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Abstract
Shared state access conflicts are one of the greatest sources of er-
ror for fine grained parallelism in any domain. Notoriously hard
to debug, these conflicts reduce reliability and increase develop-
ment time. The standard task graph model dictates that tasks with
potential conflicting accesses to shared state must be linked by a
dependency, even if there is no explicit logical ordering on their
execution. In cases where it is difficult to understand if such im-
plicit dependencies exist, the programmer often creates more de-
pendencies than needed, which results in constrained graphs with
large monolithic tasks and limited parallelism.

We propose a new technique, Synchronization via Scheduling
(SvS), that uses the results of static and dynamic code analysis
to manage potential shared state conflicts by exposing the data
accesses of each task to the scheduler. We present an in-depth
performance analysis of SvS via examples from video games, our
target domain, and show that SvS performs well in comparison to
software transactional memory (TM) and fine grained mutexes.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; D.3.4 [Processors]: Compil-
ers; D.3.4 [Processors]: Run-time environments

General Terms Design, Languages, Measurement, Performance,
Reliability

Keywords parallel programming, shared state management, Syn-
chronization via Scheduling, Dynamic Reachability Analysis

1. Introduction
Shared state access conflicts are the cause of majority of errors in
parallel programming. Race conditions and corruption of shared
data are common. These bugs can be notoriously difficult to track
down as they often manifest rarely, depending on the state of not
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just one, but several threads of execution. Unfortunately most exist-
ing frameworks don’t provide mechanisms to automatically protect
shared state. Runtime systems such as the one driving Cilk [12],
OpenMP [4] and the venerable pthreads are largely concerned with
dispatching code for execution. Systems such as Intel’s TBB [6]
do provide a vast array of synchronization primitives, including a
number of distinct types of mutexes, for the programmer to con-
struct their own state protection. Unfortunately, they contain very
little in the way of support for orchestrating these schemes. Soft-
ware Transactional Memory(STM) [25] does address this problem
and as STM is the closest in effect to our proposed technique, we
will discuss it further in the context of our experiments in Section
3.

Very few domains have been as profoundly affected by the
multicore revolution as video games. The complexity and high
level of interaction of the systems which often rivals operating
systems, a nearly inexhaustible demand for better performance,
large programming teams and tight deadlines makes it an ideal
testbed for parallel techniques. The volume of this software and its
commercial appeal would make the problems worth solving even
if they were unique to the domain, but any technique developed
have application in many other domains. For these reasons we have
chosen to let the needs of this domain drive our research. Our
assumptions and choice of experiments reflect this.

Programmers faced with the difficulties in managing the data
accesses of a large collection of tasks tend to leave many tasks
monolithic, comprised sometimes of thousands of lines of codes.
The embarrassingly parallel kernels, those without complex state
interaction, will generally be dispatched in patterns similar to
parallel for. This has lead to the structure of the current gen-
eration of video games. Often the work of an entire subsystem or
one its major components will be assigned to a single processing
context, co-scheduled with other components that are guaranteed to
be conflict free. Interspersed between the execution of these groups
will be the execution of the embarrassingly parallel sections and a
number of explicit synchronization points. This structure is com-
mon in the industry [1]. The lack of parallel width in many phases
of execution leaves resources idle and this approach will not scale
as the number of cores increase.

The parallel structure of the program is often represented in
the standard task graph model where tasks that have not had a
dependency declared between them can be scheduled concurrently.
There are cases where ensuring ordering of tasks with dependencies
is necessary for correctness. However, there remain many cases
where there is not an explicit logical ordering between the tasks
and a dependency is declared to prevent two tasks that touch the



same data from running concurrently. This serializing of tasks is
necessary even if the two tasks touch the same data rarely.

When a program is executed and tasks are serialized unnecessar-
ily because of unneeded dependencies, parallelism is reduced and
performance can suffer. This work proposes a mechanism to cor-
rect this deficiency. Our model only requires that the programmer
state explicit inter-task dependencies, i.e., those that are required
by the program logic. In cases where tasks that are not explicitly
dependent on each other may touch the same data, our system auto-
matically inserts a new implicit dependency between them, which
will prevent these tasks from running concurrently and corrupting
shared state. We use conventional static analysis to determine when
implicit dependencies are necessary. During runtime, when we can
determine more precisely what data the task will actually access,
we detect and remove any overly constraining implicit dependen-
cies – to accomplish this we propose new dynamic analysis tech-
niques. Making the shared state access patterns of each applicable
task available to the scheduler we are able to safely schedule tasks
with potential conflicts. We call this technique Synchronization via
Scheduling(SvS).

The general concept of SvS is not overly complicated. The chief
difficulty lies in utilizing the information provided by the static
analysis and refinement without adding much overhead. To achieve
the highly desirable performance of 60 frame-per-second (FPS), a
frame must be constructed in just over 16ms. For optimal paral-
lelization many tasks will have runtimes in the tens or hundreds of
microseconds. This strict time budget does not allow for much ex-
tra computation. One of the major contributions of this work is the
description of algorithms to achieve this high speed organization
and to demonstrate that they work in practical contexts.

SvS differs from optimistic techniques such as STM in that the
work of evaluating the admissibility of a task is done prior to its
execution. Though some of the mechanisms used to realize SvS
are similar to those in some STM implementations this difference
means that there are no expensive rollbacks and there is a much
smaller requirement for extra bookkeeping during state access. Ad-
ditionally, STM requires programmers to define atomic transac-
tions while SvS is an automatic technique completely handled by
the compiler and runtime components. We will show a comparison
between SvS and STM in section 3.

The rest of the paper is organized as follows. In Section 2 we
discuss the model, algorithms and implementation of SvS. Experi-
mental results, drawn from several applications in our domain, are
presented in Section 3. In section 4 we will discuss related work
and in Section 5 we will conclude and give a short discussion of
our future work.

2. SvS Model and Implementation
2.1 Motivation and Overview
Task graph models are a standard pattern for structuring parallelism
in programs [20]. A prevailing problem with this model is the lack
of automatic shared state management between tasks. Consider an
example of skeletal character animation. Typically, multiple anima-
tions are applied to the bones of a single character to produce real-
istic looking motion [2]. For example, to produce a character that
is walking and limping we may blend the “walking” and “limping”
animations. The mathematical operations performed by these two
routines are commutative, so there is no explicit ordering between
them. However, it is unsafe to execute these animation routines in
concurrent tasks, because they may touch the same bones of the
same character. In this case there exists a special type of depen-
dency between tasks, which we term implicit. An implicit depen-
dency exists when there is no logical ordering between the tasks

imposed by data or control dependencies, but the tasks may access
the same shared state and so it is unsafe to run them concurrently.

Without automatic shared state management, programmers
must manage shared state by inserting explicit dependencies where
implicit dependencies exist. Protecting shared state via explicit de-
pendencies has two problems. First, this is prone to programmer
error, especially when considering dynamic, pointer-based mem-
ory accesses. Second, this unnecessarily constrains parallelism in
cases where the tasks may incur conflicting accesses of the shared
state, but do not actually perform them at runtime.

We address the issue of shared state management in task graph
models by introducing a new technique called Synchronization via
Scheduling (SvS). SvS provides automatic shared state manage-
ment by combining static and dynamic analysis to determine if two
tasks can potentially access shared state. The result of static anal-
ysis is a task graph with dependencies that guarantee the protec-
tion of shared state. Dynamic analysis then utilizes run-time infor-
mation to potentially remove unnecessary dependencies between
tasks, allowing for increased parallelism. In this way, SvS deter-
mines the set of possible memory accesses a task makes before it
is executed and schedules tasks such that no two tasks concurrently
access the same memory. In this section, we will provide the de-
tails behind the model and implementation of SvS. In section 2.2
we outline the framework for SvS, followed by a brief discussion of
relevant background information in sections 2.3 and 2.4. Starting in
section 2.5, we will go into detail on the model and implementation
of SvS.

