Design of High-Performance Filter Banks for Image Coding

Di Xu Michael D. Adams

Dept. of Elec. and Comp. Engineering University of Victoria, Canada

IEEE Symposium on Signal Processing and Information Technology, 2006

Outline

Di Xu, Michael Adams (UVic)

◆□ > ◆母 > ◆臣 > ◆臣 > 臣目目 のへで

Outline

Background Information

2 Design Method

3 Experimental Results

4 Summary

• perfect reconstruction

- Iinear phase
- high coding gain (two models)
- good frequency selectivity
- certain vanishing moment

- perfect reconstruction
- Inear phase
- high coding gain (two models)
- good frequency selectivity
- certain vanishing moment

- perfect reconstruction
- Iinear phase
- high coding gain (two models)

$$G_{\text{SBC}} = \prod_{k=0}^{L-1} (\frac{\alpha_k}{A_k B_k})^{\alpha_k}, \quad \text{where}$$
$$A_k = \sum_{m \in \mathbb{Z}} h'_{hk}(m) \sum_{n \in \mathbb{Z}} h'_{vk}(n) \sum_{p \in \mathbb{Z}} h'_{hk}(p) \sum_{q \in \mathbb{Z}} h'_{vk}(q) r(m-p, n-q),$$
$$B_k = \alpha_k \sum_{m \in \mathbb{Z}} g'^2_{hk}(m) \sum_{n \in \mathbb{Z}} g'^2_{vk}(n), \qquad \alpha_k \text{is sampling factor,}$$

$$r(\mathbf{x}, \mathbf{y}) = \begin{cases} \rho^{|\mathbf{x}| + |\mathbf{y}|} \\ \rho^{\sqrt{\mathbf{x}^2 + \mathbf{y}^2}} \end{cases}$$

for separable model for isotropic model,

- good frequency selectivity
- certain vanishing moment

(0)

- perfect reconstruction
- Iinear phase
- high coding gain (two models)
- good frequency selectivity
- certain vanishing moment

- perfect reconstruction
- Iinear phase
- high coding gain (two models)
- good frequency selectivity
- certain vanishing moment

- perfect reconstruction
- Iinear phase
- high coding gain (two models)
- good frequency selectivity
- certain vanishing moment

Problems? Difficult to obtain all properties Difficult to obtain a good tradeoff

<ロ> < 同> < 同> < 日> < 同> < 日> < 回> < のへの

Background Information

2 Design Method

3 Experimental Results

4 Summary

Filter Bank Design for Image Coding

Di Xu, Michael Adams (UVic)

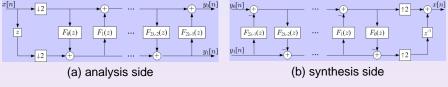


Figure: The lifting realization of a 1-D two-channel filter bank.

- perfect reconstruction
- Iinear phase
- high coding gain
- good frequency selectivity
- certain vanishing moment

 \Rightarrow easily imposed by lifting realization

 \Rightarrow properties left to design

< < >> < <</>

→ ∃ → < ∃</p>

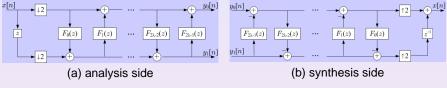


Figure: The lifting realization of a 1-D two-channel filter bank.

- perfect reconstruction
- Iinear phase

 \Rightarrow easily imposed by lifting realization

- high coding gain
- good frequency selectivity
- certain vanishing moment

 \Rightarrow properties left to design

< 口 > < 同 > < 三 > < 三 >

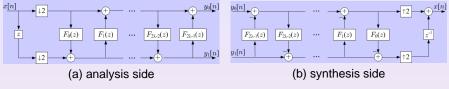
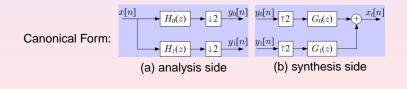


Figure: The lifting realization of a 1-D two-channel filter bank.



