
ELEX 2117 : Digital Techniques 2
2020 Winter Term

Interfaces

Paallel Interfaces

We’ve seen how data can be transferred between two
flip-flops by connecting the Q output of one to the D
input of another and using a common clock:

D Q D Q

clock

If these two flip-flops are on different devices we
can use a cable to connect the D, Q and clock lines
and this allows us to transfer data between devices
(e.g. between a computer and a printer):

D Q D Q

clock

data data

interface

device1 device2

This type interface is the simplest type of interface
between two devices. We can transfer any number
of bits on the same clock edge. For example, when
transferring data to a printer we might transfer one
byte at a time.

Serial Interfaces

We can reduce the width of the data bus between the
two devices down to 1 bit. This reduces the number
of conductors required in the interface cable.
Words of more than one bit can be transferred over

the interface sequentially (serially). The conversion
from a word whose 𝑤 bits are available in parallel to
a sequence of bits can be done using a shift register
whose flip-flops can be loaded in parallel as shown
below:

1

0

D Q

1

0

D Q

1

0

D Q

1

0

D Q

clock

load

0

parallel in
1 1 1

[w-1..0]

[w-1] [w-2] 1[1] [0]

serial
out

clock

This circuit (called SIPO for “serial-in, parallel-
out” in the textbook) loads 𝑤 bits into the flip-flops
in parallel when the load input is asserted and other-
wise shifts one bit per clock cycle to the serial out
output.
We can draw this more simply as:

D Q
1

0
serial
out

1

w-1

parallel in

load

clock

Q[0]

w

clock

[w-2..0]

[w-1]

Q[w-1..1]
w w0

w

0 Q

D
serial out

... ...

w
-1

0w
-2

where the𝑤-bit register is loaded from the parallel in-
putwhen load is asserted or from the current register
value shifted right by one bit. The least-significant bit
of the register is the serial output.
At the receiving side of the interface the serial

stream of bits needs to be converted back to a word
where all the bits are available in parallel after a com-
plete word has been shifted in. We can do this with
another shift register:

D Q
parallel
out

w-1

w-1

serial in

clock

w[w-2..0]

[w-1]

w

1

serial in Q

D
discarded

... ...

Q[w-1..1]

w
-1

0w
-2

in this case the serial input bits are shifted into the
𝑤-bit shift register through the most-significant bit.
The example below shows how the value 1101 is

transferred over the interface. The columns show
the values on the load signal, the parallel input,
the transmitter register, the receiver register, and a
valid signal that indicates that the value in the re-
ceiver register is valid. The lines corresponds to reg-
ister values between rising edges of the clock. aaaa is

lec9.tex 1 2020-03-31 19:02

the previous value transferred over the interface and
bbbb is the next value to be transferred.

load parallel
in

transmit
register

receive
register

valid

0 1101 000a aaa- 0
1 ---- 1101 aaaa 1
1 ---- 0110 1aaa 0
1 ---- 0011 01aa 0
0 bbbb 0001 101a 0
1 ---- bbbb 1101 1

Theword to be transmitted is placed on the parallel
input and load is set low. After the next rising clock
edge this value has been loaded into the transmit reg-
ister and the first (least-significant) bit is available on
the serial output. On each subsequent rising clock
edge the bit on the serial interface is stored in the re-
ceiver register and another bit is placed on the serial
output. This continues until all the bits are loaded
into the receiver register. When the final bit is cap-
tured the valid output indicating that the register
contents are valid is asserted. This could be used to
load the word into another register.
A complete design requires some way to set the

load signal low when there is a word at the parallel
input ready to be transmitted and to generate a done
status signal when the word has been transmitted so
that another word can be sent.
A state machine is also required at the receiver to

indicate that𝑤 bits have been shifted into the receiver
register and assert the valid output.
These transmitter and receiver state machines

must be synchronized. The details will depend on the
type of serial interface and the interface to the device.
In addition, both interfaces must use the same con-
vention for the order in which the bits are sent and
must be designed to transfer the same number of bits
per word .