2.2 Framework
Figure 1 shows the four main components that comprise the SvS
framework: an SvS compatible language, static analysis, dynamic
analysis, and the task scheduler. An SvS compatible language al-
lows a programmer to group blocks of code into units called tasks.
Programmers can provide a logical ordering between tasks but do
not need to manage shared state between them. Beyond providing
a task-graph abstraction, an SvS compatible language must be type
safe and disallow pointer arithmetic. We describe our prototypical
implementation of an SvS compatible language in section 2.4.

At compile time, a program written in an SvS compatible lan-
guage is passed through a static analysis phase that generates infor-
mation pertaining to symbols (linguistic abstractions for memory
accesses) and task dependencies. This information defines a static
task graph which provides an initial scheduling of tasks that ensures
the protection of shared state. Information from static analysis is
stored for use during dynamic analysis.

We purposely visualize the static analysis in figure 1 as a “black
box” because SvS is indifferent to the implementation of static
analysis. Static analysis techniques that produce a correct list of
task dependencies and a list of all symbols that a task may access
are suitable for use within the SvS framework. Static analysis in
SvS is formally defined as task dependency analysis in section 2.5;
this section also explains how task dependency analysis can be im-
plemented using existing techniques. The classic limiting factor of
static analysis when applied to parallelization is that it is limited to
compile time information. As a result, it often is forced to create
dependencies that are potentially unnecessary, thus restricting par-
allelism. This problem can be alleviated using dynamic analysis.

Throughout the execution of an SvS program, dynamic analysis
maintains dynamic reachability information (i.e. potential memory
accesses) for symbols accessed by tasks. As tasks are considered
for scheduling, this information is used to generate and compare
read/write sets of tasks in order to remove any implicit dependen-
cies that were deemed necessary by the static analysis, but were
found to be non-existent when dynamic reachability information



became available at runtime. We call this process of removing un-
necessary static dependencies refinement.

SvS Compatible Language 

• Type safety 
• No pointer 
arithmetic 

Task Graph Model Static Analysis
(Task Dependency Analysis)!

Task Dependencies, Task Symbol Lists 

Dynamic Analysis 

Dynamic 
Reachability 
Analysis 

Refinement 
(Efficient Read/
Write set 
Comparison) 

Efficient Dispatch of Tasks With 
Non-Overlapping Read/Write Sets   

Task Scheduler 

Figure 1. SvS Framework

Finally, the scheduler respects the set of refined dependencies
by ensuring that all concurrently executing tasks have distinct read-
/write sets (i.e. no implicit dependencies), in effect, performing
synchronization via scheduling.

While the SvS framework is the new contribution of this work,
its implementation relies on both new and existing techniques.
In particular, our framework allows for the use of existing well-
established static analysis techniques, but the algorithms used in
dynamic analysis and in scheduling are new to this work.

2.3 Task Graph Model
In this section, we define the task-graph model that is assumed by
the current implementation of SvS. In task-graph based execution,
code is divided into discrete units called tasks and a task graph
defines a static scheduling of these tasks through directed edges.
If there is an edge (A, B) then the task A, the parent, must com-
plete before B, the child, can be executed. These edges are referred
to as dependencies and a dependency is satisfied when the parent
completes execution. Our task-graph model also includes explicit
dataflow where one task, a producer, ‘sends’ data to another task, a
consumer. Two tasks involved in dataflow have a dataflow depen-
dency. Currently, our task graph model does not allow the program-
mer to specify cyclic dependencies.

A task that has no parents or has all dependencies satisfied is
considered runnable. Additionally, a consumer task must also have
been sent data to be runnable. A task instance is a task running on
a processor. When a task is runnable, we say that an instance of it
can be scheduled. Task instances are generated in one of two ways.
If the task is a consumer task, then a copy (i.e. instance) is executed
for each data item received, and the collection of all instances
define a data-parallel operation. We describe these instances as
being part of a single data-parallel task. For all other tasks, an
instance is generated “statically” at the beginning of the program.

Besides dependencies, there is also an implicit temporal order-
ing between executions of a task graph in that we execute all tasks
in the graph and wait for them to finish before executing the graph
again. More formally, if we define the execution of all tasks in a
task-graph to be an iteration, then iteration i must complete before
i + 1 begins.

The dependencies and constructs described in this section sup-
port the task-graph requirements of an SvS compatible language,
which we describe in the next section.

2.4 CDML
To facilitate writing programs based on the task-graph model out-
lined in section 2.3 and enable the static analysis required for
SvS, we have developed the Cascade Data Management Language
(CDML). Because C++ is the standard language for game devel-
opment, CDML is similar to C++ with a few added annotations

and restrictions. Note that CDML is not a requirement for SvS; as
described in section 2.2, essentially any language that includes the
following features is suitable for SvS: (1) syntax for articulating
the task graph model described in section 2.3, (2) type safety, (3)
no pointer arithmetic.

Additionally, because the current specification for CDML does
not yet support object-oriented programming, we assume no inher-
itance or polymorphism in our current implementation of SvS, but
this is not a requirement. We plan to address inheritance and poly-
morphism in future work. Because we are not presenting CDML as
a contribution of this work, the full syntax and features of CDML
will not be discussed here.

The grammar for CDML tasks is shown in figure 2. There are
two task types in our current language specification: transform and
itemizer. A transform is just a (static) single instance task. An
itemizer is used to implement data-parallel tasks, where multiple
instances of the task’s body are executed to process items received
at run-time. An instance is created for each item received.

Our system assumes that there is no specific ordering between
tasks, unless the programmer explicitly specifies a dependency. Ex-
plicit (i.e. “ordering”) constraints are expressed in a tasks con-
straints. At run-time, explicit constraints specified by the program-
mer are never broken. In many cases, a programmer would not need
to specify an explicit ordering between tasks, because the same out-
come will be achieved regardless of the ordering. This is especially
the case for video game engines and scientific computing applica-
tions where many computations are commutative. The programmer
can also specify data-flow dependencies using the send constraint.

Programmers do not have to manage shared memory accesses
between tasks. Static and dynamic analysis are used to automati-
cally detect when two tasks can access the same memory. In the
case where tasks may perform conflicting accesses to the same data,
SvS chooses an arbitrary ordering for the tasks and runs them se-
quentially. Otherwise, tasks can be run concurrently.

We implemented a translator that converts CDML code into
C++. The translator also performs the static analysis to detect
implicit dependencies, as described in the next section.

task := task_type task_name ‘:’ constraints? body
task_type := ‘itemizer’ | ‘transform’
constraints := ( send | receive | explicit )+
body := ‘{’ statements ‘}’

Figure 2. CDML task syntax

2.5 Static Analysis
We term the static analysis performed in SvS as task dependency
analysis. The goal of task dependency analysis is to statically find
implicit dependencies between tasks – that is, determine whether
two tasks (or task-instances) can potentially access the same mem-
ory location. The collection of implicit and explicit dependencies
define a task graph that ensures the protection of shared state. Be-
cause task dependency analysis is essentially a form of dependency
analysis, we will present the definition of dependency analysis and
derive from it a formal definition for task dependency analysis.

In traditional dependency analysis [9], the fundamental goal is
to determine whether a statement T depends on a statement S. T

depends on S if there exists an instance S
′

of S, an instance T
′

of
T , and a memory location M such that:

1. Both S
′

and T
′

reference M , and at least one reference is a
write

2. In the serial execution of the program, S
′

is executed before T
′

3. In the serial execution, M is not written between the time that
S

′
finishes and the time T ′ starts



As mentioned in the previous section, the ordering between tasks
in SvS, and thus their accesses, are assumed to be commutative
unless the programmer enforces an ordering between tasks by in-
serting explicit dependencies. For the remaining pairs of tasks, we
are not concerned with the order in which they execute. Because
of this, conditions number 2 and 3 are not applicable to SvS. It
follows from this that task dependency analysis is not concerned
with whether the dependency is flow-dependent, anti-dependent, or
output-dependent. Therefore, task dependence analysis in SvS can
be restated as follows: A dependency exists between task T and a
task S if there exists an instance S

′
of S, an instance T

′
of T , and

a memory location M such that:

Both S
′

and T
′

reference M , and at least one reference is a
write. A task references M if there exists a statement X in the
body of the task that references M .

