
ELEX 2117 : Digital Techniques 2
2020 Winter Term

State Machines

This lecture describes how to design state machines and implement them using VHDL.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, and write a synthesizable VHDL description of it.

Introduction

Astatemachine1 is a devicewhose outputs are a func-
tion of previous inputs. A statemachine therefore has
memory. The contents of this memory are called the
“state.”
Devices are often described as state machines. We

will learn to describe state machines and to imple-
ment them using digital logic circuits.

Mealy vs Moore State Machines

We can distinguish two types of state machines. The
outputs of aMoore state machine are only a function
of the current state:

D Q

memory

combinational
 logic

inputs outputs

clock

whereas in the Mealy state machine the output is a
function of the current state and the current inputs:

D Q

memory

inputs outputs

Moore state machines are simpler and have the ad-
vantage that “registered” outputs change only on the
clock edges. This avoids glitches resulting from dif-
ferent propagation delays through the combinational
logic at the output. This is desirable for signals that
go off-chip. However, since the outputs of a Moore

1An implementable state machine has a finite amount of
memory and is sometimes referred to as a “finite state machine”
(FSM).

state machine change only on clock edges they can-
not respond as quickly to changes in the input.
Exercise 1: Which signals in the above diagrams indicate the cur-

rent state?

Exercise 2: Which outputs are registered? Which outputs could

change whenever the input changes?

Design of State Machines

The following steps can be used to design a Moore
state machine. This initial design may need to be re-
fined by adding or removing states or changing the
transitions conditions until the solutionmeets the re-
quirements.

Step 1 - Inputs and Outputs

The first step is to accurately identify the inputs and
outputs. This is important because the rest of the de-
sign effort will be wasted if necessary inputs or out-
puts are not included in the design.
The outputs will typically be specified by the re-

quirements. You should ensure the selected inputs
are sufficient to provide the desired behaviour.

Step 2 - States

The second step is to identify a sufficient number of
states.
Since the output of a statemachine depends on the

previous inputs we could – in theory – use a shift reg-
ister to store previous inputs and use combinational
logic to compute the current output from the contents
of the shift register and the input. However, in most
cases it’s possible to use a much more concise repre-
sentation of the states.
One approach is to begin by listing all the required

combinations of the outputs. For a Moore state ma-
chine that has only registered outputs each of these
will correspond to a state.
Exercise 3: Why?

lec6.tex 1 2020-02-13 00:35

Step 3 - State Transitions

The final step is to define the behaviour of the state
machine by defining:

(i) the possible state transitions, and

(ii) the input condition(s) required for each of these
transitions.

These will depend on the specifications of the state
machine.
In the process of defining the transition conditions

you may find that it’s not possible to unambiguously
determine the next output based solely on the current
output and the input. This implies that there are state
variables that are do not appear in the output.
In this case you must add “hidden” states (two or

more states with the same output) that allow the re-
quired state transitions to be made unambiguously.

State Machine Descriptions

State machine are typically documented as a state-
transition table or a state-transition diagram.
A state transitions table has columns for the initial

state, the input condition(s), and the next state. The
output corresponding to each different state (and in-
puts forMealy statemachine) can also be listed in the
same or a different table.
A state machine with a small number of states can

be described using a state transition (or “bubble”) di-
agram. Each circle represents a different state and ar-
rows represent the state transitions. Each transition
is labelled with the input required for that transition
and each state is labelled with a state name and, for a
Moore state machine, the output for that state.
State machine descriptions often omit input con-

ditions that don’t result in a change of state and use
X to indicate “don’t care” values.

Implementation

State Encodings

In many cases we can use the outputs themselves as
state variables. This has the advantage that no ad-
ditional flip-flops are necessary to obtain registered
outputs.

We can also use 𝑘 flip-flops to represent 2𝑘 states
(e.g. 3 flip-flops can encode up to 8 states).
FPGA designs often use “one-hot” encodings

where one flip-flop is used for each state and only
one flip-flop at a time may set to 1. This encoding
requires more flip-flops but can simplify the combi-
national logic.
Exercise 4: If we used 8-bits of state information, howmany states

could be represented? What if we used 8 bits of state but used a

“one-hot” encoding?

State Transition and Output Logic

The state transitions are implemented as combina-
tional logic that computes the next state based on the
current state and the input. In VHDL this can be
done using a combination of conditional and selected
assignments.
If some outputs are not represented by state vari-

ables then it’s necessary to add combinational logic
to compute these outputs based on the state and, in
the case of a Mealy state machine, the inputs.
A practical circuit also needs a clock signal and a

reset input. The FSM will change state on every ris-
ing edge of the clock and revert to a starting state
when the reset input is asserted. Often the reset is
synchronous – it is simply another input and the cir-
cuit transitions unconditionally to the required state
on the next rising edge of the clock.

Multiple State Machines

In practice, most systems will be composed of mul-
tiple state machines interacting with each other.
For example, a multi-digit counter may be designed
as a combination of individual single-digit counters
each of which is designed as a state machine with a
terminal-count output and a count-enable input.
A state machine can be designed to respond to

changes of state of another state machine. For ex-
ample, a one-digit BCD counter might respond to the
transition from 9 to 0 of the next-lower-order digit.
These changes of state are zero-duration events

that correspond to the arrows (directed edges) on a
state transition diagram. These events are defined by
a (next state, current state) pair which are the input
and output values of a state machine’s state register
immediately before the event.