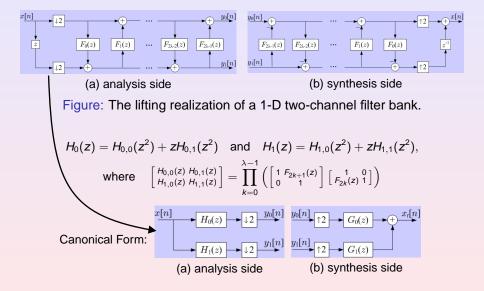
Di Xu, Michael Adams (UVic)

Filter Bank Design for Image Coding

ISSPIT'06 6 / 21

-

< E



Constrained Optimization

Objective function:

$$G(\mathbf{x}) = egin{cases} G_{ ext{sep}}(\mathbf{x}) & ext{separable onl} \ G_{ ext{iso}}(\mathbf{x}) & ext{isotropic only} \ \min\{G_{ ext{sep}}(\mathbf{x}), G_{ ext{iso}}(\mathbf{x})\} & ext{joint.} \end{cases}$$

Stopband energy: $b_k(\mathbf{x}) \triangleq \int_{S_k} |\hat{h}_k(\omega, \mathbf{x})|^2 d\omega, \quad k \in \{0, 1\}.$

Moment functions: $c_k(\mathbf{x}) \triangleq \|\mathbf{m}_k(\mathbf{x})\|, k \in \{1, 2, \dots, n\}.$

Abstract Optimization Problem

 $\begin{array}{ll} \mbox{maximize} & G(\pmb{x}) \\ \mbox{subject to:} & b_k(\pmb{x}) \leq \varepsilon_k, \ k \in \{0,1\} \ \mbox{and} \\ & c_k(\pmb{x}) \leq \gamma_k, \ k \in \{1,2,\ldots,n\}. \end{array}$

Details for Different Objective Functions

・ロト・日本・ ・ヨト・ 日本・ ショー

Highly Nonlinear \rightarrow Iterative SOCP Algorithm

- reduce order at an operating point x by using Taylor series approximation \Rightarrow functions of δ
- impose an additional constraint, s.t. δ is small
- solve the second-order cone programming (SOCP) problem
- update operating point $\mathbf{x} = \mathbf{x} + \mathbf{\delta}$
- go to step 1, unless algorithm converges

 $\nabla^T G(\mathbf{x}) \boldsymbol{\delta}$ maximize subject to: $\|\mathbf{Q}_{\iota}^{1/2}(\mathbf{x})\delta + \mathbf{q}_{k}(\mathbf{x})\| \leq \varepsilon_{k} - b_{k}(\mathbf{x})$ $+\boldsymbol{q}_{k}^{T}(\boldsymbol{x})\boldsymbol{q}_{k}(\boldsymbol{x}), \ k \in \{0,1\},\$ $\|\nabla^{\mathsf{T}}\boldsymbol{m}_{k}(\boldsymbol{x})\boldsymbol{\delta}+\boldsymbol{m}_{k}(\boldsymbol{x})\|<\gamma_{k},$ $k \in \{1, 2, \ldots, n\}$, and $\|\boldsymbol{\delta}\| \leq \beta,$ where $\mathbf{Q}_k(\mathbf{x}) = \int_{S_k} \nabla_{\mathbf{x}} \hat{h}_k(\omega, \mathbf{x}) \nabla_{\mathbf{x}}^T \hat{h}_k(\omega, \mathbf{x}) d\omega,$ $oldsymbol{q}_k(oldsymbol{x}) = oldsymbol{Q}_k^{-1/2}(oldsymbol{x}) \int_{S_k} \hat{h}_k(\omega,oldsymbol{x})$ $\nabla_{\mathbf{x}}^{\mathsf{T}} \hat{h}_k(\omega, \mathbf{x}) d\omega.$

