
ELEX 2117 : Digital Techniques 2
2020 Fall Term

SPI Interface

Version 2: corrected timing diagram.

Introduction

The Serial Peripheral Interface (SPI) is a synchronous
serial interface often used to communicate between
a microcontroller (acting as the “master”) and a pe-
ripheral IC (the “slave”). The interface uses a clock
(SCLK), a slave-select (SS) and serial input and/or
output signals (MISO and MOSI).
In this lab you will design and implement an SPI

master interface to transmit and receive four BCD
digits (16 bits).
You will use the Analog Discovery 2 (AD2) oscillo-

scope, logic analyzer and SPI protocol analyzer func-
tions to display the waveforms and data. The trans-
mitted and received data will be displayed on the
four-digit 7-segment display used in previous labs.
A suggested implementation is given that consists

of two state machines: a controller and a datapath.
The controller is based on an binary counter and the
datapath on a shift register.

Specifications

Your design should have a 50 MHz clock input, out-
puts to drive a 4-digit 7-segment multiplexed LED
display as in previous labs, an SPI master interface
and two pushbutton inputs.
Pressing the reset button loads the data shift reg-

ister with a secret number that is different for each
student. You can retrieve this value from the Grades
section of the course web site. Sharing this value will
result in disciplinary action.
When the transmit button is pushed, ss_n is as-

serted and the 16 bits in the data register are trans-
mitted serially, most-significant-bit first, over mosi at
1MHzor less and 16 bits are received over miso. mosi
should change on the falling edge of sclk and the
value of miso should be captured on the rising edge
of sclk (this is the CPOL=0, CPHA=0 format).
The contents of the data shift register – the secret

number when reset is pressed and the received 16-

bit value after that— should be displayed on the four-
digit LED display.
Your design should have a test output, mosi_n, that

is the inverted MOSI output. This signal will be con-
nected to the MISO input to demonstrate the receive
function.

Suggested Solution

Interface

You can download aQuartus project archive from the
course web site that includes a lab7.sv Verilog file
with the following module declaration:

module lab7
(input logic clock, // 50 MHz clock

input logic reset_in, transmit_in, // reset, send
↪ buttons

output logic [3:0] en, // digit enables
output logic a, b, c, d, e, f, g, dp, // segments
output logic ss_n, sclk, mosi, // SPI master
output logic mosi_n, // MISO test

↪ output
input logic miso_in // MISO input
) ;

Controls

The two pushbutton inputs should be debounced.
The transmit input should be registered so you

can detect a rising edge by comparing the flip-flop in-
put and output. For example:

debounce db0 (transmit_in, clock, transmit_next);
always_ff @(posedge clock) transmit = transmit_next ;

...
assign ... = !transmit && transmit_next ? ... : ... ;

Controller

A counter can be used as the controller statemachine
because this SPI interface always goes through the
same sequence of states.

lab7.tex 1 2020-11-12 15:39

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Clock_polarity_and_phase

The solution described here uses an 11-bit binary
counter that combines four counters: the most sig-
nificant bit is a sign bit, the next 4-bits count the data
bits, one bit serves as the serial clock, and the least
significant 5 bits divide the clock rate by 32:

ss

10 9..6

 bit
count

sclk

5

 clock
divider

4..0

On a rising edge of transmit the counter is loaded
with 16 × 64− 1 (11'b011_1111_1111). The counter
value is decremented once per clock period until it
“wraps around” to −1.

Bit 10 is connected to ss_n. It loaded with 0 and
when the counter “wraps around” to -1 it becomes 1.

Bits 9 to 6 is the number of bit being sent. It is
loaded with 15 (4'b1111) and decrements down to
0.

Bit 5 is inverted and connected to sclk. It is
loaded with 1 and decremented (inverted) at a rate of
50/32 ≈ 1.56MHz, creating a clock with a frequency
of about 781 kHz.

