
ELEX 2117 : Digital Techniques 2
2020 Winter Term

Counters and Timers

Version 2: corrected calculation of initial timer values.

Introduction

In this lab youwill explore the design of counters and
timers by designing a simple kitchen timer.

Requirements

The timer has two pushbutton inputs, reset_n and
run_stop. It has one 4-bit output, seconds that
drives four LED’s and a one-bit output, alarm, that
drives one LED. It also has a clock input, clk.
Your timer should operate as follows:

• The timer can be in one of two states: run=0and
run=1.

• run is set to 0 when reset_n is asserted; it is
set to the logical inverse of run (not run) when
there is a rising edge on run_stop.

• seconds, the time remaining, is set to the ini-
tial timer value (see below) when reset_n is as-
serted; it is decremented by 1 once per second
when run=1and seconds/=0 (that is, when the
timer is running and there is still time remain-
ing).

• The alarm LED is turned on if run=1 and the
time remaining is zero.

The initial time remaining should be 8+(𝑛 mod 8)
seconds where 𝑛 is the last digit of your BCIT ID. For
example, if your BCIT ID is A01456789 then 𝑛 = 9
and your timer will count from 8 + (9 mod 8) = 8 +
1 = 9 seconds down to 0.
Your design should be synchronous – all registers

should use the same clock and not use asynchronous
sets or clears. In particular, reset_ndoes not directly
reset any registers, it is used to determine the value
loaded into the register(s) on the next rising edge of
the clock.

Pre-Lab

Read the Hints section below and write the VHDL
source code for a kitchen timer that meets the above
requirements.
It is strongly recommended that you check your

VHDL description for syntax errors before the lab. If
you don’t have access to Quartus or Modelsim you
canuse theEDAPlayground on-lineHDL simulator1.
If you’ve installedQuartus on your PC you can also

follow the procedure below, complete the lab at home
and bring your circuit to the lab to have it checked.

Procedure

You will need the same components as for the previ-
ous lab.
Follow the general procedure in Appendix A of the

“State Machines” lab and Appendix A of the “Intro-
duction to VHDL” lab to create a project, compile
your VHDL description, and configure your CPLD.
Download and add the sync_debounce.vhd file

from the course web site to your project. A
sync_debounce entity should be instantiated in your
design to synchronize and debounce the run_stop
pushbutton (see below for details).
The CPLD should be connected to the input and

output devices as in the previous lab. However:

• the pushbutton switch on pin 2 that previously
simulated a clock will now be run_stop, a
run/stop pushbutton control;

• the clock for your design, clk, will instead come
from an on-board 50 MHz oscillator that is con-
nected to pin 12 of the CPLD;

• the reset_n signal on pin 29will reset the timer
to the initial timer value computed above;

1Use the Aldec Rivera simulator and an empty testbench file;
comment out the switch debouncer.

lab4.tex 1 2020-01-28 15:46

https://www.edaplayground.com


• the led bus (pins 44, 48, 50 and 52) will display
the time remaining (seconds) and

• the on-board LED connected to pin 77 that dis-
played the debounced clock pushbutton will
now be an alarm output indicating that the
timer has expired.

Pin Assignments

Follow the instructions in the previous lab to config-
ure internal pull-up resistors on pins 2 and 29, the
run_stop and reset_n inputs.
The 50 MHz on-board clock, clk, is connected to

CPLD pin 12 on your board.

Hints

Modeling Registers

It is common to use one signal name for the input and
one for output of a register. For example, if the output
of a register is called count, the signal count_next
would be its input:

signal count, count_next : unsigned(3 downto 0) ;
...
count_next <=

to_unsigned(6,4) when count = 0 or
reset_n = '0' else

count-1 ;

count <= count_next when rising_edge(clk) ;

The first conditional assignment describes the
combinational logic that computes the next value of
the count register and the second one describes the
rising-edge-triggered register. The circuit would be:

D Q
count_next

count

clkcount = 0 or reset_n = 0

6

-1 0

1

Timers

If we set a register to𝑁−1 and decrement it by one ev-
ery clock cycle it will reach zero2 after 𝑁 clock cycles
which happens after a delay of 𝑁/𝑓clk seconds.

2Timers traditionally count down to zero because no addi-
tional hardware is required to determine the final value – the sub-
tracter’s borrow bit indicates when the count has reached zero.

If, as in the example above, the counter is re-
initialized to 𝑁 − 1 when it reaches zero, the counter
values will repeat periodically with frequency of
𝑓clk/𝑁. For example, if 𝑁 = 6:

5 4 3 2 1 0 50count:

6/fclk=6Tclk

By making other actions (e.g. decrementing the
number of seconds remaining) conditional on spe-
cific counter values (e.g. zero) we can carry out these
actions at different rates or delays. For example:

-- decrement timeleft at a rate f_clk/6
timeleft_next <=

timeleft - 1 when count = 0 else
timeleft ;

-- 50% duty cycle at f_clk/6 (for illustration)
signalhigh <= '1' when count < 3 else '0' ;

It is usually a bad idea to use a periodic signal gen-
erated this way as a clock (in the rising_edge()
part of a conditional assignment). The reasons are
explained in Appendix A.