Highly Nonlinear \rightarrow Iterative SOCP Algorithm

- reduce order at an operating point \boldsymbol{x} by using Taylor series approximation \Rightarrow functions of $\boldsymbol{\delta}$
- **2** impose an additional constraint, s.t. δ is small
- solve the second-order cone programming (SOCP) problem
- update operating point $\boldsymbol{x} = \boldsymbol{x} + \boldsymbol{\delta}$
- go to step 1, unless algorithm converges

 $\nabla^T G(\mathbf{x}) \boldsymbol{\delta}$ maximize subject to: $\|\mathbf{Q}_{k}^{1/2}(\mathbf{x})\mathbf{\delta}+\mathbf{q}_{k}(\mathbf{x})\| < \varepsilon_{k}-b_{k}(\mathbf{x})$ $+ \boldsymbol{q}_{k}^{T}(\boldsymbol{x}) \boldsymbol{q}_{k}(\boldsymbol{x}), \ k \in \{0, 1\},\$ $\|\nabla^T \boldsymbol{m}_k(\boldsymbol{x}) \boldsymbol{\delta} + \boldsymbol{m}_k(\boldsymbol{x})\| < \gamma_k,$ $k \in \{1, 2, \ldots, n\}$, and $\|\boldsymbol{\delta}\| < \beta$, where $\mathbf{Q}_k(\mathbf{x}) = \int_{\mathbf{S}} \nabla_{\mathbf{x}} \hat{h}_k(\omega, \mathbf{x}) \nabla_{\mathbf{x}}^T \hat{h}_k(\omega, \mathbf{x}) d\omega,$ $oldsymbol{q}_k(oldsymbol{x}) = oldsymbol{Q}_k^{-1/2}(oldsymbol{x}) \int_{S_k} \hat{h}_k(\omega,oldsymbol{x})$ $\nabla_{\mathbf{x}}^{\mathsf{T}} \hat{h}_k(\omega, \mathbf{x}) d\omega.$

Highly Nonlinear \rightarrow Iterative SOCP Algorithm

- reduce order at an operating point \boldsymbol{x} by using Taylor series approximation \Rightarrow functions of $\boldsymbol{\delta}$
- impose an additional constraint, s.t. δ is small
- solve the second-order cone programming (SOCP) problem
- update operating point $\mathbf{x} = \mathbf{x} + \mathbf{\delta}$
- go to step 1, unless algorithm converges

 $\nabla^T G(\mathbf{x}) \boldsymbol{\delta}$ maximize subject to: $\| oldsymbol{Q}_{\iota}^{1/2}(oldsymbol{x}) \delta + oldsymbol{q}_k(oldsymbol{x}) \| \leq arepsilon_k - b_k(oldsymbol{x})$ $+ \boldsymbol{q}_{k}^{T}(\boldsymbol{x}) \boldsymbol{q}_{k}(\boldsymbol{x}), \ k \in \{0, 1\},\$ $\|\nabla^T \boldsymbol{m}_k(\boldsymbol{x}) \boldsymbol{\delta} + \boldsymbol{m}_k(\boldsymbol{x})\| < \gamma_k,$ $k \in \{1, 2, \ldots, n\}$, and $\|\boldsymbol{\delta}\| < \beta$, where $\mathbf{Q}_k(\mathbf{x}) = \int_{\mathbf{S}} \nabla_{\mathbf{x}} \hat{h}_k(\omega, \mathbf{x}) \nabla_{\mathbf{x}}^T \hat{h}_k(\omega, \mathbf{x}) d\omega,$ $oldsymbol{q}_k(oldsymbol{x}) = oldsymbol{Q}_k^{-1/2}(oldsymbol{x}) \int_{S_k} \hat{h}_k(\omega,oldsymbol{x})$ $\nabla_{\mathbf{x}}^{\mathsf{T}} \hat{h}_k(\omega, \mathbf{x}) d\omega.$

