.

Instruction Operands:

XOR reg, reg
XOR reg, mem
XOR mem, reg
XOR accum, immed
XOR reg, immed
XOR mem, immed

(dest) ← (dest) xor (src)
(CF) ← 0
(OF) ← 0

AF ?
CF Î
DF –
IF –
OF Ï
PF Ð
SF Ñ
TF –
ZF Ò

Tab
�

le C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executedÓ

the flag is
�

updated after the instruction is executed