Detecting Edges

To detect rising edges on a signal that is not a clock,
such as a press of the run_stop pushbutton, we can
store the previous value of the signal in a flip-flop and
compare it to the current value. If the previous value
was low and the current value is high then theremust
have been a change in level from low to high (i.e. a
rising edge):

sig0
D QD Q

sig

synchronizer

clk

sig_rising

The VHDL code for this circuit would be:

sig0 <= sig when rising_edge(clk) ;

sig_rising <=
'1' when sig0 = '0' and sig = '1' else
'0' ;

2



Synchronizing Inputs

Since inputs such as those from pushbuttons are
asynchronous to the clocks used in your circuit, there
is no way to ensure that the setup time requirements
of the various flip-flops in your design will be met.
We can minimize the likelihood of metastable

events3 by passing asynchronous inputs through a
flip-flop called a synchronizer4. The output of this
flip-flop will be synchronous with the clock and we
can verify that the setup requirements of the other
flip-flops in our design will be met.
For this lab you will be supplied with a syn-

chronous debouncer which also provides the input
synchronization function. This sync_debounce de-
bouncer needs to be suppliedwith your circuit’s clock
as well as the switch input and output signals. It can
be instantiated in your design as described below.

Entity Instantiation

The sync_debounce is provided in a file as an en-
tity/architecture pair rather than as a component
in a package. The syntax to directly instantiate
an entity instead of a component is slightly differ-
ent. For example, the following code instantiates the
sync_debounce entity:

debounce1: entity work.sync_debounce
port map ( run_stop_in, clk, run_stop ) ;

The work. prefix on the entity name indicates that
the entity is found in the work library along with the
other design units currently being compiled.

Block Diagram

From the functional description of the timer, we will
need a timerwith a period of one second to determine
when to decrement the time remaining, a counter for
the number of seconds remaining, and a flip-flop to
store the run state. The alarm output can be gen-
erated with combinational logic. Based on the func-
tional description we can determine the inputs and
outputs of each functional block. The result might
be:

3Meaning that flip-flop outputs do not settle by their specified
𝑡CO.

4Synchronizers typically use two flip-flops in series to make
them more robust.

count

clk

run

reset_n
seconds

clk

run

reset_n

run

clk

run_stop

reset_n alarm
run

seconds

count

Each of these blocks will correspond to one or two
VHDL statements.

Coding Style

As a minimum, each source file must include near
the start of the file a comment that includes: the file
name, a line describing the purpose of the file, the
author’s name and the date.
Additional comments next to port and signal dec-

larations and for non-obvious portions of your design
are also a good idea.
Comments should explainwhy you’re doing some-

thing rather than repeating what is obvious from the
code. Here are some examples of what the author
considers good and bad comments:

-- open door if power off and pressure low (good)
-- set door to the NOR of pwr and hi_p (bad)

door <= not pwr and not hi_p ;

It should be possible to figure out how your design
works by reading only the comments.

Troubleshooting

Follow the usual troubleshooting strategy if your cir-
cuit isn’t working. First check power, ground and
clocks. Then check for a discrepancy between the
measured and expected signals. The testing should
proceed in order from the inputs to the outputs.
Connect signals (e.g. the pushbutton inputs, the

run state flip-flop, and groups of bits of the count
values) to the LED displays to verify that each sec-
tion is operating as expected. Signals that change too
quickly to be seen can be measured with the ’scope.

3



Demonstration and Marking

The preparation mark will be based on coming to the
lab with reasonably-complete VHDL code.
The lab instructor will determine the demonstra-

tion part of the lab mark by first checking that your
circuit:

• displays the correct value and does not start
counting down when reset,

• counts down when run_stop is pushed, stops
when pushed again, restarts when pushed a
third time,

• resets the time remaining and stops when
reset_n is pushed,

• turns on the alarm led when the count reaches
zero, and

• alarm turns off when run_stop is pushed.

Then the lab instructor will ask you to make a mi-
nor change to the behaviour of your design to make
sure you understand how it works. For example, the
instructor could ask you to modify the initial timer
value, the rate at which the timer operates, the oper-
ation of the switches (active-high reset, falling-edge
run/stop control), etc.

Optional Extensions

If you found this lab too easy, you can try adding5 the
following features (listed in order of increasing com-
plexity):

• Have the time remaining display “blink” while
the timer is running.

• Define additional outputs to display the time
remaining on a 7-segment LED display as de-
scribed in the previous lab.

A Multiple Clocks

It is usually not a good idea to use signals generated
by logic, for example the different bits of a counter, as
clocks. Among other issues, clock signals generated

5You must leave the required functionality intact.

by logic circuits will have more uncertainty in their
timing which in turn will reduce the speed at which
your design can operate.
However, power consumption is sometimes more

important than speed and reducing the clock rate re-
duces power consumption because power consump-
tion is linearly related to the clock rate. In this ap-
plication for example, a clock rate as low as 100 Hz
would be sufficient because users would not notice
the resulting 10 ms lag in response to button presses.
Thus, if our timer were battery powered we might
want to divide the clock to 100 Hz and use that as the
sole clock in the design6. However, you need not do
that for this lab.
The use of multiple clocks that are not derived

from the same clock (i.e. generated by different os-
cillators) poses different problems and special tech-
niques are needed to cross “clock domains.”

6Watches and battery-powered timers typically use an oscil-
lator operating at 215 = 32768 Hz.

4


	Introduction
	Requirements 
	Pre-Lab 
	Procedure 
	Pin Assignments 

	Hints 
	Modeling Registers
	Timers
	Detecting Edges
	Synchronizing Inputs
	Entity Instantiation
	Block Diagram
	Coding Style

	Troubleshooting
	Demonstration and Marking 
	 Multiple Clocks 