Highly Nonlinear \rightarrow Iterative SOCP Algorithm

- reduce order at an operating point \boldsymbol{x} by using Taylor series approximation \Rightarrow functions of $\boldsymbol{\delta}$
- impose an additional constraint, s.t. δ is small
- solve the second-order cone programming (SOCP) problem
- update operating point $\boldsymbol{x} = \boldsymbol{x} + \boldsymbol{\delta}$
- go to step 1, unless algorithm converges

 $\nabla^T G(\mathbf{x}) \boldsymbol{\delta}$ maximize subject to: $\| oldsymbol{Q}_{\iota}^{1/2}(oldsymbol{x}) \delta + oldsymbol{q}_k(oldsymbol{x}) \| \leq arepsilon_k - b_k(oldsymbol{x})$ $+\boldsymbol{q}_{k}^{T}(\boldsymbol{x})\boldsymbol{q}_{k}(\boldsymbol{x}), \ k \in \{0,1\},\$ $\|\nabla^T \boldsymbol{m}_k(\boldsymbol{x}) \boldsymbol{\delta} + \boldsymbol{m}_k(\boldsymbol{x})\| < \gamma_k,$ $k \in \{1, 2, \ldots, n\}$, and $\|\boldsymbol{\delta}\| < \beta$, where $\mathbf{Q}_k(\mathbf{x}) = \int_{\mathbf{S}} \nabla_{\mathbf{x}} \hat{h}_k(\omega, \mathbf{x}) \nabla_{\mathbf{x}}^T \hat{h}_k(\omega, \mathbf{x}) d\omega,$ $oldsymbol{q}_k(oldsymbol{x}) = oldsymbol{Q}_k^{-1/2}(oldsymbol{x}) \int_{S_k} \hat{h}_k(\omega,oldsymbol{x})$ $\nabla_{\mathbf{x}}^{\mathsf{T}} \hat{h}_k(\omega, \mathbf{x}) d\omega.$

Highly Nonlinear \rightarrow Iterative SOCP Algorithm

- reduce order at an operating point \boldsymbol{x} by using Taylor series approximation \Rightarrow functions of $\boldsymbol{\delta}$
- impose an additional constraint, s.t. δ is small
- solve the second-order cone programming (SOCP) problem
- **(**) update operating point $\mathbf{x} = \mathbf{x} + \mathbf{\delta}$
- go to step 1, unless algorithm converges

 $\nabla^T G(\mathbf{x}) \boldsymbol{\delta}$ maximize subject to: $\| oldsymbol{Q}_{\iota}^{1/2}(oldsymbol{x}) \delta + oldsymbol{q}_k(oldsymbol{x}) \| \leq arepsilon_k - b_k(oldsymbol{x})$ $+\boldsymbol{q}_{k}^{T}(\boldsymbol{x})\boldsymbol{q}_{k}(\boldsymbol{x}), \ k \in \{0,1\},\$ $\|\nabla^T \boldsymbol{m}_k(\boldsymbol{x}) \boldsymbol{\delta} + \boldsymbol{m}_k(\boldsymbol{x})\| < \gamma_k,$ $k \in \{1, 2, \ldots, n\}$, and $\|\boldsymbol{\delta}\| < \beta$, where $\mathbf{Q}_k(\mathbf{x}) = \int_{S_k} \nabla_{\mathbf{x}} \hat{h}_k(\omega, \mathbf{x}) \nabla_{\mathbf{x}}^T \hat{h}_k(\omega, \mathbf{x}) d\omega,$ $oldsymbol{q}_k(oldsymbol{x}) = oldsymbol{Q}_k^{-1/2}(oldsymbol{x}) \int_{S_k} \hat{h}_k(\omega,oldsymbol{x})$ $\nabla_{\mathbf{x}}^{\mathsf{T}} \hat{h}_k(\omega, \mathbf{x}) d\omega.$

Outline

Background Information

2 Design Method

Summary

Di Xu, Michael Adams (UVic)

