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Memoization:
Save resources and improve response time by 

reusing previously computed results.
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“Cross Program Memoization” (CPM):
Reuse results between programs.



Basic Memoization

Memoization in general:

1. Compute a key representing the computation to be done (line 3)

2. Check the cache for that key (line 4-5)

3. Return results if found, compute if not found, and (optionally) cache it.

a. Not shown: choosing what to cache, eviction policies,
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Cross Program Memoization
is possible when cache keys are valid across 

programs that share a cache.

This work shows how to effectively generate keys for 
intermediate and final results of data analytics 

programs.



Structure of Data Analytics Programs
➔ Programs are modeled as a directed acyclic graph (DAG)

➔ Gives an opportunity for finding prior results of parts of the program.
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CPM is very effective, but only when the potential is there.
➔ CPM can be very effective:

◆ 20-50% total machine-hours saved [Nectar, OSDI 2010]

◆ 10-42% total machine-hours saved [BigSubs, VLDB 2018]

◆ 37% reduction in query time [SQLShare, ICDM 2016]

➔ But potential for data sharing varies, and can be non-existent.

◆ Only 10-20% on certain clusters [Nectar, BigSubs]

◆ SQLShare queries benefit a lot (>90%) or a little (<10%)

◆ Less than 1% of files are shared in academic clusters [Ren VLDB 2013]

➔ Want to enable CPM all the time, but need to address overheads when 
sharing potential is low.
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When sharing potential is low, overhead is important.
➔ No sharing == no benefit from reusing results.

➔ The overhead of CPM becomes critical.

➔ Want to keep CPM enabled in case sharing potential changes.

➔ Prior work on CPM has not looked at overheads for low-sharing situations.

◆ Nectar does not report overheads and Incoop can increase runtime by 5-22%

To have CPM always-on, we need low overhead techniques!
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User-defined Functions:
➔ Data analytics systems, like Apache Spark, are powerful and general purpose 

thanks to user-defined functions, which are written in the same language as the 

data analytics system.

➔ Ideally, a CPM system would (heuristically) detect equivalent UDFs to share data 

between them, by computing the same key for both UDFs.

➔ Prior work has shown that compilers can be used to detect program equivalence.

◆ If compilation(A) == compilation(B) then program A is equivalent to B.

◆ [Trivial Compiler Equivalence, ICSE 2015]

➔ No one has investigated this effect in the context of CPM.

We show how to share data between (some) equivalent UDFs.
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Challenge #1:
Sharing is not always possible, so we need to design 

low overhead CPM techniques.

Challenge #2:
Data produced by equivalent user-defined functions 

should be shared when possible.



1. A simple to implement technique that computes keys for intermediate and final 

results that are valid across programs to enable CPM.

2. A low overhead design that computes keys in under 350ms, with negligible 

runtime overhead in practice. Overhead does not grow with data-set size.

3. Evaluation of compiler-assisted UDF equivalence with a new benchmark.

4. Implemented in Apache Spark 2.2

a. Modifications and benchmarks are available online:

b. https://github.com/craiig/spark-keychain

c. https://github.com/craiig/keychain-tools 

Contributions: KeyChain
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➔ Not a technique to decide what is beneficial to cache

◆ Prior work considers potential reuse, computation/serialization/transfer costs.

● Memoization in general [Michie 1968, Mostow 1985]

● Databases: materialized view selection [ROBUS, MISO, BigSubs]

● Data Processing: coordinated caching [Nectar, PACMan, Neutrino]

◆ All techniques rely on having a key for the candidate data.

◆ KeyChain computes a key so this prior work can be applied!

What KeyChain is not
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KeyChain Details
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Motivating Example: Apache Spark
➔ Apache Spark implements user-managed caching, but not CPM. 

➔ Code must directly reference prior results.

➔ Assigns per-program integers to cached data

➔ Results in two problems:
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Second Query
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Solution: KeyChain uniquely identifies each node
➔ Keychain computes a key, KC

z

. that is valid across programs.

➔ Equivalent computations compute the same key.

14

read
B

map

group
by

join

read
A

Program 2

key=A key=B

key=X key=Y

key=C

Keys are valid across programs



➔ Goal: uniquely identify each node

➔ A key is a string that uniquely identifies each DAG node. 