Bits 4 to 0 These “clock divider” bits are loaded
with 31 (5'b11111) and are decremented at the clock
rate (50 MHz).
The following timing diagram shows the relation-

ship between the clock divider bits, sclk, the bit
counter bits and ss_n.

ss_n

 bit
counter

15 14 0

sclk

01
 clock
divider

transmit

mosi, miso d[15] d[14] d[0]

4..0

5

9..6

10

b
it

s

0

0 0

1

1 1

1

1515

313031

Datapath

The miso input is registered (loaded into a flip-flop)
on the rising edge of sclk:

logic miso, miso_next ; // registered MISO input
assign miso_next = !sclk && sclk_next ? miso_in : miso ;
always @(posedge clock) miso = miso_next ;

This allows miso_in to be captured on the rising
edge of sclk before being shifted into the data regis-
ter on the falling edge of sclk.
The 16-bit shift register (labelled d in the timing

diagram) is loaded with the student-specific secret
number when reset is asserted. On the falling edge
of sclk the shift register is shifted left by one bit and
the registered value of miso (see above) is shifted into
the least-significant bit.

Hints

The pushbutton inputs should be debounced. You
can use the debounce module made available in the
previous lab.
To detect rising or falling edges, compare the cur-

rent and _next values of a register. For example, if
sclk is a register’s output and sclk_next is its in-
put, then sclk && !sclk_next is true only during
the clock period before falling edge of sclk.
Remember that the coding guidelines only allow

one signal to be used as a clock. You cannot use
any of these other signals in the sensitivity lists of
always statements (for example, you cannot use
@posedge(sclk)).

Components

You will need the same components as in the previ-
ous labs that used the 7-segment LED display, two
pushbutton switches and the AD2.

CPLD I/O

The connections to the CPLD are shown in the fol-
lowing schematic:

2

a,b ... g

en[3:0]

D1 D2 D3 D4

a b c d e f g

4

7

LD5643BR

en[3] en[0]
lab7

200x7

reset_in

transmit_in

ss_n

sclk

mosi

clock

miso_in

mosi_n

200

200

SS

SCLK

MOSI

MISO

The pin assignments for the LED display are the
same as in the previous lab. Use internal pull-up re-
sistors on the reset and transmit pushbutton in-
puts. The four SPI interface pins are connected to
the breadboard so that they can be monitored with
the AD2 analog (’scope) or digital inputs. The pin as-
signments are shown below:

The wiring to the 7-segment LED, the pushbut-
tons, the SPI interface signals and the AD2 test leads
is shown below:

and the connections to the CPLD pin headers are
shown below:

The series resistors on sclk and ss_n terminate
these signals and reduce ringing that can cause false
triggering.

Use of AD2

You can use the AD2 scope, logic analyzer and pro-
tocol windows for troubleshooting and to verify the
operation of your design.
The two scope channels can be connected to the

pushbutton inputs or the SPI signals to verify the volt-
age levels and check for signal integrity issues such
as noise, glitches or ringing. You can trigger on the
falling edge of ss_n to capture one transfer. The fol-
lowing example shows the sclk on channel 1 and
mosi on channel 2 along with a measurement of the
sclk period:

3

a~reg0

D

CLK

SCLR
1'h0

Q a

b~reg0

D

CLK

SCLR
1'h0

Q b

count_next~[11..1]
0

1
+

Add0CIN1'h0

A[11..0]

B[11..0]12'hffd

OUT[11..0]

c

c~reg0

D

CLK

SCLR
1'h0

Q

dp~reg0

D
1'h1

CLK

SCLR
1'h0

Q dp

d~reg0

D

CLK

SCLR
1'h0

Q d

data_next[15..0]
0

116'h1234
y

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

DATAIN[6..0]
7'h0

WADDR[3..0]
4'h0

RADDR[3..0]

DATAOUT[6..0]

count_next[10..0]
0

111'h3ff

data_next~[16..1]
0

1

Mux3

SEL[1..0]

DATA[3..0]
OUT

count_next~0

data_next~0

reset_in

ss_ndebounce:db1

sw_in

clk sw

transmit

D

CLK

SCLR
1'h0

Q

miso_next
miso_in

miso

D

CLK

ENA

SCLR
1'h0

Q

Mux0

SEL[1..0]

DATA[3..0]
OUT

clock

count[10..0]