Example SPI

The Serial Peripheral Interface (SPI) is a common
interface between a microcontroller (typically the
“master”) and a peripheral IC (the “slave”). Appli-
cations include LCD controllers and SD cards.
The SPI interface has separate data in and data out

lines (labelled MOSI and MISO), a clock signal and a
slave-select (SS) signal.

MOSI

MISO

SCLK SCLK

SS

MOSI

MISO

SCLK

microcontroller
 (master)

peripheral
 (slave)

MOSI

MISO

SS

SS0

SS1

The following timing diagram shows the operation
of the bus:

SS

MOSI/MISO

SCLK

The data transfer begins when the master asserts
SS. On each subsequent clock edge1 one bit is trans-
ferred in each direction. Typically multiples of 8 bits
are transferred. SS is de-asserted when the transfer is
done.

Asynchonous Interfaces

We can omit the clock from the interface to reduce
the number of conductors required. This requires
that the clock signal be regenerated at the receiver so
that the bits can be sampled and shifted in at the cor-
rect time.
The receiver has an internal clock running at ap-

proximately the same frequency as the transmitter.
But it must “synchronize” its clock with the trans-
mitter clock so the clock edges are aligned. To do this
the receiver uses a clock that operates at some mul-
tiple of the transmitter’s clock and looks for changes
in the input signal in-between it’s clock edges.
Accurate synchronization thus requires periodic

changes in data signal level, even if the data is con-
stant (e.g. all zero). There are various ways of ensur-
ing this:

• sending an pair of bits of opposite level in-
between words (the “stop” and “start” bits used
in “RS-232” serial interfaces);

1SPI interfaces can be configured so that the data and SS
change on either the rising or falling edge of SCLK.

2

• encoding each bit as either a pair of 0-1 or 1-0
bits (“Manchester” coding);

• inserting an extra bitwhen long runs of the same
polarity are detected (“bit stuffing”).

Bi-Diectional Interfaces

We can further reduce the number of conductors re-
quired by using the same ones to transmit data in
both directions. One way is by using tri-state outputs
that are alternately enabled so that only one side of
the interface is configured as an output at any time:

oe oe

transmit/receivetransmit/receive

Another is by using open-collector outputs so that
multiple devices can pull the bus low in a “wired-OR”
configuration:

o.c. o.c.

Vdd

Often, one device is a master and “polls” the slave.
After the poll the master turns off its driver and the
slave turns on its driver for the duration of the re-
sponse. However, there are also interfaces (e.g. I2C,
see below) wheremultiple devices can contend to be-
come the bus master using an “arbitration” protocol.

Example USB

Universal Serial Bus (USB) is a popular peripheral in-
terface that uses an asynchronous bidirectional serial
interface. Earlier versions (“USB 2.0”) of the inter-
face required only four conductors: two for a differ-
ential2, bi-directional data signal, one for ground, and
one for power (+5 V).

2Thedata is encoded as the difference between the two signals
rather than their voltage relative to ground.

Other Interfaces

Addessable Interfaces

Instead of using SS lines to enable specific devices,
it’s possible to design interfaces where a device can
be enabled by sending it’s address on the data lines
before sending it data. The Inter-IC Communica-
tions (I2C) protocol is an example. This bus allows
many IC’s to be connected using only two signals:
SDA (data) and SCL (clock), both of which use open-
collector bidirectional buses.

SerDes

A serializer/de-serializer (SerDes) is the name used
for serial interfaces that operate at high (GHz) speeds.
These are typically used for high-speed peripheral in-
terfaces such as HDMI, PCIe and SATA or for fiber-
optic communication links.

Device Descriptos

In addition to being able to transfer data, modern in-
terfaces can often be polled for “descriptors” – blocks
of data that help identify and configure them. A com-
mon example is the USB interface. Each USB device
can be polled for a small amount of data that identi-
fies the device type (e.g. a keyboard), the manufac-
turer and the model.

3

	Parallel Interfaces
	Serial Interfaces
	Example: SPI

	Asynchronous Interfaces
	Bi-Directional Interfaces
	Example: USB

	Other Interfaces
	Addressable Interfaces
	SerDes
	Device Descriptors
	

