
ELEX 2117 : Digital Techniques 2
2020Winter Term

StateMachines

Introduction

Sequential logic circuits are often designed as state
machines. In this lab you will design and build a
simple statemachine.
For this lab youwill need:

• a solderless breadboard

• your CPLD board, Byte Blaster JTAG interface
and coaxial power connector,

• a 10-element LED bar array (or two LEDs)

• a 10-element 1 kΩ SIP resistor array (or two
resistors≤1kΩ),

• a pushbutton switch (double-throw or single-
throwN.C.) andmachine-pin DIP socket

• four pin-header jumpers (ideally, black, brown,
red, and blue)

StateMachines

A statemachine consists of a register1, whose value is
the “state” of the state machine, and a combinational
logic circuit that computes the next state:

combinational
 logic

register

inputs

state

clock

QD

On each rising edge of the clock the state changes
to the next state because the register is loaded with
the value of the next state. The next state is computed
from the current state and the values of any inputs.
For the simple counters you will design in this

lab the next state depends only on the current state.
However, for a more complex counter the next state
could also depend on an input such as a reset or
count-direction input.

1A register is a group of flip-flops with a common clock.

Statemachines can be described by state transition
diagrams. Each circle in the diagram is a state and
the arrows between the states describe the conditions
that cause transitions between states. For example,
the state transition diagram for a 2-bit Gray-code
counter would be:

00 01 11 10

The state transitions happen on the rising edge of
the clock that loads the next value into the register.
Once the states and the state transition conditions

are defined, it is necessary to design the combina-
tional logic circuit that computes the next state. The
behaviour of this circuit can be defined by a truth
table where the current state is the input and the next
state is the output.
For example, for the 2-bit Gray-code counter the

truth table would be:
current next
state state

A B A’ B’
0 0 0 1
0 1 1 1
1 1 1 0
1 0 0 0

where A and B are values of the two bits of the current
state and A’ and B’ are the values of the two bits of the
next state.
From the truth table we can derive the sum-of-

products equations: A’ = AB + AB and B’ = A B + AB2.
From these equations were can create a schematic of
the state machine in Quartus as shown in Figure 1
and program the CPLD to implement the counter.

Pre-Lab

The counter you will design in this lab will be
determined by last digit of your student number3:

2Youdonot need to simplify these equations –CAD tools such
as Quartus will do this for you

3This is to encourage everyone to do their own design.

lab2.tex 1 2020-01-15 20:54

Figure 1: Schematic of 2-bit Gray-code up-counter.

digit counter type sequence
0 or 1 binary up-counter 0, 1, 2, 3, 0, ...
2 or 3 binary down-counter 0, 3, 2, 1, 0, ...
4 or 5 Gray-code down-counter 0, 2, 3, 1, 0, ...
6 or 7 modulo-3 up-counter 0, 1, 2, 0, ...
8 or 9 modulo-3 down-counter 0, 2, 1, 0, ...

For example, if your student number is A00123456
youwill design amodulo-3 up-counter for this lab .
Write out, for your counter: (i) the state transition

diagram, (ii) next-state truth table, (iii) the (un-
simplified) sum of products expressions, and (iv) a
schematic of the counter.
Your schematic should follow the general layout

in Figure 1 so it’s easy to understand and modify.
If you’ve completed the schematic capture part of
the procedure below, you can use a printout of your
schematic4 instead of a hand-drawn one.
If you’ve installedQuartus on your PC you can also

follow the procedure below, complete the lab at home
4If you’ve done some of this work on a computer, please bring

a hard-copy to the lab, your instructors are old and have poor
eyesight.

and bring your circuit to the lab to have it checked.

Procedure

Follow the general procedure in Appendix A to
create a project, compile it and configure your CPLD.
However, note the following additional instructions
specific to this lab...

Add Files to Project

In step 4, download the debounce.vhd file from the
course web site and copy it to your project folder.
Add it to your project (Project > Add/Remove Files in
Project..., File name: > ..., select the file, OK).
Select Files from the drop-down in the Project

Navigatorwindow. Right-click on the debounce.vhd
file and select Create Symbol Files for Current File. This
will create a debounce.bsf file in your project folder
and you’ll be able to add a debounce block to your
schematic.

2

Schematic Capture

Also in step 4 you’ll need to follow the procedure in
Appendix B to create the schematic for your counter.
Use components from the c:\....primitives library
(input, or2, and2, dff, not and output). You’ll also need
to add a debounce component as described next.

Debouncing

Mechanical switches typically produce many brief
interruptions when they are switched. This “switch
bounce” results in multiple signal edges. As shown
in Figure 1, add a debounce component between the
switch input (Pin 2) and the clock inputs to the flip-
flops to eliminate switch bounces. This component
will be available in theProject component library after
youhave added thedebounce.vhdfile to yourproject
and created the corresponding debounce.bsf file in
your project folder as described above.