➔ Keys generated before the program is run or input data is read.

KeyChain Design:
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Bytecode (hash)
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In the paper!



➔ Need to represent input data as a unique string

➔ Prior work hashes input data [Nectar, Incoop]

◆ A large source of overhead and data traffic that grows with data size

◆ KeyChain avoids hashing input data.

➔ Our solution, Origin Descriptors:

◆ Simply describe where the data came from

◆ And: the last modified time OR the duration it is valid for

◆ Examples: 

● “hdfs://path/to/your/data_nov-22-2018_12:32pm”

● “select * from … <database> (12:30pm-12:35pm)” (user needs to supply)

➔ Guaranteed never out of date because programs alway look for the right time.

Input Representation: Origin Descriptors group
by

read
A
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Contribution #1: KeyChain is simple to implement
➔ KeyChain used to implement CPM in Apache Spark 2.2

◆ 14 lines of code per operator on average (26 operators total)

➔ Uses our JVM UDF Hashing Library < 1000 LoC (Reusable)

➔ Also added cross-instance sharing (optional, not part of KeyChain)

➔ Total Spark changes: ~1100 LoC
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Summary: KeyChain in Spark enables more sharing
Assuming data has already been cached, when can we get a cache hit?

➔ When the same program can reference a prior result:

➔ When same Spark instance independently computes the same result:

➔ When different Spark instances independently computes the same result:
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Apache Spark: HIT Spark + Keychain HIT

Apache Spark: MISS Spark + Keychain HIT

Apache Spark: MISS Spark + Keychain HIT



➔ What are the performance benefits with more sharing in Apache Spark?

➔ What is the overhead of KeyChain when no sharing occurs?

➔ How well can UDF hashing detect equivalent code?

Evaluation
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Join Query Cache Miss (s) Cache Hit (s) Speedup

Same Code
Same Instance

100s 0.36s 281x

Different Instance 100s 27.0s 3.6x

Evaluation: CPM Performance Benefits in Spark

➔ Depending on the system, data movement can be an expensive operation.

➔ Data movement costs are specific to Spark, not to KeyChain.

➔ Ways to mitigate serialization overheads:

◆ Optimize for the expected data re-use pattern [Neutrino, HotStorage 2016]

◆ Avoid de/serialization with common format [Skyway, ASPLOS 2018]
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Evaluation: CPM Performance Benefits in Spark
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CPM with KeyChain yields significant 
speedup when sharing is possible.



Evaluation: End-to-end TPC-DS
● What are the overheads of KeyChain in practice?

● TPC-DS Evaluation on Microsoft Azure

○ Small  - 4 machines each with 4 cores, 16GB RAM, Scale = 10 GB

○ Large  - 21 machines each with 8 cores, 60GB RAM, Scale = 1 TB

○ NO CACHED DATA
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KeyChain 
overheads are 
negligible in 
practice
Other sources of 
variation: 
garbage collection, JIT 
compilation, stragglers, 
VM scheduling

Relative performance

Overhead does 
not grow with the 

data-set size.



➔ KeyChain Overheads: String concatenation + UDF Hashing

➔ Hashing equivalence test suite: < 350 ms

◆ Cold JVM for each variant of test case

➔ Hashing in practice on all of TPC-DS:

◆ Min: <0.1 ms  /  Mean: 2 ms  / Max: 265 ms / Total: 18s   (~9,000 UDFs)

◆ Benefits from warmed up JVM and cached hashes (>99% high hit ratio)

➔ In general:

◆ UDF hashing grows with the number of instructions hashed.

◆ Does not grow with the data set size.

Evaluation: UDF Hashing Overheads for JVM
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Evaluation: End-to-end TPC-DS
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Contribution #2:
Low overheads lets us safely enable CPM

all the time!

Always benefit from potential sharing
with negligible overhead.



Finding #1:
All compilers can detect 
equivalence when 
programs differ on only 
whitespace or variable 
names.
(Hashing bytecode better 
than program source.)

Evaluation: Can we detect equivalent UDFs?
➔ Test different compilers to inform CPM implementations (not just Spark)

➔ Contribution, new benchmark: 64 unique test cases, each with multiple variations.

