
ELEX 2117 : Digital Techniques 2
2020 Fall Term

State Machines

This lecture describes how to design state machines and implement them using Verilog.
After this lecture you should be able to: design a state machine based on an informal description of its operation, document
it using state transition diagrams and tables, write a synthesizable Verilog description of it and convert between these three
descriptions.

Introduction

Astatemachine1 is a devicewhose outputs are a func-
tion of previous inputs. A statemachine therefore has
memory. The contents of this memory are called the
“state.”
Devices are often described as state machines. We

will learn to describe state machines and to imple-
ment them using digital logic circuits.

Mealy vs Moore State Machines

There are two types of statemachines. The outputs of
aMoore state machine are a function only of the cur-
rent state while the outputs of aMealy state machine
are also a function of the current inputs:

inputs

D Q
outputs

clock

Mealy only

combinational logic

registered outputs

Moore state machines are simpler but changes to
their outputs are delayed until the next clock edge.
Registered outputs avoid glitches resulting from

different propagation delays through the combina-
tional logic at the output. This is desirable for signals
that go off-chip.
Exercise Which signal in the above diagram represents the

current state?

Exercise Which outputs change on the rising clock edge?

Which change when the input changes?

1An implementable state machine has a finite amount of
memory and is sometimes referred to as a “finite state machine”
(FSM). A state machine that implements a computational algo-
rithm is sometimes called an Algorithmic State Machine (ASM).

Design of State Machines

The following steps can be used to design a Moore
state machine. This initial design may need to be re-
fined by adding or removing states or changing the
transitions conditions until the solutionmeets the re-
quirements.

Step - Inputs and Outputs

The first step is to accurately identify the inputs and
outputs. This is important because the rest of the de-
sign effort will be wasted if necessary inputs or out-
puts are not included in the design.
The outputs will typically be specified by the re-

quirements. You should ensure the selected inputs
are sufficient to provide the desired behaviour.

Step - States

The second step is to identify a sufficient number of
states.
Since the output of a statemachine depends on the

previous inputs we could – in theory – use a shift reg-
ister to store previous inputs and use combinational
logic to compute the current output from the contents
of the shift register and the input. However, in most
cases it’s possible to use a much more concise repre-
sentation of the states.
One approach is to begin by listing all the required

combinations of the outputs. For a Moore state ma-
chine that has only registered outputs each of these
will correspond to a state.
Exercise Why?

However, the outputs of the state machine are of-
ten insufficient to define its operation. In this case
we need to add “hidden” state variables which store
some sort of summary of the past input values.
For example if we are interested in detecting a par-

ticular sequence of input values the state variable

lec4.tex 1 2020-10-15 07:52

may be the number of items in the sequence (e.g. a
password) that have matched thus far. Or if we are
interested in counting the number of times an input
value has appeared then the state variable may be a
counter.
Exams in this course will provide hints on the

choice of state variables when the choice is not ob-
vious.

Step - State Transitions

The final step is to convert the informal description
or specification of the state machine’s behaviour into
a formal description that defines:

(i) all possible state transitions, and

(ii) the input condition(s) required for each of these
transitions.

In the process of defining the transition conditions
you may find that it’s not possible to unambiguously
determine the next output based solely on the current
output and the input. This implies that there are state
variables that are do not appear in the output.
This indicates the need for “hidden” states (two or

more states with the same output) that allow the re-
quired state transitions to be made unambiguously.
The choice of these state variables is described above.

State Machine Descriptions

State machine are typically documented as a state-
transition table or a state-transition diagram.
A state transition table is a truth table with

columns for the initial state, the input condition(s),
and the next state. The output corresponding to each
different state (and inputs for Mealy state machine)
can also be listed in the same or a different table. An
example for a resetable counter with an enable input
might look as follows2:

current
state reset enable next

state
𝑛 0 0 𝑛
𝑛 0 1 𝑛 + 1
𝑛 1 X 0

2Overflow condition omitted.

A state machine with a small number of states can
be described using a state transition (or “bubble”) di-
agram. Each circle represents a different state and ar-
rows represent the state transitions. Each transition
is labelled with the input required for that transition
and each state is labelled with a state name and, for a
Moore state machine, the output for that state.

n n+10

en=1,rst=0 en=1,rst=0

rst=1rst=1

Changes of state are zero-duration events that cor-
respond to the arrows (directed edges) on a state tran-
sition diagram. In a state transition table these events
are defined by a (current state, next state) pair which
are the outputs of a state machine’s state register be-
fore and after the event.
State transition diagrams often omit input condi-

tions that don’t result in a change of state and use X
for “don’t care” input values.

Implementation

State Encodings

In many cases, such as the counter example above,
the state variables are the outputs. This has the ad-
vantage that no additional flip-flops are necessary to
obtain registered outputs.
𝑘 flip-flops can be used to represent an arbitrary 2𝑘

states. For example, 3 flip-flops could encode up to 8
states.
FPGAor CPLDdesigns often use “one-hot” encod-

ings where one flip-flop is used for each state and
only one flip-flop at a time may set to 1. This en-
coding requires more flip-flops but can simplify the
combinational logic.
Exercise If we used -bits of state information how many

states could be represented? What if we used bits of state but

used a “one-hot” encoding?

State Transition and Output Logic

The state transitions are implemented as combina-
tional logic that computes the next state based on the

2

current state and the input. In Verilog this can be
done using assign or always_comb statements.
Outputs that are not represented by state variables

must be computed by combinational logic from the
state and, in the case of a Mealy state machine, the
inputs.
A practical circuit also needs a clock signal and a

reset input. TheFSMwill change state on every rising
edge of the clock and revert to a starting state when
the reset input is asserted. Often the reset is syn-
chronous – it is an input and the circuit transitions
unconditionally to the required state on the next ris-
ing edge of the clock. An example is shown above.

