
ELEX 2117 : Digital Techniques 2
2020 Fall Term

HDL Idioms

This lecture describes more Verilog features for modelling hardware.
After this lecture you should be able to convert a Verilog description into a block diagram, and convert a block diagram into
a Verilog description.

More Verilog

ReservedWords

Use of reservedwords as Verilog identifiers will cause
syntax errors. These words include some that you
may inadvertently use in your designs such as reg,
table or input. An editor with syntax highlighting
is a convenient way to identify and avoid reserved
words.

Ternary Operator

Verilog’s ternary operator is a concise syntax for de-
scribing a two-way multiplexer. The operator con-
sists of three parts: the condition, the true value and
false value. The result of the operator is the true value
if the condition is non-zero, or the false value other-
wise. For example:

assign y = sel ? a : b ⇔
sel

a

b
y

1

0

would connect either a or b to y depending on the
value of sel. Multiple ternary operators can be used
to concisely describe trees of multiplexers.
Exercise  Draw the schematic corresponding to y = a ? (b

? s1 : s2) : (c ? s3 : s4)

Single-Assignment always_ff Block

You should use the following structure for every reg-
ister:

logic <width> reg, reg_next ;

always_ff@(posedge clk)
reg = reg_next ;

assign reg_next = <expression> ;

regD Qreg_next

clk

This declares a signal with _next appended for each
register (reg in this case). The _next signal is the
input of that register. This may seem excessively ver-
bose but: (a) it provides convenient access to both the

current value (the output) and the next value (the in-
put) of the register, (b) the use of two signals mimics
the hardware and (c) one assignment per always_ff
makes behaviour independent of their order in your
HDL.
Exercise  Which signal is the next value of the register? When

does it become the current state?

Arrays

Variables may have (multiple) “packed” and “un-
packed” dimensions.

Packed dimensions are those given before the sig-
nal name. These bits are stored contiguously
(“packed”) and the packed item can be treated as a
scalar – a single number – in expressions. Packed di-
mensions typicallymodel aword or bit fields within a
word. For example, logic [3:0][7:0] ax ;would
describe a 32-bit word composed of 4 bytes of 8 bits
and ax[3] would be the most-significant byte and
ax[0][7:4] would be the most-significant nybble of
the least-significant byte.

Unpacked dimensions appear after the signal
name. These bits may not necessarily be stored con-
tiguously. Unpacked dimensions model memories
where only one element can be accessed at a time.
For example: logic [7:0] rom [32] ; would
model a 32-byte memory.
In array references, the unpacked dimension(s) are

specified first, followed by the packed dimensions (if
any). For example, rom[31][0] would be the least-
significant bit of the last word in the rom above.

Slices and Concatenation

Part of a packed array (a “slice”) can be referenced
with a range of indices as shown above. Arrays can
also be spliced back together with the concatenation

lec3.tex 1 2020-09-28 13:18

operator ({,}). For example, we can swap the bytes of
a 16-bit word b using: {b[7:0],b[15:8]}.
Array literals (constants) can be defined by group-

ing the individual elements within '{...}. The
quote distinguishes array literal syntax from the syn-
tactically similar concatenation operator.

Logic Values

Four-state types, such as logic, can have four val-
ues: 0 (false), 1 (true), x (unknown) and z (high
impedance). These are used for modeling logic.
A numeric constant can also include x (unknown)

or z (high-impedance) values. These have useful
interpretations for synthesis (don’t-care and high-
impedance respectively) but when used in simula-
tions the result, in most cases, will be unknown (x).
The notations '0 and '1 are convenient abbrevia-

tions for a constant that is all-zeros or all-ones.

Tri-State Outputs

Tri-state outputs (those with high, low and high-
impedance output states) can be modelled using
logic. When such outputs are assigned the value
‘z’ the output is placed in the high-impedance (“tri-
stated”) mode.

Common HDL Idioms

Logic synthesizers such as Quartus convert HDL de-
scriptions into circuits (actually, netlists). They do
this by recognizing a small number of idioms.
You must be able to visualize the hardware that

would be generated by an HDL description in or-
der create efficient designs. This section describes
some commonHDL constructs and their correspond-
ing hardware implementations.

