ELEX 2117 : Digital Techniques 2
2020 Winter Term

HDL Idioms

Additional VHDL

Reserved Words

VHDL has many reserved words, including some that
you may inadvertently use as identifiers in your de-
signs such as bus, next, open, register, or time.
Using an editor with syntax highlighting is a conve-
nient way to identify and avoid using reserved words.

Type Conversions

The diagram below shows the available type conver-
sion functions. The functions marked with an aster-
isk require a second argument that specifies the num-
ber of bits in the result.

to_integer

to_unsigned*

std_logic_vector

std_logic_vector

std_logic_vector

to_signed

unsigned

to_integer

“specify number of bits as a second argument

For example, to convert an std_logic_vector
signal x to an unsigned signal y you would use:
y <= unsigned(x). To convert an integer!
to a 4-bit unsigned signal you would use:
y <= to_unsigned(x,4).

Modeling Memory with Arrays

Arrays in VHDL can be used to model look-up tables
(memories). For example a lookup table with 16 ele-
ments, each of which is an 8-bit std_logic_vector
could be declared and used as follows:

ntegers are 32 bits.

lec2.tex

entity decoder is
port (led_out : out std_logic_vector (7 downto 8) ;
digit : in unsigned (1 downto 8)) ;
end decoder ;

architecture rtl of decoder is
type byte_array is array (natural range <>) of
std_logic_vector(7 downto 8) ;

signal led_decoder : byte_array(@ to 3)
:= (8x"7E", 8x"38", 8x"6D", 8x"79") ;
begin
led_out <= led_decoder(to_integer(digit)) ;
end rtl ;

This code declares and initializes a lookup-table
with 16 8-bit values numbered 0 to 15. led_out
is set to the value of the digit’th element in the
led_decoder table.

This is a more concise way of defining lookup ta-
bles than a conditional or selected assignment.

Tri-State Outputs

Tri-state outputs (those with H, L and high-
impedance output states) can be modeled using
std_logic. When such outputs are assigned the
value ‘Z’ the output is placed in the high-impedance
(“tri-stated”) mode.

-- as part of a port map:

X : output std_logic ;

-- in an architecture:

X <= b when oe_n = '0' else 'Z' ;

Common HDL Idioms

Logic synthesizers such as Quartus convert HDL de-
scriptions into circuits (actually, netlists). They do
this by recognizing a relatively small number of id-
ioms.

You must be able to visualize the hardware that
would be generated by an HDL description in or-
der create efficient designs. This lecture describes
some common HDL constructs and their correspond-
ing hardware implementations.

2020-01-28 08:00

Combinational Logic

The following HDL constructs are typically synthe-
sized as follows:

logical operators are converted to the equivalent
logic gates as you would expect.

arithmetic and comparison operators are con-
verted to blocks of combinational logic that im-
plement the required operation.

access to a value in an array is implemented
as a read-only memory (ROM). Access to bits
of unsigned or std_logic_vector signals is
implemented simply as a connection to specific
bits.

conditional and selected assignments are con-
verted into multiplexers; nested as necessary.

an output to which ‘Z’ can be assigned is con-
verted to a tri-state output.

Exercise 1

Using the following schematic symbols:

::::::>
addr. data 7o 174
- - \ !
[3:0]

a <= x(3) ;

X <= unsigned(m(to_integer(y(7 downto 6)))) ;
z <= x when a = '1' else vy;

d <= a when x = x"ff" else

b when y = x"00" else
c

y <= x"308" when x(2) = '1' else
x"208" when x(1) = '1' else
= '1" else

x"10" when x(0)
x"00"

x <= y+1 when y < z else y-1 ;

a <= b when c = '"1" else 'Z' ;
n <= x"07" when a = '1' else
x-1 when'y = z and b = '1' else

n;
r <= s(30 downto 0) & a ;

d <= not n(7) ;

Sequential Logic

The following HDL constructs are synthesized as fol-
lows:

« conditional assignments without an uncondi-
tional else are converted to flip-flops or regis-
ters. The signal assigned to is the register out-
put.

« combinational logic that computes the values
assigned to register outputs are used to describe
specialized sequential logic such as counters
and shift registers. The register’s current value
is often used to compute the next value.

and these declarations:

type byte_array is array (natural range <>) of
std_logic_vector(7 downto 0) ;

signal a, b, ¢, d, w, clk : std_logic ;

signal x, y, z, y_next, n : unsigned (7 downto @) ;

signal r, s : unsigned (31 downto 0) ;

signal m : byte_array (0 to 3) ;

signal p : unsigned(1 downto 0) ;

convert each of the following VHDL expressions into
a schematic:

Exercise 2

Using the schematic symbols and declarations above,
convert each of the following VHDL expressions into
a schematic:

y <= x when rising_edge(clk) ;

y <= y(6 downto @) & a when rising_edge(clk) ;

c<=anand b ;

y <= x+1 ;

y_next <= x when a = '1' else y ;
y <= y_next when rising_edge(clk) ;

y_next <= x"00" when b = '1' else
y+1 when a = '1' else
y i

y <= y_next when rising_edge(clk) ;

y_next <= x"00" when a = '1' or b = '1' else
y+1
y <= y_next when rising_edge(clk) ;

b <= x(7) when rising_edge(clk) ;

m(to_integer(p)) <= std_logic_vector(x) when rising_edge(clk) ;

x <= unsigned(m(to_integer(p))) ;

p <= p+1 when a = '1' and b = "1’

Schematics to HDL

It’s also important to be able to write the HDL that
will result in a specific hardware architecture.

Each circuit element is converted into the corre-
sponding HDL construct and named signals are used
to connect them according to the circuit topology.

Exercise 3

Write VHDL that would generate each of the follow-
ing schematics. Include any required signal declara-
tions.

16x3 ROM
[0]

4 c [1]r

s—+—A D h
[2]

g

clk —

2-to-4 decoder
D;—a
2 D,—b
—c
Dy—d

SI

125 —§— b
plil b af— 9l
afi] I

d—D aFq
clk
4 4
S'jr'S Qr+q
d—D
4 — |4
r—+—R Qr+ a_n
clk 4
8
8
D

a
clk J

a<b

I h clk

,d[{\l-1] qN-1]

—sout

1 ud
clk
., dl0] Qg[o]id[l]_D o1t i —b a
clk —3 | ! i |
S
N stages

	Additional VHDL
	Reserved Words
	Type Conversions
	Modeling Memory with Arrays
	Tri-State Outputs

	Common HDL Idioms
	Combinational Logic
	Exercise 1
	Sequential Logic
	Exercise 2
	Schematics to HDL
	Exercise 3