Pin Assignments

In step 6 you’ll also need to configure an internal
pull-up resistor on the clock input pin. Open the
AssignmentEditor (Assignments>Assignment Editor).
Double-click on «new» in the To column and enter
the pin name (clock). Select Weak Pull-Up Resistor
from the drop-down menu in the Assignment Name
column. Select On from the drop-down menu in the
Value column.
You should endupwith the following assignments:

CPLD I/O

After the CPLD is programmed, the schematic and
photos below show how it can be connected to a
switch that generates clock pulses and to two LEDs
that display the state.
The black wires are ground, blue is the clock,

red and brown are the two bits of state, A and B
respectively:

50

52

2
clock

A

B

GND
1k1k

CPLD board

3V3

LED array

resistor
array

1

1

77

(on-board
 LED)

An internal pull-up resistor will be configured
on CPLD pin 2, the clock input pin. Use the N.C.
(normally closed) pushbutton switch contacts to
cause a positive clock edge each time the button is
pressed. Mount the pushbutton on a machined-pin
DIP socket to secure it.
Connect twoLEDswith1kΩcurrent-limitingresis-

tors to CPLD pins 50 and 52 (for A and B respectively)
to display the counter state. You can simplify the
wiring by using the LEDand resistor arrays as shown.
Pin 1 of the LED array package is on the side with the
partnumber. Thepinsonthis sideare theanodes (pos-
itive). Pin 1 of the resistor array is markedwith a dot.
The schematic abovealso connects the ledoutput to

theLEDonyourCPLDboard(pin77) soyoucanverify
the operation of your clock. Routing internal signals
to an LED like this is a useful debugging technique.

3

Demonstration

Pressing the pushbutton should make the on-board
LED light. On each press (rising clock edge) the
count value should change to the next value. Show
your working counter to the lab instructor. After
your demonstration the instructor may ask you some
questions or ask you to modify the count sequence
to check your understanding of the concepts and the
design process.

A Logic Synthesis with Quartus

1. start Quartus

2. select File> New... > NewQuartus Project> OK

3. in the subsequent dialog boxes: select a folder
(e.g. H:\ELEX2117), enter a project name (e.g.
lab2), select an empty project, don’t add files,
select the Max II Family, select the specific
device EPM240T100C5, and leave other settings
at their defaults

4. add any existing design files using Project >
Add/Remove Files in Project, or create new ones
using File > New... You must have a top-level
module whose port names correspond to the
CPLD’s pins. It must have the same name as
the project. This may be a schematic file (e.g.
lab2.bdf) or a VHDL file with a matching
entity name (e.g. entity lab2 is).

5. after all the design files have been created and
added to the project, select Processing > Start
Compilation. Correct any errors and recompile as
necessary

6. select Assignments > Pin Planner and select the
correct pin in the Location drop-down box for
each I/O pin. Note that you must compile the
project before the pin names are visible in Pin
Planner. Recompile the project (Processing >
Start Compilation) for the assignments to take
effect.

7. connect the CPLD board’s coaxial power con-
nector to a USB port and push the power button
(power LED should go on). Connect the “USB
Blaster” to the CPLD and a free USB port. The
POWER and ACT lights should go on.

8. select Tools / Programmer, click on Hardware
Setup..., select USB-Blaster from the drop-down
and Close. USB-Blaster should appear next to
Hardware Setup...

9. if necessary, click on Add File.., navigate to the
location of the generated .pof file (typically in
the output_files folder of the project folder)
and select the .pof file

10. check that the Program/Configure checkboxes are
checked and press Start to program the device.
The progress bar should show 100%.

11. test your design

B Schematic Capturewith Quartus

To create a new block diagram/schematic (.bdf) file:

• select File > New... > Design Files / Block
Diagram/Schematic File> OK

• select File > Save as... and enter a file name. If
this is the top-level file you must use the project
name as the file name (e.g. lab2.bdf).

• use the “Symbol Tool” to insert the required
components and I/O pins. Ensure each com-
ponent has a unique instance name (e.g. inst5,
inst6, ...). Double-click on pin and instance
names to edit them. Hint: Use the search box to
find components quickly.

• use the “Selection” or “Net”/“Bus”
tools to connect the components. Hint: an ×
indicates a wire that is not connected.

• use indices in square brackets for bus names.
For example, signal[7..0] means the 8
least-significant bits of the bus signal. Hint:
It is often easier to name signals (right-click >
Properties) than to connect them. All signals with
the same namewill be connected together.

4

	Introduction
	State Machines

	Pre-Lab
	Procedure
	Add Files to Project
	Schematic Capture
	Debouncing

	Pin Assignments

	Demonstration
	 Logic Synthesis with Quartus
	 Schematic Capture with Quartus

