ELEX 2117 : Digital Techniques 2
2020 Winter Term

Solutions to Quiz 3 - State Machines

Description Solution
The controller for a washing machine: (a) There are four combinations of output values:
(none asserted, only fill asserted, only agitate as-
stat—~| p=fil agitate ®—>done serted, only drain asserted). We can try a solu-
ful | > drain il d— start tion using only four states with names: none_s,
empty ~ | agitate s il fill_s, agitate_s and drain_s'.
done —~|) empty e 1s . :
clock — drain (b) Each of the six listed behaviors can be imple-

mented with a state transition as shown in the

has three active-high outputs: following state transition diagram:

« fill opens a valve to fill the tub
« drain opens a valve to drain the tub
« agitate causes the agitator to turn

and three active-high inputs:

« start is used by the user to start or terminate a
wash cycle

« full indicates the tub is full

(c) Inthiscase the outputs are only a function of the
current state (any unambiguous syntax would
be considered correct):

« empty indicates the tub is empty

« done indicates that the agitation cycle has been
running for a sufficiently long time

The controller operates as follows:

. . fill <= '1' when state = fill_s else 'O’
nothing happens until the user presses start agitate <= '1' when state = agitate_s else '8’ ;
drain <= '1' when state = drain_s else '@’

« then fill is asserted until full is asserted

The VHDL for this solution and a simulation test-
bench are given below. The simulation waveforms
are shown in Figure 1.

« then agitate is asserted until done is asserted

« then drain is asserted until empty is asserted;
this completes the wash cycle

« if start is pressed while a wash is in progress
(i.e. while fill’ing or agitate’ing) thendrain
is asserted until empty is asserted and this com-
pletes the wash cycle

You may assume the start Signal is SynChronized IT’11 use the suffix _s to avoid name conflicts with the names
to the clock and lasts exactly one clock period. of the inputs

quiz3bsol.tex 1 2020-02-23 13:48

start —

full —

empty —

done — ‘

clock

L R [[
drain | 1 [[
agitate | 1 [1
state none_s [fill_s [agitate_s [drain_s [none_s ffils Jdrain_sJnone_s]fill.s Jagitate s Jdrain_sfnone_s

Figure 1: Simulation Results

-- ELEX 2117 2062010
-- quiz 3 solution
-- Ed.Casas 2020-02-23

library ieee ;
use ieee.std_logic_1164.all ;

entity quiz3 is
port (
start, full, empty, done: in std_logic;
clock: in std_logic;
fill, drain, agitate: out std_logic) ;
end ;

architecture rtl of quiz3 is

-- testbench for quiz 3 solution

library ieee;
use ieee.std_logic_1164.all;

entity quiz3_tb is
end ;

architecture rtl of quiz3_tb is
signal start, full, empty, done: std_logic;

signal clock: std_logic := '1' ;
signal fill, drain, agitate: std_logic ;
signal done_sim: boolean := false ;

begin

type state_t is (none_s, fill_s, agitate_s, drain_s) dut: entity work.quiz3 port map (

signal state, state_next : state_t ;

signal none_s_next, fill_s_next, agitate_s_next,

drain_s_next : state_t ;

begin
none_s_next <= fill_s when start = '1' else
none_s ;
fill_s_next <= agitate_s when full = '1' else
drain_s when start = '1' else
fill_s ;
agitate_s_next <= drain_s when done = '1' else
drain_s when start = '1' else
agitate_s ;
drain_s_next <= none_s when empty = '1' else
drain_s ;

with state select state_next <=
none_s_next when none_s,
fill_s_next when fill_s,
agitate_s_next when agitate_s,
drain_s_next when drain_s ;

state <= state_next when rising_edge(clock);
-- outputs

fill <= '1' when state = fill_s else '0' ;
agitate <= '1' when state = agitate_s else '0'

drain <= '1' when state = drain_s else '0' ;

end rtl ;

start, full, empty, done, clock,
fill, drain, agitate) ;

process
type tv_t is array (natural range <>) of
std_logic_vector (3 downto 0) ;

variable tv: tv_t (1 to 21) := (

"9000", "1000", "0000", "0000", -- fill
"9100", "@100", "0100", "0101", -- agitate
"9101", "6001", "0011", "0011", -- drain
"9000", "1000", "1000", "0010", -- abort from fill
"1000", "@100", "1000", "0010", -- " from agitate
"0008") ;

begin

for i in tv'low to tv'high loop

wait until falling_edge(clock);

(start, full, empty, done) <= tv(i) ;
end loop ;

done_sim <= true ;
end process ;

clock <= not clock after 5 sec when not done_sim ;

end rtl ;

	Description
	Solution

