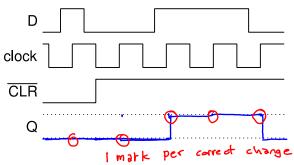
ELEX 2117 : Digital Techniques 2 2020 Winter Term

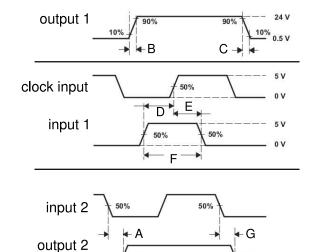
Quiz 1


This exam is for the student whose...

surname begins with	BCIT ID ends with

Question	1	2	3	4	Total
Mark					
Out of	13	14	2	8	37

Question 1: flip-flops


Fill in the missing waveform below. Signals with an overbar are active-low. CLR is an asynchronous reset.

Fill in the missing portions of the following truth tables. Use \uparrow for a rising edge, Q_0 for the previous output, and \times for "don't care" (meaning this input has no effect).

J	K	CLR	clk	Q	Q
1	1	0	1	0	1
0	1	1	1	0	1
1	0	1	1	1	0
(1	1	1	$\overline{Q_0}$	Q_0

Question 2: timing specifications

Fill in the following table based on the timing diagram above. For each specification labelled above, give the name of the timing specification (e.g. rise time), the common **var**iable name (e.g. t_{SU}). In the "R/G" column place a "G" if the specification is a guaranteed response or "R" if the specification is a timing requirement.

A "requirement" (R) means the circuit design must ensure this specification is met to ensure correct operation of the device. A "guaranteed response" (G) means the manufacturer guarantees this specification if the device is operated within requirements.

letter	name	var.	R/G
Α	Propagation delay	t PD	G
В	rise time	tr	G
С	fall time	tF	G
D	setup time	t su	R
Е	hold time	t _H	R
F	pulse width		R
G	propogation delay	tpD	G
	7		~

(either correct

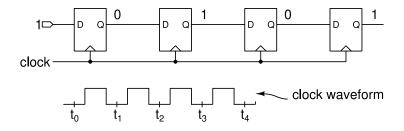


Figure 1: Shift register.

Question 3: timing calculations

In the diagram below, both flip-flops have a t_{CO} of 5 ns and a t_{SU} of 3 ns. The propagation delay through the combinational logic is 12 ns.

What is maximum clock frequency at which this circuit will operate properly?

Question 4: registers

Figure 65 shows four registers and a clock waveform. The contents of the registers at time t_0 are shown at the register outputs. The value at the input to the leftmost register is fixed at the value shown.

What are the contents of the four registers at time t_2 ?