Multiple State Machines

Most systems contain multiple state machines inter-
acting with each other. Each one may have differ-
ent state transition rules and their state transition di-
agrams can be drawn separately.
For example, a multi-digit counter may be de-

signed as a combination of individual single-digit
counters each designed as a state machine with a
terminal-count output and a count-enable input. A
one-digit BCD counter might respond to the transi-
tion from 9 to 0 of the next-lower-order digit.
Another example would be traffic light. The tran-

sitions between light states would be controlled by a
timer which is a state machine. The timer might be
set or reset on a transition between traffic light states.
Exercise The link below describes a game List the top-level

game states Decompose each of these into multiple states Re-

peat

Simon Game

Examples

Counter

In this example the state is the counter output. The
state transition table, the System Verilog model and
simulation waveforms for a 2-bit counter with reset
and enable inputs are shown below.

next
count count
[1] [0] reset enable [1] [0]
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 0 1 0 0
a b 0 0 a b
X X 1 X 0 0

// 2-bit counter with enable and
// synchronous reset

module ex22 (output logic [1:0] count,
input logic enable, reset, clk) ;

logic [1:0] count_next ;

// next-state logic
always_comb begin

if (reset)
count_next = 2'b00 ;

else if (~enable)
count_next = count ;

else
case(count)
2'b00: count_next = 2'b01 ;
2'b01: count_next = 2'b10 ;
2'b10: count_next = 2'b11 ;

default: count_next = 2'b00 ;
endcase

end

// register
always_ff@(posedge clk)
count <= count_next ;

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us

xx 00 01 10 11

00 01 10 11 00

clk=1

count[1:0]=11

count_next[1:0]=00

enable=1

reset=0

Exercise What happens if both reset and enable are asserted?

Exercise Draw the state transition diagram

Exercise Rewrite the state transition table and the module us-

ing n and n+

Sequence Detector

This type of statemachine is used to detect a sequence
of values such as the correct combination entered
into a digital lock. In this case the single-bit “un-
locked” output is not enough state to determine if the
correct sequence has been input.

3

https://www.youtube.com/watch?v=1Yqj76Q4jJ4

This implementation uses a shift register to store
past inputs and combinational logic to detect the re-
quired pattern (1,2,3,4 in this example) in the input.
The output is registered and will be high for one

clock period when the correct sequence is recog-
nized. A practical digital lock would change state
only when a key is pressed (or released) rather than
on every clock edge.

// digit-sequence detector

module ex24 (output logic unlock,
input logic [3:0] digit,
input logic clk) ;

logic [3:0] digits[4], digits_next[4];
logic unlock_next ;

// next-state logic
always_comb begin

for (int i=0 ; i<3 ; i++)
digits_next[i] = digits[i+1] ;

digits_next[3] = digit ;

unlock_next = digits_next ==
'{ 4'd1, 4'd2, 4'd3, 4'd4 } ;

end

// register
always_ff@(posedge clk) begin

digits <= digits_next ;
unlock <= unlock_next ;

end

endmodule

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us 8 us

x 5 1 2 3 4 2

clk=0

digit[3:0]=2

unlock=0

Traffic Lights

This is an example that combines two statemachines:
one to sequence the traffic lights at an intersection
and one to implement delays. The states are encoded
as the on/off values of the (Red, Green, Yellow) lights
in each direction:

R

Y

G

R

Y GR

R

Y

G

R

GR GY

state RG state RY

G

Y

R

G

GY GR

state GR

R

R

G

Y

GY GR

state YR

A package is used to define an enumerated type to
label the four states (rg, ry, gr, and gy) according to
the signal colors in the two directions:

package ex28pkg ;

typedef enum logic [5:0]
// RYG RYG

{ rg=6'b100_001, ry=6'b100_010,
gr=6'b001_100, yr=6'b010_100 }

lightstate ;

endpackage

Delays are implemented by decrementing a counter
on each clock edge. When the counter reaches zero
the state changes and the counter is loaded with the
duration of the next state.
The state transition diagram showing the duration of
each state is:

rg

gr

ryyr

30s

30s 5s

5s

The simulation outputs (with the lights shown in
octal) are shown below:

0 10 us 20 us 30 us 40 us 50 us 60 us 70 us 80 us

42 14 24 41 42 14

clk=0

lights[5:0]=14

The module definition is given below. The state
and counter values are given initial values. On some
technologies, these are the values when a device is
powered up.

// traffic light controller

import ex28pkg::* ;

module ex26 (output lightstate lights,
input logic clk) ;

lightstate state=rg, state_next ;
logic [4:0] count=0, count_next ;

4

// combinational logic
always_comb begin

// next traffic light state
state_next = state ;
if (! count)
case (state)
rg: state_next = ry ;
ry: state_next = gr ;
gr: state_next = yr ;
yr: state_next = rg ;

endcase

// duration of next state (-1)
if (! count)
if (state == rg || state == gr)
count_next = 4 ;

else
count_next = 29 ;

else
count_next = count-1 ;

end

// registers
always_ff@(posedge clk) begin

count <= count_next ;
state <= state_next ;

end

// output
assign lights = state ;

endmodule

Exercise Write the state transition table for each state machine

5

	Introduction
	Mealy vs Moore State Machines
	Design of State Machines
	Step 1 - Inputs and Outputs
	Step 2 - States
	Step 3 - State Transitions

	State Machine Descriptions
	Implementation
	State Encodings
	State Transition and Output Logic

	Multiple State Machines