2

A state machine can also respond to the current
state of another state machine. For example, an
alarm signal generator might respond to the current
value of an ’on’ state register rather than to its transi-
tions between on and off.
The choice depends on the desired behaviour.

Exercise 5: The link below describes a game. List the top-level

game states. Decompose each of these into multiple states. Re-

peat.

Simon Game

Examples

Counter

In this example the state is the counter output. The
state transition table, the VHDL model and simula-
tion waveforms for a 2-bit counter with reset and en-
able inputs are shown below.

next
count count

[1] [0] reset enable [1] [0]
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 0 1 0 0
a b 0 0 a b
X X 1 X 0 0

-- two-bit resetable counter

library ieee ;
use ieee.std_logic_1164.all ;

entity count2 is
port (

reset, enable, clk : in std_logic ;
count_out : out std_logic_vector (1 downto 0)) ;

end count2 ;

architecture rtl of count2 is
signal count, count_next : std_logic_vector(1 downto 0) ;

begin
count_next <=

"00" when reset = '1' else
count when enable = '0' else
"01" when count = "00" else
"10" when count = "01" else
"11" when count = "10" else
"00" ;

count <= count_next when rising_edge(clk) ;

count_out <= count ;
end rtl ;

Exercise 6: What happens if both reset and enable are asserted?

Exercise 7: Draw the state transition diagram.

Exercise 8: Rewrite the state transition table and the code using

unsigned signals n and n+1.

Sequence Detector

This is an example of a state machine that detects a
sequence of values. In this case it is the correct com-
bination entered into a digital lock. For a lock the
output would be single bit (“unlocked”). A single bit
is not enough to determine if the correct sequence has
been input so this is an examplewhere the output sig-
nals cannot be used as the state variables.
This implementation keeps track of the digit in the

sequence and compares the input digit (n) with the
expected value (3,0,1 for the three digits). If the value
is correct it changes state to expect the next digit, oth-
erwise it returns to the state for the the first digit.
Once all three digits have been entered it moves to
the final state where the lock is opened.
The output, unlock, will be high for one clock

period when the correct sequence is recognized. A
practical digital lock would change state only when
a key is pressed (or released) rather than on every
clock edge andwould remain open until it was locked
again.

-- combination lock

library ieee ;
use ieee.std_logic_1164.all ;

entity lock is port (
n: in std_logic_vector (1 downto 0) ;
clock: std_logic ;
unlocked: out std_logic) ;

end lock ;

architecture rtl of lock is
signal digit, digit_next: std_logic_vector(1 downto 0);

begin

digit_next <=
"01" when digit = "00" and n = "11" else
"10" when digit = "01" and n = "00" else
"11" when digit = "10" and n = "01" else
"00" ;

digit <= digit_next when rising_edge(clock);

unlocked <= '1' when digit = "11" else '0' ;
end rtl ;

3

https://www.youtube.com/watch?v=1Yqj76Q4jJ4

Figure 1: Simulation results for traffic light example.

digit=1digit=0 digit=2 digit=3

n=3 n=0 n=1

n/=0 n/=2

Traffic Lights

This is an example that combines two statemachines:
one to sequence the traffic lights at an intersection
and one to implement delays. The states are encoded
as the on/off values of the (Red, Green, Yellow) lights
in each direction:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

We use an enumerated type to label the four states
(rg, ry, gr, and gy) according to the signal colors in
the two directions. Delays are implemented by decre-
menting a counter on each (1 Hz) clock edge. When
the counter reaches zero the state changes and the
counter is loaded with the duration of the next state.
The state transition diagram showing the duration of
each state is:

rg

gr

ryyr

30s

30s 5s

5s

The VHDL description is given below. The state
and counter values are given initial values. On some
technologies, these are the values when a device is
powered up.

-- traffic light controller

library ieee ;
use ieee.std_logic_1164.all ;
use ieee.numeric_std.all ;

entity traffic is port (
clock: in std_logic ;
lights_out: out std_logic_vector(5 downto 0)) ;

end traffic ;

architecture rtl of traffic is
constant cbits: integer := 8 ;
signal count, count_next, count0: unsigned(cbits-1 downto 0)
:= to_unsigned(0,cbits);

type light_t is (rg, ry, gr, yr) ;
signal lights, lights_next, lights0: light_t ;

begin

-- light duration timer
with lights_next select count0 <=
to_unsigned(30-1,cbits) when rg | gr,
to_unsigned(5-1,cbits) when yr | ry ;

count_next <= count0 when count = 0 else count - 1 ;

count <= count_next when rising_edge(clock) ;

-- light state sequencer
with lights select lights0 <=
rg when yr,
ry when rg,
gr when ry,
yr when gr ;

lights_next <= lights0 when count = 0 else lights ;

lights <= lights_next when rising_edge(clock);

-- decode state to light on/off
with lights select lights_out <=
"100001" when rg ,
"100010" when ry ,
"001100" when gr ,
"010100" when yr ;

end rtl ;

The simulation outputs are shown in Figure 1.
Exercise 9: Write the state transition tables for the counter and

light sequencer.

4

	Introduction
	Mealy vs Moore State Machines
	Design of State Machines
	Step 1 - Inputs and Outputs
	Step 2 - States
	Step 3 - State Transitions

	State Machine Descriptions
	Implementation
	State Encodings
	State Transition and Output Logic

	Multiple State Machines
	Examples
	Counter
	Sequence Detector
	Traffic Lights