In modern programming languages, a reference to a memory loca-
tion M might be represented as a scalar variable, array, or pointer.
In SvS, we refer to these abstractions for memory locations as sym-
bols. The syntax for a symbol in CDML is provided in figure 3 and
mirrors the syntax of C/C++ expressions for array, variable, and
member access. Since symbols abstract references to memory, task
dependency analysis becomes collecting the symbols in the body
of a task and determining if a symbol x in task S can reference
the same memory location M as symbol y in task T where at least
one of the references is a write. The problem of determining if two
symbols can reference the same memory has been thoroughly ex-
plored by research in static analysis including pointer analysis [8],
array dependence analysis [21], shape analysis [19], and disjoint
heap analysis [15].

Because it is not our goal to expand upon work that has already
been done in static analysis, our current implementation is very
conservative. As a result, our current approach performs the nec-
essary symbol collection and produces a set of dependencies that
generally result in a dependency being placed between each pair
of tasks. In this case, dynamic analysis is exclusively responsible
for uncovering parallelism. As it will be discussed in sections 2.6.4
and 2.7, this is achieved by collecting run-time information describ-
ing the potential memory accesses of the symbols extracted during
static analysis in order to “recalculate” (i.e. refine) dependencies.
We will show in section 3 that SvS is feasible even with dynamic
analysis performing most of the work. However, we hypothesize
that using more sophisticated static analysis could only reduce the
amount of dynamic checks (i.e. dependency refinement), thus de-
creasing run-time overhead. Expanding the role of static analysis
and implementing more sophisticated static analysis is a definite
part of future work for SvS.

SvS is indifferent to what techniques are used to solve task
dependency analysis as long as the output is a set of symbols for
each task, and a set of dependencies between tasks that guarantees
no two task instances can concurrently access the same memory
location (which will be the case if the techniques correctly solve
the task dependency analysis problem). Therefore it is not a goal of
SvS to expand upon the work that has already been done in static
analysis, but rather to address the deficiencies associated with static
analysis.

2.6 Dynamic Analysis
Due to the limitations of compile time information, static analysis
is often forced to make conservative assumptions. This may result
in unnecessary dependencies, thus hindering parallelism. The goal
of dynamic analysis is to potentially remove such dependencies at
run-time. To achieve this, we use information available at run-time
to generate more precise read/write sets for tasks. Then, as task
instances are considered for scheduling, we efficiently compare

symbol := identifier acessor*
identifier := [a-zA-Z_][a-ZA-Z0-9_]*
accessor :=

‘->’ identifier
| ‘.’ identifier
| (‘[’ expression ‘]’)+

Figure 3. CDML symbol syntax

their read/write sets to see if a dependency actually exists (a process
we call refinement) and subsequently scheduling non-dependent
tasks to execute concurrently.

To calculate read/write sets, we monitor the connectivity and
reachability properties of memory objects, our online abstraction
for memory accesses, to determine the set of all addresses that
can possibly be reached by a memory object. We call this set of
accesses the reachability of a memory object and its connectivity
properties are represented as a reachability graph (section 2.6.1).
We use dynamic reachability analysis (sections 2.6.4 and 2.6.3) to
maintain dynamic changes to reachability graphs as memory ob-
jects are created and linked together. Since symbols reference mem-
ory objects at run-time, this enables us to determine the reachability
of symbols accessed by tasks and therefore more precise sets of po-
tential reads and writes.

We will also introduce signatures (section 2.6.2), which are
used to compactly represent read/write sets and efficiently deter-
mine which tasks have non-overlapping memory accesses. Tasks
with non-overlapping read/write sets can then be scheduled concur-
rently. Two new scheduling algorithms that efficiently accomplish
this goal will be presented in section 2.7.

2.6.1 Memory Objects, Links, Reachability and Reachability
Graphs

We use the notion of a memory object to abstract memory accesses
in SvS. In the simplest case, a memory object is a single primi-
tive (e.g. int) and provides a direct access to memory. In general,
memory objects may contain one or more primitives or other mem-
ory objects. Primitives and/or other memory objects that compose
it are called its members. Memory objects may also contain links.
A link ‘points-to’ a child memory object, which allows the par-
ent memory object that contains the link to access all the memory
addressable by the child memory object. The difference between
members and links is that members are static – they cannot be re-
moved from the object and their memory addresses within the en-
closing object cannot be modified, whereas links are dynamic. The
child that a link points to can be changed at any time, thus chang-
ing the set of memory addresses that a memory object can access.
Links can also exist on their own, in that they do not need to be
declared as a member of a memory object. Therefore, SvS tries to
solve the problem of determining what memory objects a task can
possibly access before the task runs, where memory objects can be
accessed directly through members and indirectly through links.

We formalize these definitions by representing the problem as
a graph. Memory objects represent nodes in the graph. A member
edge is a directed edge defined as (X, Y ) where memory object
Y is a Member of X . A ‘link’ edge is a directed edge defined
as (A, B) where A is a memory object that contains a link L
that points to memory object B. We say that A is the parent
of L and B is its child. If a link does not have a parent, it is
essentially just an alias for the memory object it points to. Changing
L to point to a different memory object C effectively removes
the edge (A, B) and adds the edge (A, C). This graph represents
the dynamic reachability of the memory object and is called the
reachability graph.



s t r u c t node {
i n t x ;
i n t y ;
i n t z ;

} ;

s t r u c t t r e e {
node d a t a ;
t r e e ∗ l e f t ;
t r e e ∗ r i g h t ;

} ;

Figure 4. The graph for a memory object representing a binary
tree. The sub-graph inside of the dashed boundary represents the
result of a breadth-first search that only follows member edges. The
leaf nodes in the area are the containment of the memory object T.
Related C++ definitions are provided on the bottom.

Given any node, (i.e. memory object), in the graph, the set of
memory addresses that can be reached (i.e. accessed) by the node
is called its reachability and is defined as the set of all leaf-nodes
reachable by performing a breadth (or depth) first search starting
at the given node. Because leaf nodes are primitives, they directly
correspond to an addresses in memory, and thus define a set of
memory addresses. Figure 4 provides an example of a graph that
would be defined by a typical binary tree. The leaf-nodes inside of
the dashed boundary represent the static reachability (unique, static
set of memory accesses) of the root node of the tree.

By keeping track of the structure of the reachability graph for
each memory object (a process we call dynamic reachability anal-
ysis), we are able to dynamically monitor reachability information
providing significant insight into the potential memory accesses of
tasks. This is particularly useful when dealing with dynamic data
structures that allow for ambiguous accesses to memory. Imple-
mentation of reachability graphs and pertinent algorithms are de-
scribed in the next sections.

2.6.2 Signatures: Representing Memory Accesses
Sets of memory accesses in SvS are represented as signatures:
constant length bitstrings. When two signatures have the same bit
set, it means they represent access to the same memory location (or
memory object) and are said to overlap. To build a signature, id’s
(i.e. memory object id’s) representing reads or writes are passed to
a hash function to determine the bit to set in the signature. Signature
overlap is checked using simple and efficient bit-wise operations.

Note that signatures are effectively Bloom filters [11] using
a single hash function. Also, because signatures are constant in
length and use hashing, there is the opportunity that false positives
occur when comparing signatures. This does not affect correctness
and its impact to performance can be greatly reduced by using large
signature sizes with negligible impact to performance, which will
be discussed in section 3.1.

