
ELEX 2117 : Digital Techniques 2
2020 Winter Term

Introduction to VHDL

Version 2: corrected purpose of Appendix A. Version 3: fixed labels on state transition diagram.

Introduction

In this lab you will use VHDL to design logic that dis-
plays the 8 successive digits of your student number
on a 4-bit binary LED display.
For this lab you will need the same components

as for the previous lab plus an additional pushbutton
switch and three additional pin-header jumpers.

Pre-Lab

Write a VHDL description that has:
• an std_logic clock input,

• an active-low std_logic reset input whose
name ends with the letter ‘n’ (e.g. reset_n or
RSTN),

• a 4-bit std_logic_vector output
Your design should operate as follows:
• The output should change only on the rising
edge of the clock.

• If the reset input is asserted (i.e. low) at the ris-
ing edge of the clock then the first digit of your
student number should be displayed in binary
on the led outputs.

• If the reset input is not asserted at the rising edge
of the clock then the next digit digit of your stu-
dent number should be displayed. Your design
should not advance past the last digit.

Draw the state transition diagram andwrite VHDL
source code for your counter and bring hard-copies to
the lab.
Your state transition table should have conditions

on each transition:

0 1 6 7

reset = 0

reset=1reset=1

Note that since your student number could have
duplicates of the same digit, your states should not
be the displayed values. Instead the state should be
the digit position being displayed (0 through 7). Use a
selected assignment to convert from the digit position
to the displayed digit value.
If you’ve installedQuartus on your PC you can also

follow the procedure below, complete the lab at home
and bring your circuit to the lab to have it checked.

Procedure

Follow the general procedure in Appendix A of the
previous lab to create a project, compile it, and con-
figure your CPLD. However, note the following addi-
tional instructions specific to this lab...

Add Files to Project

When adding files to the project (step 4), download
the debounce_pkg.vhd file from the course web site
and copy it to your project folder. Add it to your
project (Project > Add/Remove Files in Project..., File
name: > ..., select the file, > Add > OK).

VHDL Entry

When adding files to the project (step 4), follow
the procedure in Appendix A to create the VHDL
source file for your design. You’ll also need to add
a debounce component as described next.

Debouncing

As in the previous lab, you’ll need to debounce the
clock switch input 1. In your VHDL file include:

-- before the architecture:
use work.debounce_pkg.all ;

-- within the architecture:
debounce1: debounce port map (clk_in, clk) ;

1But not the reset input since it is level-sensitive rather than
edge-sensitive.

lab3.tex 1 2020-01-22 19:51

where clk_in and clk are the signal names you used
for the un-debounced and debounced clock signals
respectively.
The use clause will make the debounce compo-

nent available. The component instantiation state-
ment will include an instance of the debounce
component in your design, name the instance
debounce1, and connect clk_in to the debounce
component’s input port and clk to its output port (as-
suming you have signals with these names).

Hints

• Draw a block diagram of your design before you
begin coding. For this lab it might be:

reset

clock

next
digit digit led

1 2 3

where block 1⃝ computes the next digit position
based on the value of the current digit position
and the reset input (e.g. using a conditional as-
signment); block 2⃝ stores the current digit posi-
tion value (e.g. by creating a register); and block
3⃝ computes the output digit value based on the
current digit position (e.g. by using a selected
assignment).

• Declare signals within the architecture for
the current and next digit values (e.g. dig,
dig_next) and use a conditional assignment to
set the value of the next digit based on the cur-
rent digit. The internal signal declarations are
placed just before the architecture’s begin
keyword.

• You will also need to declare an internal signal
within the architecture for the debounced clock
(the clock declared in the entity’s port is the un-
debounced signal).

• You can use hexadecimal literals x"5" instead of
binary ones ("0101")

• Certain useful features of the 2008 version of
VHDL can be enabled by checking: Assignments
> Settings > Analysis and Synthesis Settings >
VHDL Input > VHDL Version > VHDL 2008 One of
these features is literals of any bit width and dec-
imal base (e.g. 3d"5" for a 3-bit decimal value).

Pin Assignments

When assigning pins also configure internal pull-up
resistors on pins 2 and 29, the clock and reset input
pins, following the instructions in the previous lab.
You should end up with the following assign-

ments, possibly using different signal names2:

CPLD I/O

After the CPLD is programmed, the schematic and
photos below show how it can be connected to
switches for the clock and reset inputs, and to four
LEDs that display the state.
The black wires are ground, blue and green are the

clock and reset respectively, red through yellow are
the color-coded led outputs:

50

52

2
clock

GND
1k1k

CPLD board

3V3 LED array

resistor
array

1

1

77

(on-board
 LED)

reset_n
29

3V3

44

48

1k1k

led[3]

led[2]

led[1]

led[0]

2The test_led output is for troubleshooting.

2

Configure internal pull-up resistors on pins 2 and
29 (the clock and reset input pins). Use the N.C. (nor-
mally closed) pushbutton switch contacts to gener-
ate a positive clock edge each time the clock button
is pressed. Use the N.O. (normally open) contacts to
assert the reset inputwhen the reset button is pushed.
Connect four LEDs with 1 kΩ current-limiting re-

sistors to CPLD pins 50 and 52 as in the previous lab.
If you have them available, use the LED and resistor
arrays to minimize wiring and chance of errors.
The schematic above also connects an output

(named test_led) to the LED on your CPLD board
(pin 77) so you can verify the operation of your clock.

Demonstration

Pressing the pushbutton should make the on-board
LED light. On each press (rising clock edge) the
count value should change to the next digit of your
student number. Holding the reset button and press-
ing the block button should display the first digit of
your student number.
Show your working counter to the lab instructor.

After your demonstration the instructor will ask you
to modify the behaviour of your design to make sure
you understand how it works.

A VHDL Entry with Quartus

To create a new VHDL source (.vhd) file:

• select File > New... > Design Files / VHDL File >
OK

• select File> Save as... and enter a file name. Use
the project name as the file name and the name

of the top-level entity (e.g. lab3, lab3.vhd and
lab3)3

• the editor has syntax highlighting, keyword and
signal/variable name completion and language
templates (right-click > Insert Template...)

Optional Extensions

If you found this lab too easy, you can try adding4 the
following features (listed in order of increasing com-
plexity):

• Define additional outputs to display the digits on
one of your 7-segment LED displays. Use an ad-
ditional selected assignment to covert the binary
digit to seven active-low signals to drive the LED
sgments (the displays are common-anode). De-
fine additional outputs (e.g. a through g), assign
pins and connect them to your display.

• Use two 7-segment displays and have the dig-
its scroll through the display as you advance
through the digits. You’ll need an additional
register and logic to load/clear it.

• Multiplex the two displays so you only need one
set of pins (7 segments plus 2 anodes) to drive
both of them. You can divide down the on-board
50 MHz clock available on pin 12.

3You can change the name of the top-level entity and the
project files to be compiled in Assignments > Settings, but its
easier to use the defaults.

4You must leave the required functionality intact.

3

	Introduction
	Pre-Lab
	Procedure
	Add Files to Project
	VHDL Entry
	Debouncing
	Hints

	Pin Assignments

	Demonstration
	 VHDL Entry with Quartus