◆ Each case measures a specific type of code change, i.e. changing variable names

● Pass if all variations compile to one unique output:  compilation(A) == compilation(B)

◆ Sources: TPC-DS, Compiler docs, Related work, Misc
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Java 
1.8

Scala 
2.12-opt

GCC 
4.9

GCC 
7

LLVM 
7

Full Passes 5 10 33 35 47

Qualified Passes 11 11 12 14 13

Finding #3: Fundamentally limited when syntax implies different execution behaviour 
(i.e. evaluation ordering, early exits)

Finding #2: 
Optimizing compilers 
are better at 
equivalence checking 
and being improved 
over time.



Evaluation: Can we detect equivalent UDFs?

Contribution #3:
Hashing bytecode helps to detect

(some) equivalent UDFs!
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Conclusion and Takeaways
(#1) Simple design makes KeyChain easy to add CPM to data processing systems.

(#2) KeyChain’s low overhead means systems can always benefit from CPM, even 

when sharing potential is unknown or low.

(#3) Bytecode hashing helps to share data between (some) equivalent UDFs.

Modified Spark and benchmarks available online:

https://github.com/craiig/spark-keychain

https://github.com/craiig/keychain-tools 
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Backup Slides
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Data dependency edges

model inputs and 

outputs of nodes

Background: Structure of Data Processing Programs
➔ Many data processing systems model programs as a directed acyclic graphs 

(DAG)

➔ Input nodes and transformation nodes and data dependency edges
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Transformation nodes 

represent operations on data.

Transformation node = 

   Input data (from nodes)

+ Communication Pattern:

    Map, reduce, group-by, join

+ User-defined Function

    How pattern affects data
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➔ Represent input data as a globally valid string

➔ Prior work hashes the data [Nectar, Incoop]

◆ A large source of overhead and data traffic that grows with data size

➔ Our solution, Origin Descriptors:

◆ Simply describe where the data came from

◆ And: the last modified time OR the duration it is valid for

◆ Examples: 

● “hdfs://path/to/your/data_nov-22-2018_12:32pm”

● “select * from … <database> (12:30pm-12:35pm)”

➔ Guaranteed never out of date because program always look for the right time.

➔ If it is not possible to give valid time range, is it may not be valid to cache

String Representations of Input Nodes group
by

read
A
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Compute key by concatenating:

➔ Input data:

◆ The keys of any prior input nodes. (Chaining)

➔ Communication pattern: group-by, filter, map, etc

◆ The string name of the pattern + parameters

➔ User Defined Function:

◆ Assuming the UDF is deterministic (most are)

◆ Any executable string: source code, bytecode, asm code

◆ Best to hash UDF after compilation/optimization

● JVM - Bytecode

● C/C++ - Assembly Code or LLVM IR

String Representations of Transformation Nodes
group
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User Defined 
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Input Data 
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Node Properties
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● Standalone UDF hashing library for the JVM: <1000 LoC

● Hash(function) -> String
○ Hashes all reachable bytecode and global values with SHA256

○ Caches results of previously hashed functions

● Challenge: Hashes vary due to reachable but irrelevant variables.

○ i.e. Spark assigns a Random UUID to each JVM instance

○ Solution:

■ Hashing Trace + Diff Tool: Easy to check what produced a given hash

■ Filters to ignore unnecessary variables

● On GitHub: https://github.com/craiig/keychain-tools/ 

Implementation: UDF Hashing Library
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Ensuring no false positives falls to CPM implementer who 

should have a good understanding of the systems.

+ Avoid CPM when there is a risk of false positives.

➔ Input data:

◆ Understand the data source semantics to ensure proper 

details are included for each data source.

➔ Communication pattern: 

◆ Understand of the behaviour of communication 

patterns, which parameters change data results.

➔ User Defined Function Hashing:

◆ Safe by default, but sometimes overly conservative

◆ Filtering out the wrong variable leads to false positives.

Avoiding false positives:
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Handling data generators
Treat data generators as input nodes, with special Origin Descriptor.

Encode the parameters of the data generator as the Origin Descriptor

Instead of “hdfs://path/to/your/file”

We have: “prng=<W>_seed=SEED_dataWidth=32bytes_numItems=Z”
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