
ELEX 2117 : Digital Techniques 2
2020 Winter Term

7-Segment Decoders and State Machines

Version 2: Added LED pin numbers, removed conditional assignment option, added pin assignments and .qsf file

Introduction

In this lab you will modify the kitchen timer devel-
oped in the previous lab by: (i) generating a 100 Hz
clock to control the timer, (ii) displaying the time re-
maining on a 7-segment LED display and (iii) chang-
ing how the pushbutton switches control the timer.

Requirements

Your design should generate a 100 Hz clock signal
from the 50 MHz clock and use it as the clock for
all other logic. Quartus should recognize the divided
clock signal as a clock.
The time remaining should be displayed as a hex-

adecimal digit on a 7-segment LED display instead
of a 4-bit binary number. Your design should use an
array as a lookup table instead of a selected or condi-
tional assignment.
The operation of the timer should be modified so

that the pushbutton switches control the timer as fol-
lows:

• pressing and releasing only the left button will
cause the time to increase by 1

• pressing and releasing only the right button will
cause the time to decrease by 1

• pressing both buttons and releasing them will
toggle the run/stop state

In no case should the time remaining be decre-
mented when at zero or incremented when at 15.
Your design should comply with the course VHDL

coding guidelines including that it be synchronous
– all registers (except for one clock divider) should
use the same clock and not use asynchronous sets or
clears.

Pre-Lab

Read the material below and write a VHDL descrip-
tion of the timer that meets the requirements above.

The following sections provide more details on each
requirement.
It is strongly recommended that you check your

VHDL description for syntax errors before the lab.
If you’ve installedQuartus on your PC you can also

follow the procedure below, complete the lab at home
and bring your circuit to the lab to have it checked.

Debouncing

Instantiate one clk_debounce entity for each push-
button. This is a synchronizer/debouncer designed
to operate with a 100 Hz clock. The VHDL file is
available on the course web site and should be added
to your project.

Clock Divider

The generated clock should come from the output of
a flip-flop to ensure it has no glitches. Glitches are
short pulses resulting from differences in propaga-
tion delays through combinational logic. The gen-
erated clock does not need to have a 50% duty cycle
since only the rising edges will be used.

7-segment Decoder

Modify your design to display the time remaining in
hexadecimal on a single-digit 7-segment LEDdisplay.
A 7-segment display decoder converts a 4-bit bi-

nary value to signals that turn the individual seg-
ments of a 7-segment display on or off as appropriate.
The conventional labels for the segments and the

pinouts for the LED in your parts kit is:

f

e

a

g

d

b

c

10

12 5

6789

3 4

a bfg

c .de

com

com

lab5.tex 1 2020-02-05 11:27



I connected the LED segments to the CPLD using
the bottom row of pins on connector P2:

wire
color

CPLD
pin

seg-
ment

LED
pin

black (0) 30 e 1
brown (1) 34 d 2

red (2) 36 c 4
orange (3) 38 dp 5
yellow (4) 40 -
green (5) 42 b 6
blue (6) 44 a 7
violet (7) 48 f 9
gray (8) 50 g 10
white (9) 52 com -

The display in your parts kit1 has a common an-
ode. This pin should be connected to an output (pin
52 above) through a 1 kΩ resistor. This pin should be
forced high (e.g. com <= '1';). Typically a current-
limiting resistor is used on each segment to obtain
the same brightness regardless of the number of seg-
ments that are lit. But for our purposes one resistor
will do.
A lookup table using an array of 8-bit

std_logic_vector values is a simple way to
implement a 7-segment decoder. The values of the
entries in the array are readily available2.
You can use the VHDL aggregate syntax to

assign a vector value to a number of discrete
signals. For example if decoder is the 7-
segment decoder array (for example declared as
std_logic_vector (7 downto 0)) and num is an
unsigned value you could use:

(dp,a,b,c,d,e,f,g) <= decoder(to_integer(num)) ;

Pushbutton Control

State Machine Description

We can describe the pushbutton controller as a state
machine. The inputs to the state machine are the
two synchronized pushbuttons and the outputs are
the current state and the next state.
The following state transition diagram shows the

states (e.g. lb for “left button was pushed”) and
the conditions that cause state transitions (e.g. R=0
means the right pushbutton is not pushed).

1Datasheet on course web site.
2Note that these are active-high while your outputs should be

active-low; a not operator will invert the bits.

nb

lb rb

bb

L
=
0 R

=
0

R
=

L
=

0

L
=
1 R

=
1

R
=
1

L
=
1

The Quartus documentation recommends using
enumerated types for states. This allows it to opti-
mize the representation of the states. In particular,
CPLDs and FPGAs often use “one-hot” encodings.
An example of defining states using an enumerated
type would be:

type bstate_t is ( nb, lb, rb, bb ) ;
signal state, state_next : bstate_t ;

The state transitions can be defined using one con-
ditional assignment per state to compute the state
transitions out of each state and a selected assign-
ment to choose one of these depending on the current
state. This is shown by the following code fragment:

signal nb_next, ..., bb_next : bstate_t ;
...
bb_next <= nb when r = '0' and l = '0' else bb ;
nb_next <= lb when l = '1' else rb when r = '1' else nb ;
...
with state select state_next <=
nb_next when nb,
...
bb_next when bb ;

state <= state_next when rising_edge(clk);

Actions

For the pushbutton switches to operate as described
abovewe can only take action after both buttons have
been released because we can’t determine the order
in which the buttons will be pressed when the user
presses both.
Changes in other parts of your circuit (e.g. time re-

maining counter or the run/stop state) can be made
conditional on the current state, the next state or
both.
For example, if the state is lb and the next state

is nb then the left button is being released and we
should increment the time remaining. This should

2

https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/One-hot


only happen on the state transition so it has to be con-
ditional on the values of both the current state and the
next state. For example:

seconds_next <=
...
seconds + 1 when state = lb and state_next = nb and

seconds /= 15 else
...