2.6.3 Implementing Reachability Graphs and Dynamic
Reachability Analysis

As discussed in the previous section, there are two main compo-
nents to a reachability graph: memory objects and links. The goal
of the implementation for these structures is to provide the meta-
data and meta-functions necessary to efficiently maintain reacha-
bility graphs and extract the reachability of a memory object.

Memory Objects Memory objects are implemented as classes that
inherit from a MemoryObject class template. The MemoryObject
class stores the id of a memory object that is generated inside the
class’s constructor.

The getSignature function of the MemoryObject class returns
a signature representing the reachability of a memory object. A
straightforward way to implement this function is to simply per-
form a breadth first search by calling the getSignature function of
each member, or the getSignature function of the memory object a
link points to, and combine the returned signatures using a bitwise-
or operation. For large reachability graphs, a breadth first search
will be too expensive. Instead, we have implemented a more effi-
cient method that utilizes the implementation of links as described
in the next section.

Links Links are implemented in SvS as a smart pointer template
class. Since a link is just an edge in the reachability graph, the
smart pointer representing the link stores pointers to a parent and
child memory object. The child pointer represents the memory
object that a link “points-to” whereas the parent pointer denotes
the memory object that the link is a member of. A null parent
represents the case where a link is just a reference or alias to the
memory object it points to and is not considered to be an edge in
the reachability graph.

We now discuss how smart pointers are used to calculate and
maintain the reachability of a memory object. The reachability of
a memory object is changed when we change the child node of a
link edge. This is equivalent to link assignment, and thus by over-
loading the assignment operator for the smart pointer class, we can
detect a change in reachability and perform the necessary updates.
The algorithm that performs these updates is called dynamic reach-
ability analysis. First, consider the situation where each memory
object stores a signature that accurately represents its reachability.
Initially, the reachability of a memory object is just the signature
created from its object id (i.e. the signature representing its static
reachability). When a link L is changed to point to a memory ob-
ject B, it means that the memory object A = parent(L) can now
access all memory objects reachable by B. It also means that all
memory objects that can reach A can also reach memory objects
reachable by B. Therefore, during link assignment, we could per-
form a reverse breadth first search starting at A, recursively updat-
ing the signature of each node to include the signature for the reach-
ability of B. However, we want to reduce the cost of this breadth
first search. To do this, we introduce the concept of master nodes.

A master node M represents a bounded set of reachable nodes,
i.e. a set of nodes X such that a path M ; X exists. We call
the set of nodes X the domain of M . A master M maintains a
signature that accurately represents its reachability; this signature
is shared by all nodes in the domain of M . M is also responsible
for propagating changes in the reachability of nodes in its domain
to all other masters that can reach M .

All other nodes are called internal nodes. An internal node X
can belong to multiple domains and keeps track of which masters
(i.e. domains) it belongs to. X is responsible for notifying each of
its masters when its reachability changes. We call the first domain
an internal node is assigned to its primary master. An internal node
belonging to multiple domains has multiple signatures that conser-
vatively (but correctly) represent its reachability, so we arbitrarily



choose the signature of the primary master to represent its reacha-
bility.

By introducing master and internal nodes, we essentially estab-
lish a tree of masters that is smaller than the original reachabil-
ity graph and only maintain precise reachability information for
masters. This decreases the cost of the reverse breadth first search
required to monitor reachability. Under this implementation, the
getSignature function of a memory object just returns the signa-
ture of its primary master. We are currently investigating more ef-
ficient methods for maintaining dynamic reachability information,
but algorithm 1 provides our current implementation of dynamic
reachability analysis, including how masters are created. In this al-
gorithm, the list Node.owningMasters are the masters to whose
domain Node belongs. Master.notifyMasters is the list of mas-
ters that the Master must notify on when its reachability changes,
because these masters can reach the nodes in Master’s reachability.
Note that our algorithm also performs cycle detection in the reach-
ability graph, but we omit the pseudo-code due to space limitations.

2.6.4 Implementation of Dynamic Refinement
The goal of dynamic refinement is to remove unnecessary implicit
dependencies created by static analysis. To this end, the dynamic
refinement process determines which memory objects the task may
actually access by using the reachability of the referenced symbols
and retrieving the corresponding signatures. The implementation
of generating signatures for tasks during refinement is shown in
algorithm 2.

Our algorithm is only concerned with the reachability of global
symbols or received symbols (those that were received as an ar-
gument) (see line 4). Symbols that are local to the task are not of
concern since they are invisible outside of task boundaries, unless
they alias global or received symbols. Our implementation of static
analysis keeps track of aliasing, so the potential shared accesses of
local symbols would be represented as the reachability of the cor-
responding global or received objects.

Note that the signature generated by our algorithm is guaranteed
to represent all possible memory accesses that a task will make
during execution, even if the task performs link assignment, i.e.
changes the reachability of a memory object. This is because we
account for the reachability of all memory objects a task can access,
and link assignment just changes the reachability of one memory
object to include the reachability of another memory object, and
thus does not change the cumulative reachability of all the memory
objects in the task.

Each task in SvS has a makeSignature function that imple-
ments algorithm 2; the code for makeSignature is generated by the
translator using symbols collected during static analysis. As link
assignments occur during program execution, dynamic reachabil-
ity analysis maintains signatures representing reachability (possi-
ble memory accesses) of memory objects. Because makeSignature
builds a composite signature of symbols (which reference specific
memory objects at run-time), the signature returned represents a
description of memory objects that a task can access at that time.
Therefore, the process of refining a dependency between two tasks
is basically just calling makeSignature for each task and compar-
ing the resulting signatures to see if a dependency in fact exists.
By performing this check, we can dynamically re-calculate depen-
dencies between tasks. This process is only performed for implicit
dependencies. If an explicit dependency was specified by a pro-
grammer, then this dependency will not be removed.

Also note that false positives can occur during signature com-
parison. Besides the false positives caused by using signatures,
there are two additional causes for false positives. The first is due
to the conservative assumption that a task accesses the entire reach-
ability of a memory object. The second is due to multiple memory

objects sharing the signature of a master node, as described in sec-
tion 2.6.3.

While refinement is conceptually a separate component in the
SvS framework, its implementation is integrated with scheduling,
as described in the next section.

Algorithm 1: Link Assignment
Input: A link lhs with parent memory object A, and a link

rhs whose child is B
Output: New edge (A, B)
begin1

if A.owningMasters = ∅ then2
/* A is its own master */

A.owningMasterList.add( A )3
A.domainSize = 04

end5
if (A.primaryMaster.domainSize < K) or6
not(B.owningMasters = ∅) then

if B.owningMasters = ∅ then7
A.primaryMaster.domainSize++8

end9
foreach a ∈ A.owningMasters do10

foreach b ∈ B.owningMasters do11
b.notifyMasters.add( a )12

end13
a.updateReachability( getSignature(B) )14

end15
else16

B.owningMasters.add( B )17
foreach a ∈ A.owningMasters do18

B.notifyMasters.add( a )19
end20

end21
end22

Algorithm 2: run-time calculation of a signature to represent
all possible memory accesses that a task will make

Input: Task T
Output: Signature S
begin1

Let LT = symbols(T)2
foreach symbol ∈ LT do3

if symbol is not local then4
S + = getSignature(symbol)5

end6
end7
return S8

end9

2.7 Scheduling Tasks
The key job of the task scheduler is to efficiently dispatch tasks
with non-overlapping signatures to be executed concurrently. This
effectively insures that each task’s set of refined dependencies are
respected.

