ELEX 2117 : Digital Techniques 2
2021 Winter Term

Simulation

Design Verification

Verification is the process of checking that a digi-
tal circuit will meet its requirements. This involves
testing both the logical design (e.g. correct outputs
and state transitions) as well as the electrical require-
ments (e.g. voltage levels and setup times).

It’s often more practical to verify a design by simu-
lating it than by building it.

In this lab you will simulate the operation of a
“moving-average” circuit that outputs the sum of the
current input and the previous input.

Testbenches

A “testbench” is HDL code that applies inputs to the
design being tested (often called the “device under
test” or DUT) and checks that the outputs are correct:

test vectors

testbench

DUT

The values of the inputs and expected outputs are
called “test vectors.” Test vectors are often read from
a file generated by other software. In this lab you will
use a spreadsheet to generate a text file containing the
test vectors.

In a previous course you may have use a stimulus-
only testbench that applied inputs to the DUT and
displayed the outputs. These simulations are useful
during the initial design process but are not practical
for complex designs or if we want to automate test-
ing to ensure new errors (“regressions”) are not in-
troduced. Once the expected output has been deter-
mined, a “self-checking” testbench is typically used
to check the outputs and flag any differences.

Writing a testbench requires HDL language fea-
tures and programming skills that are beyond the

lab8.tex

scope of this course so you will be supplied with a self-
checking testbench and asked to create a file with test
vectors.

Procedure

You will use the Modelsim simulator. See the docu-
ment on the course web site for instructions on in-
stalling and using it.

Create a project directory (folder) for the simula-
tion. Download the 1ab8_tb. sv testbench from the
course web site to this folder.

Design the Moving Average Filter

A moving-average filter is a circuit that outputs the
average of previous values. In this lab you will design
and test a circuit that outputs the sum of the current
input and the previous input (the input at the most
recent rising edge of the clock).

Additionally, the filter should use “saturation
arithmetic.” This means that values that would ex-
ceed the maximum possible output value should out-
put that value rather than overflowing.

For example adding the 4-bit unsigned values 8
and 9 would result in the value 17. In a conventional
4-bit adder the overflow would be lost and the re-
sult would be 1. With saturation arithmetic the result
would be 15 - the maximum unsigned value that can
be represented with 4 bits.

The following diagram shows a block diagram of
the moving-average filter with a saturation arith-

metic adder:
tmp
(5 Yy

X D++—D Q

clk D—,

Write a module named 1ab8 that has the following
declaration:

2021-083-22 22:12

module lab8
(input logic clk,
input logic [3:0] x,
output logic [3:0] y) ;

endmodule ;

and save it to a file named 1ab8. sv.

Follow the course coding guidelines, including
adding a comment at the beginning of the file with
your name and the date.

Create the Test Vectors

For this circuit the test vectors are pairs of values of
the input, x, and the expected output, y. The y value
is the (saturated) sum of the value of x and the previ-
ous value of x. The testbench applies the x value and
checks the y value before generating a rising clock
edge.

The supplied testbench reads the test vectors from
a text file, 1ab8. tv, which you must create.

You can create the file by hand with a text editor or
using a spreadsheet and then copy/pasting the values
into a text file.

The sequence of input x values should be 0, 7, 8,
and 9 followed by the eight digits of your BCIT ID.
For example, if your BCIT ID is A00123456 the test
vector file should contain:

0 X
7 7
8 15
9 15
0 9
0 0
1 1
2 3
3 5
4 7
5 9
6 11

A convenient way to generate this file is to use
a spreadsheet. The first column should have the
x values the second column should have a formula
that computes the y values. For example, the sec-
ond y value could be computed with the formula
=MIN(15,A1+A2)’

1Since this formula uses relative addresses you can copy it to
the other cells in the y column.

Run the Simulation

Follow the procedure in Software Installation and
Use document on the course web site to create a sim-
ulation project, add the 1ab8.sv and lab8_tb.sv
files to the project and compile them. After fixing
any errors, run the simulation. The Transcript win-
dow should show the messages generated by the test-
bench and the Wave window should show the signal
waveforms.

The waveforms for the above test vectors would
look as follows:

. Msgs |
ko so — 1 1 1L 1 1 L L L 1 L g
6 @© 1z 16 6] 10 L 2 16 £} 5 &
1 7 15 1) 5 E 1= 1z 6] 651
© |5 (] 17 & 12 () 5 1z 1= £ 15
tmp |11 7 61 17 15 1o 61 El 15 1z 6] i1

[=lo):
Al dd

Submit Results

Submit a PDF file to the Lab 8 Assignment folder that
includes the following

« alisting of your 1ab8.sv file
« alisting of your 1ab8. tv test vector file

« ascreen capture of the waveforms similar to that
shown above

« ascreen capture of the Transcript window show-
ing the messages generated from running the
simulation similar to that shown below:

run -all

test passed: x= 0 and y= x
test passed: x= 7 and y= 7
test passed: x= 8 and y=15
test passed: x= 9 and y=15
test passed: x= 0 and y= 9
test passed: x= 0 and y= 0
test passed: x= 1 and y= 1
test passed: x= 2 and y= 3
test passed: x= 3 and y= 5
test passed: x= 4 and y= 7
test passed: x= 5 and y= 9
test passed: x= 6 and y=11
passed 12 test vectors

	Design Verification
	Testbenches
	Procedure
	Design the Moving Average Filter
	Create the Test Vectors
	Run the Simulation
	Submit Results