Combinational Logic

The following HDL constructs are typically synthe-
sized as follows:

• logical operators are converted to logic gates as
you would expect.

• arithmetic and comparison operators are con-
verted to blocks of combinational logic imple-
menting the required operation.

• access to a value in an unpacked array is a im-
plemented as read-only memory (ROM). Access
to bits in packed arrays is implemented as a con-
nection to specific bits.

• ternary operators, if/else and case statements
are converted into multiplexers; nested as nec-
essary

• an output to which ‘z’ can be assigned is con-
verted to a tri-state output.

Exercise  Using the schematic symbols shown below convert

each of the following SystemVerilog expressions into a schematic

D Qop

addr. data

oe

[3:0]

[7:4][7:0]

y = a ^ b ;

y = a < b ;

y = y+1 ;

y = a[3] ;

y = a[3] ? 4 : a[2] ? 3 : a[1] ? 2 :
a[0] ? 1 : 0;

y = table[x] ;

if (y < b)
y = y+1 ;

else
y = y-1 ;

y = oe ? d : 16'hzzzz ;

Sequential Logic

The following HDL constructs are synthesized as fol-
lows:

2

• always_ff blocks with sensitivity lists contain-
ing signal edges (@(posedge...)) are converted
to registers. The signals assigned to within the
always_ff block are the register outputs.

• combinational logic that computes the values
assigned to register inputs is used to describe
specialized sequential logic such as counters
and shift registers. The register’s current value
is often used to compute the next value.

Exercise  Using the schematic symbols shown above convert

each of the following SystemVerilog expressions into a schematic

always_ff@(posedge clk)
y = a ;

always_ff@(posedge clk)
y[7:0] = {y[6:0],a} ;

always_ff@(posedge clk)
if (e)

y = a ;
else

y = y ;

always_ff@(posedge clk)
if (r)
y = '0 ;

else
if (e)

y = y+1'b1 ;
else

y = y ;

next = (reset || done) ? '0 : cnt+'b1 ;

always_ff@(posedge clk)
if (falling)

mosi = sr[31] ;

always_ff@(posedge clk)
cnt = cnt_next ;

// logic [31:0] mem [15:0]
always_ff@(posedge clk) begin

mem[p] = din ;

// logic [31:0] mem [15:0]
dout = mem[p] ;

p_next = valid && rdy ? p + 1'b1 : p ;

// i, j are logic[4:0]; w, sclk are logic
nxt = w ? 5'd7 : (j==N && sclk) ? i-1 : i ;

readdata = {31'b0,csn} ; // csn is logic

crc = ^ (g&sr) ; // g and sr are logic[31:0]

nxt = ~d[8] ;

Schematics to HDL

It’s also important to be able to write the HDL that
will result in a specific hardware architecture.
Each circuit element is converted into the corre-

sponding HDL construct and named signals are used
to connect them according to the circuit topology.
Exercise  Write System Verilog that would generate each of

the following schematics Include any required signal declarations

(using logic)

a

b

a!=b

3

3

x

y

z

d

c

1

3

4
+

A D
c

[0]

[1]

[2]

r

h

g

4
s

clk

16x3 ROM

2-to-4 decoder

D3

D2

D1

D0

2

a

b
c

d

x

oe

1616

oen

a ab

D Q

clk

d q

S

D

R

Q

Q

4

4

4

4

4

s

d

r

q

q_n

clk

3

125
8

0

1
8

+

1
D Q

8

clk

p[i]

q[i] 0

1
0

1
D Q

l h clk

q[i]

D Q

clk

ud

a

b

a<b

a

b

a<b

a

b

a>b

4

12

4
c

0
1

D Q1
+

1
-

0

1
0

1

0

1

ud

clk

4
c

D Q
q[i]d[i]

D Q
q[0]d[0]

D Q

q[N-1]d[N-1]

clk

soutsin

N stages

4

	More Verilog
	Reserved Words
	Ternary Operator
	Single-Assignment alwaysff Block
	Arrays
	Slices and Concatenation
	Logic Values
	Tri-State Outputs

	Common HDL Idioms
	Combinational Logic
	Sequential Logic

	Schematics to HDL