Note that up to this point, we have discussed the process of re-
finement as comparing signatures between tasks in order to poten-
tially remove dependencies. However, in cases where static analy-
sis generates “many” dependencies (which is currently the case in
our system), then performing pair-wise comparisons between tasks
for each dependency as described in section 2.6.4 may not be very
efficient. As mentioned in section 2.5, our current static analysis
is extremely conservative and essentially ends up placing a depen-



dency between each pair of tasks/task instances. In this case, refine-
ment would be faced with approximately

`
T
2

´
comparisons where

T is the number of task instances, which can be large when dealing
with data-parallel tasks. Therefore, instead of removing static de-
pendencies, the scheduler essentially ignores this information and
uses tasks’ signatures (algorithm 2) to efficiently determine which
task instances can be executed together concurrently. This is par-
ticularly useful for data-parallel tasks in general; data-parallel task
instances are generated dynamically, making it difficult for static
analysis to generate “meaningful” or “efficient” dependencies (e.g.
if the operation is not obviously embarrassingly parallel, static anal-
ysis may just end up serializing all potential instances of the data-
parallel task). In future work, we intend to incorporate dependency
information in order to reduce the number of dynamic checks re-
quired to perform dynamic refinement and scheduling of tasks.

We designed and implemented two scheduling algorithms,
which we present next. Due to space constraints we omit the
pseudo-code for these algorithms and provide only textual descrip-
tions.

2.7.1 Generations
The goal of generations scheduling is to create groups of task-
instances such that no two instances have overlapping signatures;
we call these groups generations. A single thread is elected to
build generations. This thread tries to add a task to a generation
in delayList, where each generation has a signature representing
all tasks currently in the generation. A task can be added to a gener-
ation if the task’s signature does not overlap with the generation’s
signature. If a task cannot be added to any of the generations in
delayList, a generation from delayList is released for processing
and a new generation is added to delayList. The task is then added
to this new generation and the signature of the new generation is
initialized. Worker threads concurrently process tasks in a genera-
tion and ensure that tasks from different generations are never run
concurrently by waiting for all threads to complete before advanc-
ing to the next generation in scheduleList.

2.7.2 Progressive
Progressive scheduling, attempts to execute tasks/task-instances as
soon as possible, without violating dependencies. To do this, we
maintain a signature, workingSig, that represents all tasks/task-
instances currently running. For each task, a signature is cre-
ated (currentSig) and we atomically compare currentSig to
workingSig, and if there is no conflict (i.e. no overlap be-
tween signatures), we atomically update workingSig to include
currentSig. If there is a conflict, workingSig is not updated and
the task is put back onto the queue for later execution. Otherwise,
no dependencies exist between the current task and any tasks being
executed, so the current task can be dispatched.

Because it is not possible to “subtract” from signatures when
a task is completed, workingSig will eventually become stale.
This does not affect correctness, but it can affect performance in
the form of false positives. To address this issue, we also keep track
of the total number of signature updates and consecutive conflicts.
If either of these values reach a threshold, we wait for all worker
threads to finish executing tasks and then reset workingSig and
all flags.

2.8 Ensuring Correctness
It is important to underscore that SvS always generates a correct
parallelization of the code written in CDML. The first step of this
is the static task dependency analysis of the code, which builds a
task graph that may contain unnecessary dependencies, but guaran-
tees that shared memory accesses are protected. At run-time, SvS
will dynamically recalculate dependencies and schedule tasks to

prevent conflicting memory accesses between task-instances at run-
time, enabling a greater degree of parallelism while still ensuring
correctness.

3. Evaluation
Video games are a collection of tightly integrated systems (ren-
dering, gameplay, physics, simulation, AI, animation, audio, user
input, networking, GUI, etc) [1] that operate in concert on a rapid
and repetitive timeline. Given the significant amount of code in-
volved in a full game engine, studying one in its entirety is a diffi-
cult proposition. The complexity of commercial game engines and
their attendant tool chains and development environments means
that even building the project can be a daunting task. Thus con-
verting an engine from the traditional sequential model into a mod-
ern task-based model is almost insurmountable and is not often at-
tempted, not even in industry where it is usually preferable to in-
stead re-implement from the ground up. So it necessary to isolate a
particular facet or subset of features in order to study the effects of a
particular technique. Therefore, we evaluate SvS using a collection
of existing benchmarks and real applications.

We present two game based experiments. Firstly, Cal3D [2] is
a third-party open-source skeletal animation engine used in sev-
eral video games. Chosen because it has a relatively compact and
clean code base, Cal3d represents typical computations performed
in modern game engines. Secondly, QuakeSquad, our own video
game benchmark, focuses on spatial partitioning, entity manage-
ment, AI and managing numerous agents.

While not strictly game related, we also present three bench-
marks from the PARSEC suite [10]: Canneal, Fluidanimate and
Blackscholes. We chose these because PARSEC is a well known
and respected benchmark suite and will help put our results in con-
text.

To provide an evaluation of the primary parameters and costs
associated with SvS, we developed micro-benchmarks and several
experiments which are presented in the next section.

All SvS tests were written in CDML and executed using the
Generational scheduling algorithm which our initial testing shows
performs slightly better than Progressive. Further optimization of
these algorithms is future work. For the sake of comparison we
also parallelized Cal3D and QuakeSquad using Intel TBB 3.0 [6]
and software transactional memory (STM) using the Dresden TM
Compiler [14] and TinySTM++ library. In each case we found that
the encounter time locking (ETL) algorithm performed the best for
STM. The PARSEC benchmarks we used were available already
parallelized with pthreads and in some cases TBB. Our experiments
were run on a machine with two Intel Xeon E5405 chips with four
cores each. Each two cores share a 6MB L2 cache for a total of
12MB per chip.

3.1 SvS Overhead
In this section, we provide an evaluation of the primary param-
eters and costs associated with SvS. SvS has two main run-time
costs: false positives and the absolute cost of performing dynamic
reachability analysis during link assignment. The key parameters
governing these associated costs are signature and master domain
sizes. In the following sections, we break down our analysis into
two categories: signatures and dynamic reachability analysis.

3.1.1 Signatures
As mentioned in section 2.6.2, false positives can occur during
signature comparison, potentially limiting parallelism. We define
parallel width to be the number of tasks that are able to execute
concurrently at a given time. In the the simplest case where a
task accesses a single memory object, using signatures limits the



theoretical maximum parallel width to the size (in bits) of the
signature.
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Figure 5. Parallel width for 128,000 task-instances under varying
signature sizes

To demonstrate how signature size affects parallel width, we
have designed an experiment consisting of a single producer task
that sends unique memory objects to a data-parallel consumer task.
The consumer task simply writes to a field of a received object.
Note that the objects sent by the producer are single memory
objects with no links as members (i.e. its reachability is static).
Therefore, when an object is queried for its reachability, it just
returns a signature representing its static reachability: a signature
with a single bit set by hashing the id of the memory object. This
means that there will be no false positives due to master nodes or
conservative assumptions during refinement. Therefore, since all
objects are unique, any detected conflicts are strictly due to false
positives caused by signature size.

Figure 5 provides the average parallel width (y-axis) for varying
signature sizes (x-axis) when the producer sends 128,000 objects.
(This number was chosen to reflect the number of particles involved
in modern fluid dynamics simulations). Note that because we use
the generations algorithm, the parallel width at any given time is the
size of the currently executing generation. Therefore to measure
parallel width, we just record the sizes of each generation. The
average parallel width was calculated over 100 executions of the
producer and consumer.

Note that for all signature sizes, we (approximately) achieve the
theoretical maximum parallel width and therefore the graph shows
a linear increase in parallel width as signature size increases. This
demonstrates that when conflicts occur, the generations algorithm
is often successful in finding a generation in delayList with a
signature that does not conflict with the current object.

It is also important to note that the computational cost of in-
creasing signature size is negligible. We have experimentally de-
termined the cost of setting a bit to be about 10 cycles, and the cost
of checking overlap on a 64-bit machine to be about n

64
∗10 cycles,

where n is the number of bits in the signature. This cost is further
minimized by the fact that some signature operations can happen
concurrently with executing tasks. Finally, the bitwise operations
used when comparing/calculating signatures are prime candidates
for vectorization.