Pre-Lab Documentation

You should prepare the following and be able to show
it to the lab instructor at the start of the lab:

1. Block diagrams of the CPLD functional blocks
(see below). Follow the conventions used in the
lectures and show registers, multiplexers, logic
functions, inputs and outputs. This will help
you understand how your design works and to
write the VHDL.

2. A schematic, including pin numbers, show-
ing the CPLD connections to the pushbutton
switches and to the 7-segment LED display. An
accurate schematic will help you avoid wiring
errors.

3. The VHDL code for your design, commented as
described in the previous lab. You will need to
have this before your lab since you will not have
time to both write and troubleshoot your design
in the time allotted to the lab.

Procedure

Synthesize your VHDL description, program the
CPLD, interface it to the peripherals described above
and demonstrate your working design to the lab in-
structor.

Hints

Block Diagrams

Based on the functional description we can deter-
mine the inputs and outputs of each functional block.
The result might be:

clk50
clk

state

state_next

clk

run

seconds

l

r

clk

state

state_next

seconds (a,b,...,g)

clk

run

count

state

state_next

clk

run

seconds
run

alarmcount

clk

left_in

l

clk

right_in

r

Layout

The photos below show how the board can be con-
nected to the pushbutton switches and the 7-segment
LED display. The individual pins are held together
with tape as a substitute for a connector. This allows
all of the connections to be made at once.

Pin Assignments

These are the pin assignments shown above:

3



Quartus Settings Files

You can import the Quartus Settings File
(lab5pins.qsf) on the course web site if you
wish (Assignments > Import Assignments...). This is a
text file with tcl commands to configure pin numbers
and pull-ups for the signal names shown above.
These match the signal names and pin headers used
above.
Since you will have to make these assignments

manually on the lab test, it’s best not to do this un-
less you are confident you knowhow tomake pin and
pull-up assignments.

Demonstration and Marking

The preparation mark will be based on coming to the
lab with the documentation described above.
The lab instructor will determine the demonstra-

tion part of the labmark by checking that your circuit
meets the requirements. In particular:

• a fully-synchronous design. The lab instructor
will check Compilation Report > Fitter > Resource
Section> Global & Other Fast Signals to verify that
only two signals are present: the 50 MHz in-
put clock (on pin 12) and your 100 Hz generated
clock.

• the use of an array as a 7-segment LED decoder

• that your circuit works as described in the Re-
quirements section.

Then the lab instructor will ask you to make a
small change to the behaviour of your design tomake
sure you understand how it works. For example, the

instructor could ask you to modify the actions taken
by the pushbuttons, to limit the minimum or maxi-
mum timer values, the timer rate, etc.

Optional Extensions

If you found this lab too easy, you can try adding3 the
following features (listed in order of increasing com-
plexity).
By adding a timer that is reset on entry into a state

we can implement state transitions that depend on
time. For example:

• if the left or right button is held down for
more than 1 second the time remaining incre-
ments/decrements at a rate of approximately 4
seconds per second, and/or

• pressing both buttons for more than one second
sets the time remaining to the initial value com-
puted in the previous lab, and/or

• pressing both buttons for more than two sec-
onds sets the initial time remaining to the cur-
rent time remaining.

The timer can be reset on state transitions (e.g.
btimer_next <= to_unsigned(100,8) when
state_next /= state ;).
Another extension would be to save and restore

the initial time remaining to the CPLD’s on-board
“UFM” flash memory (use the ALTUFM LPM block
and a parallel interface).

Decoding CPLD Date Codes

Out of curiosity I wet the package to check the
CPLD’s date code:

which indicates it was built in TSMC’s Fab 8 (Altera
fab code 9M) in week 25 of 2017. Altera was pur-
chased by Intel in 2015.

3You must leave the required functionality intact.

4

https://en.wikipedia.org/wiki/Tcl
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/max2/max2_mii51010.pdf
https://www.intel.com/content/www/us/en/programmable/support/quality-and-reliability/decoder.html
https://en.wikipedia.org/wiki/TSMC
https://goo.gl/maps/ZENSkpxuu5wvsJwB6

	Introduction
	Requirements
	Pre-Lab
	Debouncing
	Clock Divider
	7-segment Decoder
	Pushbutton Control
	State Machine Description
	Actions


	Pre-Lab Documentation
	Procedure
	Hints
	Block Diagrams
	Layout
	Pin Assignments
	Quartus Settings Files

	Demonstration and Marking 
	Optional Extensions
	Decoding CPLD Date Codes

