
ELEX 2117 : Digital Techniques 2
2020 Fall Term

Combinational Logic Design with Verilog

Please read and follow the course Verilog Coding Guidelines when writing your solution.

Introduction

This lab introduces logic synthesis using Verilog. You
will need the following from your ELEX 1117 parts
kit:

• solderless breadboard
• EPM240T100C5CPLDboard, ByteBlaster JTAG
interface and coaxial power connector,

• a 7-segment LED
• a 1 kΩ resistor
• two SPDT pushbutton switches and machine-
pin DIP socket for mounting the switches (two
SPST N.O. switches will also work)

• 11 pin-header jumpers

Circuit Description

The following block diagram shows how the push-
button switches and LED are connected to the CPLD:

CPLD

x[0]

x[1]
7-seg
 LED

3V3

a..g

1k

The two pushbuttons, x[0] and x[1], are the in-
puts to your design. The seven LED segments, la-
belled a through g are the outputs. All signals are
active-low1. The two inputs will be configured with
internal pull-up resistors.
Your circuit should display the last four digits of

your BCIT ID when the switch inputs, treated as a
binary number, have values of 0 through 3. For ex-
ample, if you BCIT ID is A00123456 then when both
switches are false (not pressed) the LED should show

1Active-low means an input or output is at a low logic level
when it’s true. We will consider a switch to be “true” when
pressed and an LED segment is “true” when lit.

3 and when x[0] is active (low) and x[1] is not true
(high) then the LED should show 4, etc. The truth
table defining the input-to-output relationship for an
ID of A00123456 is:

x[1] x[0] LED
0 0 3
0 1 4
1 0 5
1 1 6

Note that the table above shows the logical values
of x. This means that a 1 indicates “true” which cor-
responds to a low logic level. Verilog uses the values 0
and 1 for low and high logic levels respectively when
specifying input and output values. But it also uses
0 and 1 for arithmetic and truth values. This can be
confusing so you need to pay attention to the context.

CPLD I/O

The tables and photos below showhow theCPLD can
be connected to the switches and the LED.
The internal pull-up resistor and the N.O. (nor-

mally open) pushbutton switch contacts will result in
a low logic level when a button is pressed. Mount the
pushbuttons on a machined-pin DIP socket to secure
it.
I connected the LED segments to the CPLD using

the bottom row of pins on connector P2:

wire
color

CPLD
pin

seg-
ment

LED
pin

black (0) 30 e 1
brown (1) 34 d 2

red (2) 36 c 4
green (5) 42 b 6
blue (6) 44 a 7
violet (7) 48 f 9
gray (8) 50 g 10

The pushbutton switches are connected to pins 99
and 97 on connector P4 at the top left of the CPLD
board:

lab1.tex 1 2020-09-14 23:34

wire
color

CPLD
pin switch

violet (7) 99 x[1]
blue (6) 97 x[0]

The conventional segment labelling and the
pinouts for the LED in your parts kit is shown below:

f

e

a

g

d

b

c

10

12 5

6789

34

a bfg

c .de

com

com

The display in your parts kit2 has a common an-
ode. This pin should be connected to the 3.3 V supply
(available on pin labelled +3.3 at the top right of the
CPLD board) through a 1 kΩ resistor3.
The connections to the switches and LED on my

breadboard are shown below.

2Datasheet on course web site.
3Typically a current-limiting resistor is used on each segment

to obtain the same brightness regardless of the number of seg-
ments that are lit. But for our purposes one resistor will do.

Procedure

Follow the general procedure inAppendixA to create
a project, compile it and configure your CPLD. Con-
nect the CPLD board to the switches and LED. Test
your design and fix any errors.

Internal Pull-Up Resistors

In step 6 you’ll also need to configure internal pull-up
resistors on the two input pins. Open theAssignment
Editor (Assignments > Assignment Editor). Double-
click on «new» in the To column and enter the pin
name (x[0]). Select Weak Pull-Up Resistor from the
drop-down menu in the Assignment Name column.
Select On from the drop-down menu in the Value col-
umn. Repeat for x[1].
If you used the pin assignments above you should

end up with the following:

Hints

It might be helpful to prepare a table showing the
switch input levels and the segment output levels.
For the example above:

x[1] x[0] digit a b c d e f g hex
1 1 3 0 0 0 0 1 1 0 06
1 0 4 1 0 0 1 1 0 0 4c
0 1 5 0 1 0 0 1 0 0 24
0 0 6 0 1 0 0 0 0 0 20

Verilog has a concatenation operator ({,}) that
can be used in the target of an assignment as
well as part of an expression. For example,
assign {a,b,c} = 3'b011 ; assigns 0 to a and 1 to
b and c.
Follow the Verilog Coding Guidelines as found on

the course website.

2

Submissions

To get credit for completing this lab, submit the fol-
lowing to the Assignment folder for Lab 1 on the
course website:

1. A PDF document containing:

• Your name, BCIT ID, course number and
lab number.

• A listing of your Verilog code. You must
follow the coding guidelines given on
the “Course Information” section of the
course website.
The listings should be easy to read. For ex-
ample, follow one of the suggestions in the
document on the courseweb site under Re-
sources > Other > Including Code in Reports.

• a screen capture of your compilation re-
port (Window > Compilation Report) similar
to this:

2. A video showing the pushbuttons and the LED
display as you test the four pushbutton states.
The LED should, of course, show the last four
digits of your BCIT ID in order. It should
take less than 10 seconds to go through all four
switch combinations.

A Logic Synthesis with Quartus

1. start Quartus

2. select File> New... > New Quartus Prime Project>
OK

3. in the dialog boxes that follow: select a new
folder for your lab (e.g. C:\ELEX2117\lab1),
enter a project name (e.g. lab1), select
an empty project, don’t add any files, select

the Max II Family, select the specific device
EPM240T100C5, and leave other settings at their
defaults

4. add any existing design files using Project >
Add/Remove Files in Project..., or create new ones
using File > New... > System Verilog HDL File.
One of the files must have a module with the
top-level name specified above (in this example,
lab1). The port names of thismodulewill corre-
spond to the names assigned to the CPLD’s pins.

5. after all the design files have been created and
added to the project, select Processing > Start
Compilation. Correct any errors and recompile
as necessary

6. select Assignments > Pin Planner and select the
correct pin in the Location drop-down box for
each I/O pin. Note that you must compile the
project before the pin names are visible in Pin
Planner. Recompile the project (Processing >
Start Compilation) for the assignments to take ef-
fect.

7. connect the CPLD board’s coaxial power con-
nector to a USB port and use the pushbutton on
the board to turn on the power (the power LED
should go on). Connect the “USB Blaster” to the
CPLD and a free USB port. The POWER and ACT
lights on the USB-Blaster should turn on.

8. select Tools > Programmer, click on Hardware
Setup..., select USB-Blaster from the drop-down
and Close. USB-Blaster should appear next to
Hardware Setup...

9. if necessary, click on Add File.., navigate to the
location of the generated .pof file (typically in
the output_files folder of the project folder)
and select the .pof file

10. check that the Program/Configure checkboxes are
checked and press Start to program the device.
The progress bar should show 100%.

11. test your design.

3

	Introduction
	Circuit Description

	CPLD I/O
	Procedure
	Internal Pull-Up Resistors

	Hints
	Submissions
	 Logic Synthesis with Quartus