Because parallel width increases linearly with signature size and
the computational cost of increasing signatures is small, the overall
cost of using signatures does not have a significant impact on the
performance of SvS.

3.1.2 Dynamic Reachability Analysis
Dynamic reachability analysis has two primary costs associated
with it that contribute to the overhead of SvS. The first cost is the
absolute cost of performing dynamic reachability analysis, i.e. per-
forming a link assignment. The second cost is false positives that
occur due to memory objects in a domain sharing the same reach-
ability signature: the signature of the master node representing that
domain. Any false positives will in turn affect parallel width.

In general, absolute cost and parallel width are affected by the
size (number of memory objects and links) and shape (i.e. lay-
out/connectivity) of reachability graphs. In the case of absolute
cost, larger reachability graphs potentially (although not necessar-
ily) lead to more expensive reverse breadth first searches during
link assignment. Also, since memory objects share the signature of
a master and the reachability of a master is greater than the reacha-
bility of its successors, the larger the graph, the larger the potential
for false positives due to sharing master-node signatures. The effec-
tive size of reachability graphs is regulated by the size of a master
node’s domain: the larger the domain, the fewer the master nodes
in a reachability graph.

The following experiments demonstrate how absolute cost and
parallel width are affected by the size of a reachability graph and
the size of master domains. Because dynamic reachability analysis
is also affected by the shape of reachability graphs, it is important
to give consideration to the data-structures that we used for these
experiments. The micro-benchmark that we implemented builds
a binary space partitioning (BSP) tree of depth d. BSP trees are
commonly used data-structures in computer graphics algorithms
and are generated by continuously bisecting a space and creating
nodes to represent each resulting bisection. It is also common for
the leafs of a BSP tree to store pointers to all the objects (e.g. game
entities or polygons) that are located in the space represented by
each leaf. Therefore each leaf also contains a linked list of objects
(in our case game entities). If the spaces represented by leafs are
small enough, each leaf will likely point to one or zero objects. The
entities pointed to by leafs are also stored in a global linked list and
each entity contains a list of “items”.

To simulate the assignment of entities to partitions represented
by the leafs of a BSP tree, the producer sends out (leaf, entity)
pairs and the consumer performs the associated link assignment,
along with synthetic work. The (leaf, entity) pairs sent by the
producer ensure that each entity is assigned to a unique leaf. In
this case, no synchronization is actually required to protect the
assignment of the entity to the leaf.

Using this micro-benchmark, we perform three experiments,
which respectively demonstrate how absolute cost, parallel width,
and overall overhead varies as the number of memory objects, and
the size of domains change. In all experiments, we demonstrate
results for approximately 20,000 (d = 10, entities = 1000) and
40,000 (d = 11, entities = 2000) total memory objects.

Absolute Cost For absolute cost, we measured the time it takes a
consumer to perform a link assignment under varying domain sizes.
The results are shown in figure 6, with the cost in microseconds
on the y-axis and domain sizes (maximum number of objects per
domain) on the x-axis. Figure 6 demonstrates that as domain sizes
increase, the cost decreases from about 7.8-4.7µs and 8.5-4.9µs
for 20,000 and 40,000 objects respectively. There is also a slight
overall increase ( 4%-7%) in cost going from 20,000 objects to
40,000 objects. Therefore, domain size appears to have a more
significant affect on cost than the size of reachability graphs.

Note that it is important to put the absolute cost of dynamic
reachability analysis into perspective. For example, acquiring a mu-
tex lock (that does not actually protect any code) can take anywhere
from a hundred cycles to as much as 20 microseconds, depending
on the level of contention. The cost of dynamic reachability anal-
ysis (and SvS in general) is not affected by the amount of con-
tention/sharing in an application. Also, although way are paying a
cost during link assignment, SvS does not pay the cost of conflict
resolution paid by other techniques such as TM. In the following
sections we demonstrate, with real applications, that the benefits
produced by SvS are outweighed by its costs.
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Figure 8. Overall run-time overhead (normalized) of the consumer
for varying domain and reachability graph sizes

Parallel Width Figure 7 demonstrates the change in parallel
width (y-axis) as we increase domain sizes (x-axis). We used a sig-
nature size of 8192 and measured the parallel width as described
in section 3.1.1. Here we see that parallel width is dramatically af-
fected by the size of master domains. As master domains increase,
more memory objects share the same signature and master nodes
decrease. As the number of master nodes decrease, their respec-
tive reachability increases, thus increasing the chances of conflict
between the reachability of master nodes. This accounts for the
dramatic decreases in parallel width demonstrated by both curves
in figure 7. As in the previous section, the size of the reachability
graph does not appear to have a significant affect on parallel width.

Overall Overhead For this experiment, we again used a signature
size of 8192. Also, because no sharing actually occurs, we can com-
pare the run-times of our system with SvS enabled and disabled in
order to get a worst case scenario overhead for SvS. This overhead
not only includes the cost of false positives and link assignment, but
also any costs associated with refinement and scheduling, thus pro-
viding an overall worst-case cost of dynamic analysis performed at
run-time.

Figure 8 demonstrates the overall run-time (y-axis, normalized
to the number of (leaf, entity) pairs sent by the producer) for
different domain sizes (x-axis). We see that there is essentially
no change between domain sizes 2 and 10, since the decrease in
absolute cost is negated by the decrease in parallelism when domain
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Figure 9. Performance and scalability of the PARSEC bench-
marks.

sizes increase. After a domain size of 10, we see a sharp increase
due to the sharp decrease in parallelism that figure 7 demonstrated.
The dotted-line labeled “baseline” is the run-time of the benchmark
when SvS is disabled. This means that the overall overhead of SvS,
for a domain size of 2, is about 5% for 20,000 objects and about
6% for 40,000 objects.

3.1.3 Discussion
One crucial characteristic of SvS is that its overhead is not depen-
dent on the amount of sharing in the system. Rather, it depends
on a few internal parameters and, more predominantly, the size
and shape of data-structures and their resulting reachability graphs.
This is fundamentally different from existing techniques where per-
formance decreases as the amount of sharing increases (e.g. con-
tention over shared locks, cost of transaction aborts). This is not
the case for SvS. In fact, since SvS knows the memory accesses
of tasks before they execute, in can mitigate sharing conflicts by
grouping together non-conflicting tasks. This is what generations
accomplishes by using look-ahead. This is an important distinction
between SvS and existing techniques. We demonstrate in the next
sections that this distinction leads to SvS being able to perform as
well as, or better than several existing techniques, with the added
benefit that it performs shared state protection automatically.

3.2 PARSEC
PARSEC is a parallel benchmark suite designed to represent state-
of-the-art parallel workloads [10]. While the majority of these
benchmarks do not need SvS, we converted Fluidanimate and
Canneal which do have shared state conflicts. We also converted
Blackscholes, which has no conflicts, in order to show the perfor-
mance of SvS even when not required.

Blackscholes is a benchmark from the financial domain which
calculates prices for stock options. Option prices can be calculated
independently from one another and the results are stored in an
array. SvS is used to protect the array from having the same array
slot written to simultaneously.

Fluidanimate, as the name implies, performs simulation of fluid.
The existing parallel implementation divides the 3D space of fluid
cells into partitions. During an update, a cell only needs to modify
the values of adjacent cells. Therefore the internal nodes of a
partition can be processed without any synchronization. Cells on a
common border, ghost cells, require locking before being modified.
In the SvS implementation, ghost cells are protected from race
conditions automatically. For the SvS version we used the number
of partitions that is much larger than the number of cores and SvS
is then able to process partitions that do not share ghost cells in
parallel.
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implementations of character animation.