Choice of Objective Function

?
$$G(\mathbf{x}) = \begin{cases} G_{sep}(\mathbf{x}) & \text{separable only} \\ G_{iso}(\mathbf{x}) & \text{isotropic only} \\ \min\{G_{sep}(\mathbf{x}), G_{iso}(\mathbf{x})\} & \text{joint.} \end{cases}$$

Test Environment

Table: Statistical results over all 26 test images and 5 bit rates

Transform	Mean (%)	Median (%)	Outperform (%)
9/7-sep	-0.0049	-0.0001	46.15
9/7-iso/jnt	0.1488	0.1070	87.69
6/14-sep	-0.5848	-0.5112	20.77
6/14-iso/jnt	0.0331	0.0279	61.54

Conclusion: better jointly optimizing both of the $G_{sep}(\mathbf{x})$ and $G_{iso}(\mathbf{x})$

Choice of Objective Function

$$G(\boldsymbol{x}) = \begin{cases} G_{\text{sep}}(\boldsymbol{x}) & \text{separable only} \\ G_{\text{iso}}(\boldsymbol{x}) & \text{isotropic only} \\ \min\{G_{\text{sep}}(\boldsymbol{x}), G_{\text{iso}}(\boldsymbol{x})\} & \text{joint.} \end{cases}$$

Test Environment

Table: Statistical results over all 26 test images and 5 bit rates

Transform	Mean (%)	Median (%)	Outperform (%)
9/7-sep	-0.0049	-0.0001	46.15
9/7-iso/jnt	0.1488	0.1070	87.69
6/14-sep	-0.5848	-0.5112	20.77
6/14-iso/jnt	0.0331	0.0279	61.54

Conclusion: better jointly optimizing both of the $G_{sep}(\mathbf{x})$ and $G_{iso}(\mathbf{x})$

Design Examples

Table: Characteristics of	various filter banks
---------------------------	----------------------

Transform	$\{L_k\}$	$G_{ m sep}$	G _{iso}	b_0	<i>b</i> 1	Van. Mom.
9/7-J	{2,2,2,2}	14.973	12.178	0.063	0.035	4, 9.560
9/7	{2,2,2,2}	14.933	12.181	0.057	0.035	2, 0.004
9/11	{4,2,2}	14.928	12.112	0.111	0.043	2, 0.276
13/11	{4,2,2,2}	15.041	12.206	0.030	0.027	2, 0.068
17/11	{2,2,4,4}	15.117	12.218	0.031	0.028	2, 0.337
13/15	{6,2,2}	14.641	12.074	0.094	0.035	2, 0.169

Table: Statistical results over all 26 test images and 5 bit rates

(compa	(compared mare) content of 20 2000 standard)						
Transform	Mean (%)	Median (%)	Outperform (%)				
9/7	0.149	0.107	87.69				
9/11	0.537	0.055	59.23				
13/11	0.186	0.087	74.62				
17/11	0.580	0.242	77.69				
13/15	0.594	0.163	68.46				

(compared with 9/7-J from JPEG-2000 standard)

Design Examples (Cont'd)

Table: Specific results for three representative images

Image		PSNR (dB)					
(model)	CR	9/7-J	9/7	9/11	13/11	17/11	13/15
	8	36.75	36.88	37.34	36.85	37.17	37.39
	16	33.75	33.84	34.00	33.76	33.91	33.95
gold	32	31.23	31.27	31.35	31.24	31.32	31.27
(sep)	64	29.16	29.15	29.24	29.17	29.17	29.25
	128	27.32	27.32	27.39	27.35	27.37	27.34
	8	41.46	41.59	42.92	42.12	42.81	43.11
	16	33.54	33.55	33.47	33.83	34.00	33.45
target	32	27.07	27.19	26.65	27.84	27.88	26.84
(—)	64	22.70	22.84	22.35	23.11	23.19	22.42
	128	19.16	19.14	18.86	19.35	19.46	18.94
	8	30.32	30.35	30.30	30.33	30.33	30.37
	16	26.61	26.62	26.59	26.62	26.60	26.57
sar2	32	24.69	24.70	24.65	24.69	24.69	24.70
(iso)	64	23.55	23.55	23.52	23.54	23.53	23.54
	128	22.73	22.73	22.70	22.74	22.74	22.67

