
ELEX 2117 : Digital Techniques 2
2020 Winter Term

Practice Quiz 3 - Solutions

Solution

(a) From the requirements there are three combina-
tions of output values required:

(i) raise=1 and lower=0

(ii) raise=0 and lower=1

(iii) raise=0 and lower=0

and these may be sufficient to implement the
state machine. We can pick names for these
states. For example: raising, lowering and
idle respectively.

You may have decided to use the position of
the door and/or whether it was in motion as a
state. While these are obvious choices for the
door state, they may not necessarily correspond
to the controller’s states.

(b) The state transitions are derived from the de-
scription of the controller’s functionality and are
show in the diagram below.

raising lowering

idle
(a) at_top and button

(b) at_bottom and buttonab

(c) button
c

c

(d) at_top

(e) at_bottom

d e

(c) In this case the outputs are a function only of the
state:

raise <= '1' when state = raising else '0' ;

lower <= '1' when state = lowering else '0' ;

(d) A schematic of the controller would be as fol-
lows:

D Q

idle

raising

lowering

raising

lowering

button

button

0

1

0

1

state

idle

lowering

button

at_top

0

1

0

1

state

idle

raising

button

at_bottom

0

1

0

1

state

clock

state

at_bottom

at_top

at_top

button

at_bottom

lowering

raising

lower

raise

state=

state=

From the schematic we can derive the VHDL:

-- practice quiz 3

library ieee ;
use ieee.std_logic_1164.all ;

entity quiz3a is
port (

at_top, at_bottom, button: in std_logic;
clock: in std_logic;
lower, raise: out std_logic) ;

end ;

architecture rtl of quiz3a is

type state_t is (idle, raising, lowering) ;
signal state, state_next : state_t ;
signal idle_next, raising_next, lowering_next: state_t ;

begin

idle_next <= lowering when at_top and button else
raising when at_bottom and button else
state ;

raising_next <= lowering when button else
idle when at_top else
state ;

lowering_next <= raising when button else
idle when at_bottom else
state ;

with state select state_next <=
idle_next when idle,
raising_next when raising,
lowering_next when lowering ;

state <= state_next when rising_edge(clock);

quiz3asol.tex 1 2020-02-16 14:03

idle lowering idle raising idle

0.00000 us+5 4 us 8 us 12 us 16 us 20 us

clock

at_top

at_bottom

button

state idle lowering idle raising idle

lower

raise

Entity:quiz3a_tb Architecture:rtl Date: Sun Feb 16 1:55:04 PM Pacific Standard Time 2020 Row: 1 Page: 1

Figure 1: Simulation Results

-- outputs

lower <= '1' when state = lowering else '0' ;
raise <= '1' when state = raising else '0' ;

end rtl ;

To check the solution we can simulate the design
using a testbench such as:

-- testbench for practice quiz 3 solution

library ieee;
use ieee.std_logic_1164.all;

entity quiz3a_tb is

end ;

architecture rtl of quiz3a_tb is
signal at_top, at_bottom, button: std_logic;
signal clock: std_logic := '0' ;
signal lower, raise: std_logic ;
signal done: boolean := false ;

begin

dut: entity work.quiz3a port map (
at_top, at_bottom, button, clock,
lower, raise) ;

process
type tv_t is array (natural range <>) of

std_logic_vector (2 downto 0) ;
variable tv: tv_t (0 to 16) := (

"000", "001", "000", "000", "000",
"100", "101", "000", "000", "010",
"010", "011", "010", "000", "100",
"100", "100") ;

begin

for i in tv'low to tv'high loop
wait until falling_edge(clock);
(at_top, at_bottom, button) <= tv(i) ;

end loop ;

done <= true ;
end process ;

clock <= not clock after 0.5 us when not done ;

end rtl ;

for which the simulation results are shown in Figure
1.

Other solutions are possible. For example, the
four-state solution described above with two idle
states (one with the door at the top and one with the
door at the bottom).
This design has a flaw which shows up in the first

part of the simulation results. Can you spot the prob-
lem? How could you fix it?

2

	Solution