The Canneal benchmark is a place-and-route simulation that
uses simulated annealing to minimize the routing cost on the chip.
The algorithm iteratively finds a better routing by picking two ele-
ments at random and then swapping them if this is determined to be
beneficial. The third-party TBB implementation for this benchmark
was not available. The pthread implementation uses a construct
called an atomic pointer in order to swap two elements, relying
on compare-and-swap (CAS) operations to ensure atomicity. The
implementation purposefully allows for data races to occur [10].
However, the algorithm is designed to recover from those race con-
ditions. We replace the use of atomic pointers with SvS in order to
provide a safe way of swapping the elements in parallel. To accom-
plish this SvS applied to pairs of elements is used to automatically
determine which swaps can safely execute.

We report runtimes calculated over an average of five runs us-
ing the simlarge dataset. Times reported for Canneal and Blacksc-
holes are from the parallel section of the code. Fluidanimate has
parallel sections throughout and so the total execution time is re-
ported. Standard error was negligible in all cases except the Can-
neal pthread version with eight threads where it was 22%, which
we believe to be caused by unpredictable latency of CAS’s.

In Figure 9 we show the performance with different number of
threads for SvS and the third-party pthreads and TBB implemen-
tations. In the pthreads and TBB implementation fine-grained mu-
texes are used to provide synchronization unless otherwise noted
earlier. The results demonstrate that SvS is able to match perfor-
mance of the pthreads1 and TBB even though it does not require
the programmer to explicitly protect access to shared state. This
suggests that SvS may accomplish similar performance as other
models with less programming effort although user studies would
be needed to confirm this statement.

3.3 Cal3D
The Cal3D library implements a typical character animation al-
gorithm. Shown in Figure 11, the algorithm iterates through all
character models, blending several animations on each. Animations
are blended by iterating through a model’s bones and modifying a
bone’s position and rotation according to the current state of the an-
imation. Animations typically modify some bones of a model, but
not all of them. For example, an animation of a running motion up-
dates the positions and rotations of bones of the legs and the arms,
but not the chest bones. A waving animation updates the bones of
one arm.

In order to correctly parallelize animation, two animations must
not update the same bone concurrently. Different models do not
share bones, so the iterations of the first loop in Figure 11 can
run in parallel. However, because different animations may touch

1 SvS performs better than pthreads in Canneal, because the pthreads im-
plementation of Canneal is limited by the heavy use of CAS’s. SvS avoids
this bottleneck by only allowing the elements that can be swapped safely
without synchronization to be processed in parallel.

f o r e a c h ( model i n m o d e l L i s t ){
f o r e a c h ( a n i m a t i o n i n model . a n i m L i s t ){

a n i m a t i o n−>c a l c u l a t e B o n e P o s i t i o n s ( t i m e D e l t a ) ;
f o r e a c h ( bone i n a n i m a t i o n . bones ){

s k e l e t o n . bones [ bone . ID ] . b l e n d ( bone )
}

}
}

Figure 11. The character animation algorithm using a conven-
tional loop notation.

the same bone, the second loop cannot be parallelized without
protecting against concurrent accesses. Thus, there are four ways
to parallelize character animation: restrict parallelism to models, or
process models and animations in parallel and protect accesses to
bones with locks, transactional memory or SvS.

Figure 10 compares performance and scalability of four parallel
implementations of the main animation loop in Cal3D. To drive the
loop we use the Cally animation example included in the Cal3D
distribution, and we use 4 models and 8 animations per model.
These numbers reveal several interesting facts.

TBB-Models processes models in parallel, and since we are
processing 4 models, reaches maximum performance at 4 threads.
TBB-ModelsAnims parallelizes processing models and anima-
tions, protecting accesses to bones with locks. Despite extra paral-
lelism, TBB-ModelsAnims performs similarly to TBB-Models due
to high lock contention over shared bones.

For the STM version, we used our parallel runtime system to
create a transactional task for each model, animation and bone com-
bination. We present the best performing STM algorithm. Since
each transaction is a guaranteed write, it seems that STM perfor-
mance suffers due to a high conflict rate between transactions writ-
ing to the same bone.

To use SvS, we created tasks as in STM, but each task is
scheduled using SvS. SvS achieves better performance than other
implementations due to the greater parallelism uncovered. Despite
many potential conflicts, demonstrated in TBB and STM, the large
number of runnable items available to be scheduled allows SvS to
achieve good parallelism and performance.

Performance for SvS and STM stops improving when we have
more than four threads. The reason has nothing to do with the
method of synchronization, but is rooted in the very fine-granular
nature of tasks in this example. Each task only takes 3500 cycles to
complete, and the overhead of work-stealing dominates the com-
putation. We found that if we implement a semi-static version of
the scheduling algorithm that places tasks into thread-local queues
and restricts work-stealing we are able to achieve scaling beyond
four threads and improve performance in the eight-threaded case
by more than a factor of three (these results are not shown).

This suggests an important direction for future research: inves-
tigation of semi-static scheduling techniques (in contrast to tradi-
tional work-stealing) in order to accomplish good performance for
systems with very fine-granular parallelism, or automatically deter-
mining the right task granularity in order to minimize the overhead
of handling fine-grained tasks. Although there are hardware pro-
posals aiming to reduce the overhead of task scheduling [24], we
believe that maximum efficiency can be obtained when software is
also structured to avoid the overhead.

3.4 QuakeSquad
Artificial Intelligence (AI), determining the actions of game enti-
ties, and Entity Management, managing the movements and inter-
actions of game objects, together make up one common game sub-
system and are notoriously difficult to parallelize [5]. This difficulty



has two main sources. First, AI logic tends to be arbitrary and com-
plex being defined by game programmers to fit the circumstances
instead of fitting some mathematical formalism. Secondly, the large
number of interactions involved in Entity Management mean that
several modifications may be made to a single object in one frame.
These interactions can often set off chains of interactions that clus-
ter in unforeseen ways. These two complicating factors, and the
large amount of shared state that can potentially affected, make this
system a primary concern for parallelization.

We took the approach of Lupei et al [18] with their SynQuake
benchmark and created an application, QuakeSquad, that captures
the essential computational patterns and data structures of video
games while remaining simple enough for meaningful testing.

QuakeSquad, consists of a two dimensional world with four
types of entities: bombs, walls, citizens and techs. These are gov-
erned by a few simple rules:
• bombs explode reducing the health of citizens and techs within a set

radius and not obstructed by a wall.

• bombs ‘project’ fear onto citizens and technicians who are within a set
distance and in the line of sight of the bomb.

• fearful citizens will move away from the closest source of fear while a
calm citizen will move randomly.

• calm citizens will not move into an area where it would be subject to
fear.

• techs will move toward the closet source of fear and if the tech touches
a bomb it is disarmed.

With a large number of entities in the system, the ‘line-of-sight’
tests for occlusion are by far the most expensive. Without further
optimization each test would have to consider every entity in the
world. To reduce these tests, the world is divided into a grid where
each cell is associated with an unordered list of every entity in
that area. When an entity moves from one cell to another it will
remove itself from its current list and add itself to the new one. The
cell size is set such that when making a line-of-sight calculation
only the current cell and adjacent cells need be considered. This
division of entities, analogous to the spatial partitioning structures
used in 3D environments, reduces the number of tests by at least
two orders of magnitude. However, even with this optimization,
occlusion testing still dominates the computation and so would
benefit most from parallelization. These tests occur most frequently
when citizens move and when bombs project fear onto citizens and
technicians. The same tests also occur when a bomb explodes, but
bombs explode infrequently and so we focus on parallelizaton of
citizen movement and fear projection.

When these aspects are transformed into data parallel operations
where entities are concurrently updated, potential shared state con-
flicts are exposed. During bomb updates it is common for bomb
radii to overlap and they may modify the same entity simultane-
ously. During citizen movement a large number of citizens cross
grid boundaries and thus expose the associated entity lists to po-
tential concurrent modifications. In both cases SvS can be used to
ensure that no race conditions occur, which we detail below. We
perform each test with 35 bombs, 100 citizens, 40 techs and 120
walls. 2048 bit signatures are used for SvS.