Subjective Image Quality (compression ratio: 32)

(a) original image

(b) 9/7-J from JPEG 2000

(c) 9/7 design

Di Xu, Michael Adams (UVic)

Filter Bank Design for Image Coding

Outline

Background Information

- 2 Design Method
- 3 Experimental Results

Di Xu, Michael Adams (UVic)

Summary

Designed filter banks with:

- perfect reconstruction
- linear phase
- high coding gain
- good frequency selectivity
- certain prescribed moment properties
- Outperformed the well-known 9/7-J filter bank (from the JPEG-2000 standard)
- Proposed 9/7 design has same computational complexity as 9/7-J filter bank

<ロ> < 同> < 同> < 日> < 同> < 日> < 回> < のへの

Questions?

Di Xu, Michael Adams (UVic)

Filter Bank Design for Image Coding

ISSPIT'06 16 / 21

<ロ> <同> < 回> < 回> < 回> < 回> < 回</p>

Design Parameter Selection

- Frequency Response *L*2-norm Error: for a stopband width of $\frac{3\pi}{8}$, tolerances within [0.02, 0.14] is highly effective
- Moment Constraint: the norm of the vector of zeroth dual and primal moments is less than $2\cdot 10^{-5}$
- finding multiple solutions from many different initial points; effective when consider lifting-filter coefficients within [-2,2]

Impulse Responses of the Lifting Filters

```
9/7-J from JPEG 2000:
```

```
-1.58613434 -1.58613434
```

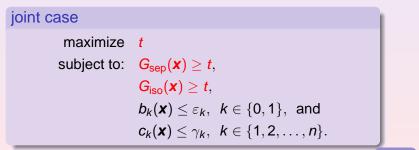
- -0.0529801185 -0.0529801185
- 0.882911076 0.882911076
- 0.443506852 0.443506852

```
proposed 9/7 design:
```

```
-1.49341357 -1.49341357
-0.0630113314 -0.0630113314
0.794482374 0.794482374
0.469650396 0.469650396
```

Constrained Optimization

separable only or isotropic only casemaximize $G_{sep}(\boldsymbol{x})$ or $G_{iso}(\boldsymbol{x})$ subject to: $b_k(\boldsymbol{x}) \leq \varepsilon_k, \ k \in \{0,1\}$ and $c_k(\boldsymbol{x}) \leq \gamma_k, \ k \in \{1, 2, \dots, n\}.$



Return

・ロト・日本・ ・ヨト・ 日本・ ショー

Choice of Objective Function

• Test data: all of the 26 reasonably-sized continuous-tone grayscale images from the JPEG-2000 test set

Table: Characteristics of a subset of the test images

Image	Size, Precision	Model	Description
gold	720 imes 576, 8	separable	houses and countryside
target	512 imes512,8		patterns and textures
sar2	800 imes 800, 12	isotropic	synthetic aperture radar

• Codecs: EZW, SPIHT, and MIC

▲ Return

References

- Y. Chen, M. D. Adams, and W.-S. Lu Design of Optimal Quincunx Filter Banks for Image Coding. Proc. of IEEE International Symposium on Circuits and Systems, May 2006.
- J. Katto and Y. Yasuda

Performance evaluation of subband coding and optimization of its filter coefficients.

Proc. of SPIE Visual Communications and Image Processing, vol 1605, pp 95–106, Nov. 1991.

 M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret *Applications of second-order cone programming*. Linear Algebra and its Applications, vol 248, pp 193–228, Nov. 1998.