
ELEX 2117 : Digital Techniques 2
2020 Winter Term

Solutions to Midterm Exam

Midterm 1

Question 1

There were two timing diagrams, one for a J-K flip-
flop:

J

K

Q

clock

and one for an SR flip-flop:

S

Q

R

H or undefined

and two truth tables, one for a T flip-flop:

T CLR clk 𝑄 𝑄

x 0 x 0 1

0 1 ↑ 𝑄0 𝑄0
1 1 ↑ 𝑄0 𝑄0
0 1 ↑ 𝑄0 𝑄0

and one for a J-K flip-flop:

J K CLR clk 𝑄 𝑄

x x 0 ↑ 0 1

0 1 1 ↑ 0 1

1 0 1 ↑ 1 0

1 1 1 ↑ 𝑄0 𝑄0

Question 2

Therewere two timing diagramswith different labels.
Only one is shown here:

A

B C
D

E

clock out

data in

FG

On this device the clock signal is an output from
the microcontroller. It is also an input to the flip-
flops in the peripheral device and in the microcon-
troller. These flip-flops store the data transmitted
over the interface1.
The clock out signal is specified as an output so

timing specifications between twopoints on the clock
(A, B, C, G and F above) will be guaranteed specifica-
tions.
The data in signal is an input so timing specifi-

cations for this signal (D, E) relative to a clock edge
will be requirements.

letter name var. R/G
A period 𝑇 G
C

B+C
duty cycle 𝑡DC G

D setup time 𝑡SU R
E hold time 𝑡H R
F rise time 𝑡R G
G fall time 𝑡F G

Question 3

There were two versions of the question with differ-
ent values. In each case the minimum clock period is
𝑇min = 𝑡CO+ 𝑡PD+ 𝑡SU and the maximum clock period
is 𝑓max = 1/𝑇min.

1Since we had not covered this situation before, specification
D will also be marked correct if specified as a propagation de-
lay. Specification E cannot be a propagation delay because the
change in the output happens before the change in the input.

midtermsol.tex 1 2020-03-10 15:45

• for 𝑡CO = 3 ns, 𝑡SU = 5 ns and 𝑡PD = 8 ns, 𝑇min =
3+8+5 = 16ns and𝑓max = 1/16GHz = 62.5MHz

• for 𝑡CO = 5 ns, 𝑡SU = 2 ns and 𝑡PD = 3 ns, 𝑇min =
5+3+2 = 10 ns and𝑓max = 1/10GHz = 100MHz

Question 4

The figure shows a circuit that adds 1 to Q if Q is less
than 3, otherwise the value is unchanged. Thus if the
value of Q is less than 3 it increases by 1 each clock
edge until it reaches the value 3. There were two ver-
sions of the question, with initial values of 1 and 0.
If the initial value is 1 then the next values in the

sequence will be 2, 3, 3 and 3. If the initial value is 0,
the subsequent values will be 1, 2, 3, 3.

Midterm 2

Question 1

There were two versions of this question, one turning
on the warning after two faults, the other three. The
three-fault version simply has one more state and is
shown below.

(a) The hint says to use the number of faults since
the most recent reset as the state. We’ll name
them S0, S1, S2 and (optionally) S3.

(b) The state transition diagram simply moves from
one state to the next higher count when fault
is asserted and to S0 when reset is asserted:

S0

S1

S2

S3

fault=1

fault=1

fault=1

reset=1

(c) In this case the output is only high in state
S3 so the expression, in VHDL format, for the
output sould be: warn <= ’1’ when state =
S3 else ’0’ ;.

Question 2

There were two versions of this question, differing
only in the order.

b

c
a

x

x"ff"

1

0

a

b

y

1

01

01

0

y_next

a

y+1

y-1

b

a

b

x"00"

y

D Qy_next y

d

a <= b nand c ;

y <= x when a = ’1’ or b = ’1’ else
x”ff” ;

y_next <= y+1 when a = ’1’ else
y-1 when b = ’1’ else
x”00” when a = ’1’ and b = ’1’ else
y ;

y <= y_next when rising_edge(d) ;

2

Question 3

Therewere two version of this question differing only
in the order of the block diagrams. The VHDL for
each diagram is shown below:

a

b
c

c

x

y
y_next

-1

x

y

z

1

0

1

0 y_next

D Qx

a

y

o.e.

ca

b

a

y = z

y

0

1

c <= a nor b ;
-- or
c <= not (a or b) ;

y_next <= x when c = ’1’ else y ;

c <= a when not (b = ’1’) else ’Z’ ;

y <= x when rising_edge(a) ;

-- the simplest solution is to negate the control
-- input of the highest-priority multiplexer
-- the condition could be:
-- y /= z -- best
-- not (y = z) -- OK
-- (y = z) = false -- should work

y_next <=
y - 1 when y /= z else
z when a = ’1’ else
y - x ;

-- an alternate solution is to use logic that
-- ensures the y=z condition has priority

y_next <=
z when y = z and a = ’1’ else
y-x when y = z and a = ’0’ else
y-1 ; -- if y /= z

-- another solution that was accepted because it
-- was not explicitly disallowed is to use an
-- intermediate variable:

tmp <= z when a = ’1’ else y-x ;
y_next <= tmp when y = z else y-1 ;

3

	Midterm 1
	Question 1
	Question 2
	Question 3
	Question 4

	Midterm 2
	Question 1
	Question 2
	Question 3