3.4.1 Sending lists (Updating Bombs)
First, we focus on updating the bomb entities and determining
which human entities are affected. The runtime of this operation
is completely dominated by line-of-sight checks. First a task de-
termines the entities in each bomb’s radius and builds temporary
linked lists of potential techs and citizens to scare. These lists of
potential candidates are then sent to a data-parallel consumer which
perform line-of-sight testing. If an entity is not occluded, the entity
become fearful. The reachability of the underlying list is queried to
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Figure 12. Scalability of the two QuakeSquad phases.

return a signature representing its contents, which is passed to the
scheduler. Figure 12(a) shows the execution times averaged over
100 frames. With one thread, the processing takes 1944 µs. At 8
threads the execution time drops to 675 µs. The standard deviation
in all cases is bellow 100 µs

3.4.2 Modifying lists (Updating Citizens)
When a citizen moves, it will avoid moving into areas with bombs.
This update is also dominated by line of sight checks. A producer
task determines the potential new location for each citizen and then
sends this to a data-parallel consumer which will perform a line
of sight check and move the entity if no bomb is visible. This
case is complicated by the grid of entity lists. When an entity
moves from one grid to another, a reference is removed from
one list and added to another. If two entities move into the same
grid simultaneously the linked lists will be subject to concurrent
modification. Additionally, the line of sight checks require reading
the eight adjacent cells around current location cell and the eight
cells adjacent to the prospective destination. Errors will occur if
the structure of one of these lists is modified while it is being read.
We use SvS to prevent these potential state access conflicts. Again,
the reachability of the list queried to produce a signature for the
scheduler. Figure 12(b) shows the execution times of this phase
averaged over 100 frames. Executions times go from 4617 µs with
one thread to 866 µs with eight. The standard deviation in all cases
is bellow 90 µs.

3.4.3 Putting it together
The previous discussion has shown that both of these major tasks
scale well in isolation. We now consider results for entire frames
of QuakeSquad, which combines modifying lists and sending lists.
For comparison we created a version using TBB with mutexes and
another using STM. The results, averaged over 100 frames, are
shown in figure 13. Scaling from one to eight threads in the SvS
version reduces the frame execution time from 7633 µs to 1442 µs.
Shared state accesses conflict approximately 10% of the time on
average, meaning SvS detects and manages a conflict 1 in every
10 accesses. While the TBB version performs similarly to the SvS
version, the STM version fails to benefit from extra threads. A
closer examination showed that roll-backs were causing the data-
parallel instances to lengthen and increase total runtime.

QuakeSquad is a comprehensive example representing a previ-
ously difficult to parallelize subsystem of modern game engines.
The performance and scalability achieved by SvS in the results
demonstrate its ability to utilize reachability graphs and dynamic
reachability analysis to efficiently determine the reads/writes of
tasks that access linked data structures and subsequently concur-
rently schedule tasks with non-overlapping read/write sets.
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4. Related Work
SvS was previously introduced by us in a short workshop paper,
which gave only a high-level overview of the idea, but the system
was not fully specified or implemented at that time. This paper con-
tains the first, self-contained, presentation of the model and imple-
mentation of SvS as well as detailed specification of algorithms,
and evaluation with multiple benchmarks.

There is a great need in the video game industry for domain
appropriate parallelization techniques. Developers for major games
studios such as EA [1], Epic [5] and Valve [26] have expressed
the need for comprehensive and efficient parallelism and have cited
shared state management as a major roadblock.

There are an ever increasing number of parallel environments
and language/runtime combinations such as Chapel [13], Cilk [12],
OpenMP [4], Gossamer [23] and Intel’s TBB [6] and Ct\RapidMind
[3]. However, they don’t provide automatic mechanisms for shared
state protection, generally focusing instead on providing tools for
the programmer to manually manage state. SvS or an SvS-like
technique could be implemented in a number of these systems.

The Jade [22] language and the Prometheus [7] package both
address shared state protection. Jade proposes a set of parallel ex-
tensions to C where a programmer denotes blocks of code as tasks
and specifies their data constraints. Although Jade also schedules
tasks based on their constraints there are fundamental differences.
Jade is based around task-parallelism and constraints must be spec-
ified by the programmer whereas in SvS they are derived automat-
ically, thus freeing the programmer from the need to concentrate
on implicit and hard to spot data dependencies. A task’s schedul-
ing is based entirely on the information available before the task
runs. Prometheus’ Serialization Sets work similarly to Jade, but
they are applied to an object-oriented language and protect from
races within an object. Shared state protection using SvS is more
general.

While there is a large body of existing work on static depen-
dency analysis, OoOJava [16] represents recent work in this field
that similar to SvS attempts to combine static and dynamic analy-
sis. OoOJava abstracts collections of objects as heap region nodes
and uses disjoint reachability analysis [15] to statically infer con-
nectivity between objects. The result is a set of reachability states
that are used to determine if two objects x and y are disjoint i.e.
cannot reference the same heap node. If it is determined that they
might reach the same heap node, in very specific cases they are
able to check at run-time if x = y in order to test for disjointness.
Otherwise, they are forced to conservatively assume a dependency
between x and y since they do not have full reachability informa-
tion at compile time. SvS addresses this issue by introducing the
concepts of reachability and reachability graphs and using dynamic
reachability analysis to provide an efficient way to maintain and ex-
tract complete reachability information.

Many techniques that address shared state are optimistic in that
they attempt to do computations without explicit synchronization

and ‘roll-back’ or undo conflicting operations. Software transac-
tional memory (STM) is the most prominent of these techniques
and provides database-like transactional atomicity. A programmer
wraps code that requires protection in an atomic block and the STM
system automatically handles conflicts. The key difference between
TM and SvS is that SvS determines whether or not two tasks might
conflict before they are executed, whereas TM detects conflicts dur-
ing execution. This means that TM is less conservative but may be
subject to expensive rollbacks. Since rollback cost are high, STM
performs well when most transactions are able to complete success-
fully. So STM may be advantageous to SvS in cases where actual
conflicts between tasks are extremely rare, but SvS would serialize
them to avoid potential races. This suggests an interesting opportu-
nity for combining STM and SvS: using STM when actual conflicts
are rare and using SvS when the conflicts are frequent. Such adap-
tive use of synchronization primitives may enable to exploit the best
of both models and is an interesting direction for future work.

There has also been some work in the STM community on
deliberately co-scheduling transactions that appear (based on static
or dynamic information) to be unlikely to conflict with one another
[27]. However, this work uses the history of previous conflicts, and
perform co-scheduling for performance. SvS performs scheduling
for correctness. SvS also relies on static and dynamic analysis
to determine the potential memory accesses of a task before it
executes, rather than conflict history recorded after the fact.

Galois [17] is an optimistic framework, focusing on data-
parallelism, that falls outside of STM. Galois focuses on the par-
allelization of ‘irregular applications’, those with interdependent
loop iterations. This framework differs from SvS in that it focusses
on commutativity analysis as opposed to dependency analysis and
is optimistic and must contend with overhead created by roll-backs.

5. Conclusion and Future Work
We presented SvS – a new framework for automatic protection
of shared state in task graph models. We demonstrated that SvS
performs comparably to other synchronization techniques, without
requiring the programmer to explicitly manage shared state.

While this work demonstrates the feasibility of SvS, there are
many opportunities for further research. First of all, there is an op-
portunity to incorporate more powerful static analysis, including
disjoint reachability analysis [15]. In doing so, we may be able to
extract greater parallelism statically, which will reduce the com-
plexity and overhead of the algorithms that we use at runtime. Sec-
ond, as we discovered in the character animation example, there are
opportunities for investigating better software techniques for han-
dling fine-grained tasks, including scheduling and determining the
optimal task size. Finally, we are interested in expanding the scope
of SvS codebase and performing user studies in order to fully un-
derstand the impact of SvS on programmer productivity.
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