

ELEX 2117 : Digital Techniques 2 2020 Winter Term

MIDTERM EXAM 1 9:30 AM – 10:20 AM Thursday, Feb 27, 2020

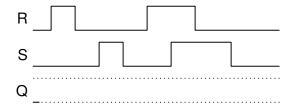
This exam has four (4) questions on two (2) pages. The marks for each question are as indicated. There are a total of sixteen (16) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work.**

This exam paper is for:

Sample Exam 1 A00000000

Each exam is equally difficult.

Answer your own exam.

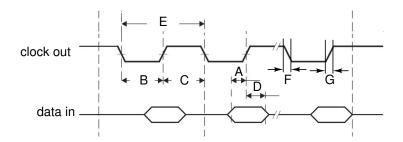

Do not start until you are told to do so.

Name:	
BCIT ID:	
Signature:	

Question	Mark	Max.
1		6
2		6
3		2
4		2
Total		16

Question 1 6 marks

Fill in the missing waveform below. The initial value of Q is low.



Fill in the missing portions of the following truth table. Use \uparrow for a rising edge, Q_0 for the previous output, and \times for "don't care" (meaning this input has no effect). $\overline{\text{CLR}}$ is an asynchronous reset.

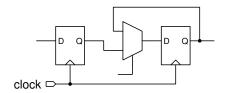
J	K	CLR	clk	Q	\overline{Q}
		0	1		
		1	1	0	1
1		1	1	1	0
		1	1	$\overline{Q_0}$	Q_0

Question 2 6 marks

This is the timing diagram for the SPI interface of the MSP432 microcontroller¹:

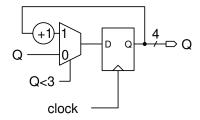
Fill in the following table based on the timing diagram above. For each specification labelled above, give the name of the timing specification (e.g. rise time), the common **var**iable name (e.g. t_{SU}). In the "R/G" column place a "G" if the specification is a guaranteed response or "R" if the specification is a timing requirement.

дөөөөөөө 2


¹You will use this microcontroller in ELEX 3305 next term.

A "requirement" (R) means the circuit design must ensure this specification is met to ensure correct operation of the device. A "guaranteed response" (G) means the manufacturer guarantees this specification if the device is operated within requirements.

letter	name	var.	R/G
A			
C B+C			
D			
E			
F			
G			


Question 3 2 marks

In the diagram below, each flip-flop has a t_{CO} of 5 ns and a t_{SU} of 2 ns. The propagation delay through the multiplexer is 3 ns.

What is maximum clock frequency at which this circuit will operate properly?

Question 4 2 marks

The figure above shows a circuit consisting of a 4-bit register, a multiplexer and an adder that adds 1. The initial value of **Q** is 0. What are the values of **Q** after the next four rising edges of the clock?

A00000000 3

ELEX 2117 : Digital Techniques 2 2020 Winter Term

MIDTERM EXAM 1 9:30 AM – 10:20 AM Thursday, Feb 27, 2020

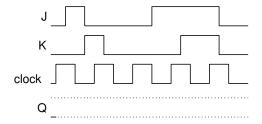
This exam has four (4) questions on two (2) pages. The marks for each question are as indicated. There are a total of sixteen (16) marks. Answer all questions. Write your answers and all rough work in this paper and nowhere else. Show your work. Draw a box around your final answer. Numerical answers must include units. Books and notes are allowed. No electronic devices other than calculators are allowed. **Show your work.**

This exam paper is for:

Sample Exam 2 A00000000

Each exam is equally difficult.

Answer your own exam.


Do not start until you are told to do so.

Name:	
BCIT ID:	
Signature:	

Question	Mark	Max.
1		6
2		6
3		2
4		2
Total		16

Question 1 6 marks

Fill in the missing waveform below. The initial value of Q is low.

Fill in the missing portions of the following truth table. Use \uparrow for a rising edge, Q_0 for the previous output, and \times for "don't care" (meaning this input has no effect). $\overline{\text{CLR}}$ is an asynchronous reset.

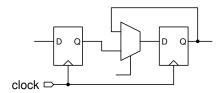
Т	CLR	clk	Q	\overline{Q}
	0			
0	1	1		
	1	1	$\overline{Q_0}$	
		1		$\overline{Q_0}$

Question 2 6 marks

This is the timing diagram for the SPI interface of the MSP432 microcontroller¹:

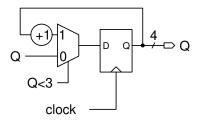
Fill in the following table based on the timing diagram above. For each specification labelled above, give the name of the timing specification (e.g. rise time), the common **var**iable name (e.g. t_{SU}). In the "R/G" column place a "G" if the specification is a guaranteed response or "R" if the specification is a timing requirement.

A00000000 2


¹You will use this microcontroller in ELEX 3305 next term.

A "requirement" (R) means the circuit design must ensure this specification is met to ensure correct operation of the device. A "guaranteed response" (G) means the manufacturer guarantees this specification if the device is operated within requirements.

letter	name	var.	R/G
A			
<u>C</u> B+C			
D			
Е			
F			
G			


Question 3 2 marks

In the diagram below, each flip-flop has a t_{CO} of 3 ns and a t_{SU} of 5 ns. The propagation delay through the multiplexer is 8 ns.

What is maximum clock frequency at which this circuit will operate properly?

Question 4 2 marks

The figure above shows a circuit consisting of a 4-bit register, a multiplexer and an adder that adds 1. The initial value of **Q** is 1. What are the values of **Q** after the next four rising edges of the clock?

A00000000 3