ELEX 2117 : Digital Techniques 2
2020 Winter Term

ELEX 2117 VHDL Coding Guidelines

Version 1. These are subject to change and apply to labs and exams starting with Lab 5.

Requirements

Your design will be considered incorrect, even if it
behaves correctly, if you do not follow the guidelines
in this section.

Synchronous design

Your design may use only one clock signal unless oth-
erwise specified. The same signal must appear in all
arguments to the rising_edge() function and only
that signal may be listed in Compilation Report > Fitter
> Resource Section > Control Signals as a Clock.

Explanation Modern hardware and design tools as-
sume synchronous (one clock) design. Using “com-
puted” clocks leads to inefficient designs that are dif-
ficult to design and verify.

No process statements

You may not use process statements for synthesis.
Registers must be defined by conditional assignments
with a rising_edge(clock) condition.

Explanation Statements in processes are executed
sequentially. This often leads students to believe
that the synthesized hardware carries out the oper-
ations described by the process. Processes can also
include variable assignments whose semantics differ
from those of signal assignments.

Not using processes allows students to start using
HDL:s for synthesis before learning about these top-
ics. Concurrent assignments are easy for students to
map into the hardware, the code tends to be less ver-
bose and concurrent assignments are sufficient to de-
scribe any synthesizable design.

Explicit register input signals

Registers must be described as:

signal <= signal_next when rising_edge(clock);

codingrules.tex

Explanation This simplifies the description in most
cases and makes it possible to detect events (changes
of state) because both the current and the next values
of a register are available.

Only IEEE 1164 types

You may only use std_logic, std_logic_vector,
unsigned, enumerated types and arrays of these.

Explanation Although bit, bit_vector and
integer types are built in to VHDL, they are rarely
used for synthesis. Using the IEEE standard types
avoids the need to switch to different types when
additional values (Z, X, -, U) are needed.

File-level comments

As a minimum, each source file must include, near
the start of the file, comments that include: the file
name, a line describing the purpose of the file, the
author’s name and the date.

Explanation These file-level comments allow you
to identify the purpose and source of the code with-
out having to read the contents.

Recommendations

It is also strongly recommended you follow the fol-
lowing guidelines.

Consistent signal naming helps avoid confusion.
The following are widely-recognized conventions:

« append _next to the register output name to de-
rive the name of the register input signal

« append _n to active-low signals
« append _t to type names
« append _out to names of output ports that are

copies of internal signals

2020-02-68 13:04



« append _in to names of input ports that have
a corresponding internal signal (e.g. a synchro-
nized or debounced version)

A consistent indentation style throughout the file
helps spot errors. An end should be indented the
same as its corresponding begin. Beginners often ig-
nore this recommendation and then have problems
spotting trivial errors.

Additional comments next to port and signal dec-
larations and for non-obvious portions of your design
are a good idea. These comments should explain why
you’re doing something rather than repeating what is
obvious from the code. They will help you and others
understand the purpose of each section of code.

Use enumerated types for states to simplify your
code and help the synthesizer optimize your design.



	Requirements
	Synchronous design
	No process statements
	Explicit register input signals
	Only IEEE 1164 types
	File-level comments

	Recommendations

