
ELEX 2117 : Digital Techniques 2
2021 Winter Term

Introduction to Digital Design with Verilog HDL

This is a brief introduction to digital circuit design using the SystemVerilogHardwareDescription Language (VerilogHDL).
After this lecture you should be able to:

• define a module with single- and multi-bit logic inputs and outputs;
• write expressions using logic signals and operators;
• write Verilog numeric literals in binary, decimal and hexadecimal bases.
• use assign statements to generate combinational logic;
• use initialized unpacked arrays to implement arbitrary combinational logic functions

Introduction

Most of the features of modern electronics are de-
fined in software. But for certain tasks software can
be too slow or a processor can be too expensive or can
consume too much power. In these cases we need
to design specialized digital circuits. This course
teaches how to do this.
Today, digital circuit designers use Hardware

Description Languages (HDLs) instead of drawing
schematics. In this course we will use System Ver-
ilog, the modern version of the Verilog HDL, rather
than the other popular HDL, VHDL.

Combinational Logic

Let’s start with a simple example – a circuit called an
ex1 that has one output (y) that is the logical AND of
two input signals (a and b). The file ex1.sv contains
the following Verilog description:

// AND gate in Verilog

module ex1 (input logic a, b,
output logic y) ;

assign y = a & b ;

endmodule

Some observations on Verilog syntax:

• Everything following // on a line is a comment
and is ignored.

• Module and signal names can contain letters,
digits, underscores (_) and dollar signs ($). The
first character of an identifier must be a letter or
an underscore. They cannot be the same as cer-
tain reserved words (e.g. module).

• Verilog is case-sensitive: a and A would be dif-
ferent signals.

• Statements can be split across any number of
lines. A semicolon ends each statement.

Capitalisation and indentation styles vary. In this
course you will need to follow the coding style guide
available on the course web site.
Themodule definition begins by defining the input

and output signals for the device being designed.
The body of themodule contains one ormore state-

ments, each of which operates at the same time – con-
currently. This is the key difference between HDLs
and programming languages – HDLs allows us to de-
fine concurrent behaviour.
The single statement in this example is a signal as-

signment that assigns the value of an expression to
the output signal y. Expressions involving logic sig-
nals canuse the logical operators~ (NOT),& (AND),^
(exclusive-OR), and | (OR). Parentheses can be used
to define the order of evaluation.
From this Verilog description a program called a

logic synthesizer (e.g. Intel’s Quartus) can generate a
circuit that has the required functionality. In this case
it’s not too surprising that the result is the following
circuit:

a
y

b
y

If you’re familiar with the C programming lan-
guage you’ll note that Verilog uses the same syn-
tax for most of its operators including arithmetic
(+, -, *, /, %), bitwise (&, |, ^, ~, <<, >>),
comparison (>, >=, !=, etc.), logical (&&, ||, !),

lec1.tex 1 2021-01-07 09:05

array indexing ([]), and ternary conditional (?:). C
syntax is also used for comments.
Exercise 1: What changes would result in a 3-input OR gate?

Exercise 2: What schematic would you expect if the statement was

assign y = (a ^ b) | c ;?

Exercise 3: Write two assign statements that produce the same

result. Does their order in the module matter?

The output of a circuit such as this is a function
only of the current combination of input values and
is called a “combinational” logic circuit. “Sequential”
logic circuits includememory components and so the
current output can be a function of previous inputs as
well as the current input.

Buses and Multiplexers

Verilog’s conditional operatormodels a two-waymul-
tiplexer. The following example implements a multi-
plexer that selects from one of two 4-bit inputs:

module ex36 (input logic sel,
input logic [3:0] a, b,
output logic [3:0] y) ;

assign y = sel ? a : b ;

endmodule

which results in:

sel

b[3..0]
y[3..0]

y~[3..0]
0

1
a[3..0]

The ternary (3-input) conditional operator uses the
value before the ? to select one of the two values sep-
arated by :. If the first value is non-zero then the sec-
ond value is selected, otherwise the third value is se-
lected.
Exercise 4: What is the value of the expression 3 ? 10 : 20? Of

the expression x ? 1 : 0 if x has the value 0? If x has the value

-1?