D

CLK

SCLR
11'h0

Q

debounce:db0

sw_in

clk sw

transmit_in

Mux1

SEL[1..0]

DATA[3..0]
OUT

data[15..0]

D

CLK

SCLR
16'h0

Q

sclk~reg0

D

CLK

SCLR
1'h0

Q sclk

+

Add1CIN1'h0

A[15..0]

B[15..0]16'h1

OUT[15..0]

x[15..0]

D

CLK

SCLR
16'h0

Q

Mux2

SEL[1..0]

DATA[3..0]
OUT

mosi

<<

ShiftLeft0SHIFTIN1'h0

A[3..0]4'h1

COUNT[1..0]

OUT[3..0]

mosi_n~not

mosi_n

en[0]~reg[3..0]

D

CLK

SCLR
4'h0

Q en[3..0]

e~reg0

D

CLK

SCLR
1'h0

Q e

f~reg0

D

CLK

SCLR
1'h0

Q f

g~reg0

D

CLK

SCLR
1'h0

Q g

6

5

4

3

2

1

0

15:14

15:14

15:14

15:14

15:14

0:
14

12,8,4,0

15,11,7,3

14,10,6,2

13,9,5,1
15

15

5

5

5

10
:0

11
{1

0}

0:
9

10

Figure 1: Example RTL Schematic for Lab 7.

The logic analyzer can be used to display digital
signals. It can display bus values (not used here) and
multi-bit serial signals. The example below uses a
configuration called “SPIMOSI/MISO”which shows
the transmitted and received serial data. The trigger
(T column) has been set to the falling edge of the Se-
lect signal and the MOSI bit width has been set to 4
bits:

The protocol analyzer decodes more complex pro-
tocols such as those including device addresses and
variable-length fields (neither used here). The fol-
lowing screen captures show the SPI decoding when
a 16-bit value is transmitted and its complement is re-
ceived three times:

You can troubleshoot your design by defining extra
CPLD pins as outputs and connecting these to digi-
tal inputs of the AD2. This allows the logic analyzer

to monitor other signals in your design. For exam-
ple, you can output the controller counter value or
the datapath shift register to see if they’re behaving
as you expect.
Note that you need to connect the twoAD2 ground

pins (the two black wires) and the two ’scope invert-
ing inputs (blue and orange with white stripes) to the
ground bus on your breadboard.
The default connections for the logic analyzer SPI

MOSI/MISO and the SPI protocol analyzer are:

CPLD
Pin

AD2
Signal

Lead
Color

SPI
Signal

1 DIO0 pink SS_N
3 DIO1 green SCLK
5 DIO2 violet MOSI
7 DIO3 brown MISO

Note: There seems to be a conflict between the
AD2 and the USB-Blaster drivers. You may need
to disconnect the AD2 each time you program
the CPLD.

Submission

To get credit for completing this lab, submit the fol-
lowing to the Assignment folder for this lab on the

4

https://forum.digilentinc.com/topic/8797-analog-discovery-2-and-altera-usb-blaster-conflict/

course website:

1. A PDF document containing:

• Your name, BCIT ID, course number and
lab number.

• A listing of your System Verilog file. You
need not include the debounce.sv file.
You must follow the coding guidelines
given on the “Course Information” section
of the course website. Note that these may
have changed.
The listing should be included as text
rather than an image.

• a screen capture of your compilation re-
port (Window > Compilation Report) similar
to: this:

• screen captures of the AD2 ’scope, logic
analyzer and protocol analyzer similar to
those shown above and demonstrating the
operation of your interface.

2. The PDF file containing the schematic created
by Tools > Netlist Viewers > RTL Viewer, and then
File > Export... . The file should look similar to
Figure 1.

3. A video of your breadboard showing:

• your secret number being loadedwhen the
reset button is pushed

• the complemented value being displayed
when the transmit button is pushed

• the original value being displayed when
the transmit button is pushed again

5

	Introduction
	Specifications
	Suggested Solution
	Interface
	Controls
	Controller
	Datapath
	Hints

	Components
	CPLD I/O
	Use of AD2
	Submission