A group of logic signals that is treated together is
called a ‘bus’. The declaration logic [3:0] speci-
fies a bus with a ‘width’ of four bits. The bits in this
bus will be numbered from 3 to 0. For example, a[3]
would be the leftmost (most significant) bit of the 4-
bit bus a.
Exercise 5: If the signal i is declared as logic [2:0] i;, what is

the ‘width’ of i? If i has the value 6 (decimal), what is the value of

i[2]? Of i[0]?

Exercise 6: Write the truth table and Verilog description of a 3-bit

4-to-1 multiplexer controlled by a 2-bit sel input? Label the inputs a

(for sel=00) through d (for sel=11).

Literals and Unpacked Arrays

Numeric constants (“literals”) in Verilog are writ-
ten as the number of bits (default 32), an optional
base denoted with a quote1 and letter ('b=binary,
'h=hex, 'd=decimal), and the value. The default
size is 32 bits and the default base is decimal. Un-
derscore separators (_) may be used to improve read-
ability.
In the following example, a, is a two-bit signal

which selects the element of the “unpacked array”
lut to be output on d. In this example the array is
initialized to four constant 4-bit values. The output d
is selected (“indexed”) by the values, 0 through 3, of
a. The first value in the array is lut[0] and has the
value 4'b1000 while lut[3] is the final value and
has the value 4'b0011.

module ex37 (input logic [1:0] a,
output logic [3:0] d) ;

logic [3:0] lut [4] =
'{ 4'b1000, 4'd1, 4'ha, 3 } ;

assign d = lut[a] ;

endmodule

which synthesizes into:

lut

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

DATAIN[3..0]
4'h0

WADDR[1..0]
2'h0

RADDR[1..0]

DATAOUT[3..0]

a[1..0]

d[3..0]

Exercise 7: What are the values, in decimal, of the constants in the

code above?

Exercise 8: What is the output, in binary, when the input is a=2'b10

?
Unpacked arrays allow us to implement arbitrary

combinational logic functions. The input is the array
index and the output is the value of the array at the
indexed location.

1Often pronounced “tick”.

2

Exercise 9: Write a Verilog module with a two-bit input i and a two-

bit output n that uses an unpacked array to output the number of bits

in the input that are “1”. Start by writing the truth table.

Implementation

The process to implement a design using pro-
grammable logic device (PLD) such as a CPLD (Com-
plex Programmable Logic Device) or FPGA (Field
Programmable Gate Array) is shown below.

netlist

Verilog

map

place&route

assemble

programming file

.sdc

.qsf

JTAG
 port

CPLD

program

Quartus
synthesis

delays

The design is first mapped to logic functions such
as gates and flip-flops. The result is a netlist – a list of
logic functions and how they’re connected.
The “Place and Route” step then assigns each of

the logic functions to one of the programmable logic
elements in a specific device. This requires additional
information such as the device type (part number)
and the pin assignments. These are supplied in the
.qsf (Quartus settings) file. For example, your .qsf
file might contain the lines:

set_global_assignment -name DEVICE EPM240T100C5
set_location_assignment PIN_2 -to clk_in

...
set_location_assignment PIN_44 -to led[3]

Timing constraints such as clock frequencies are de-
fined in a .sdc (Synopsis Design Constraint) file. For
example, the following statement requires that the
design operate correctly if the signal CLOCK_50 has
a 50 MHz (20 ns period) clock:

create_clock -period 20ns CLOCK_50

Finally, the placed and routed design is “assem-
bled” to a file that can program the PLD, typically
over a dedicated “JTAG”programming/diagnostic in-
terface port on the PLD.

3

	Introduction
	Combinational Logic
	Buses and Multiplexers
	Literals and Unpacked Arrays
	Implementation

