
Practical Cross Program
Memoization with KeyChain

Craig Mustard and Alexandra Fedorova

University of British Columbia

Vancouver, BC, Canada

Best Paper at IEEE International Conference on Big Data 2018!

Memoization:
Save resources and improve response time by

reusing previously computed results.

2

“Cross Program Memoization” (CPM):
Reuse results between programs.

Basic Memoization

Memoization in general:

1. Compute a key representing the computation to be done (line 3)

2. Check the cache for that key (line 4-5)

3. Return results if found, compute if not found, and (optionally) cache it.

a. Not shown: choosing what to cache, eviction policies,

3

4

Cross Program Memoization
is possible when cache keys are valid across

programs that share a cache.

This work shows how to effectively generate keys for
intermediate and final results of data analytics

programs.

Structure of Data Analytics Programs
➔ Programs are modeled as a directed acyclic graph (DAG)

➔ Gives an opportunity for finding prior results of parts of the program.

group
by

read
A

Query 1

read
B

map

group
by

join

read
A

Query 2

read
B

map

join

reuse
data

Query 2 reusing Query 1

5

CPM is very effective, but only when the potential is there.
➔ CPM can be very effective:

◆ 20-50% total machine-hours saved [Nectar, OSDI 2010]

◆ 10-42% total machine-hours saved [BigSubs, VLDB 2018]

◆ 37% reduction in query time [SQLShare, ICDM 2016]

➔ But potential for data sharing varies, and can be non-existent.

◆ Only 10-20% on certain clusters [Nectar, BigSubs]

◆ SQLShare queries benefit a lot (>90%) or a little (<10%)

◆ Less than 1% of files are shared in academic clusters [Ren VLDB 2013]

➔ Want to enable CPM all the time, but need to address overheads when
sharing potential is low.

6

When sharing potential is low, overhead is important.
➔ No sharing == no benefit from reusing results.

➔ The overhead of CPM becomes critical.

➔ Want to keep CPM enabled in case sharing potential changes.

➔ Prior work on CPM has not looked at overheads for low-sharing situations.

◆ Nectar does not report overheads and Incoop can increase runtime by 5-22%

To have CPM always-on, we need low overhead techniques!

7

User-defined Functions:
➔ Data analytics systems, like Apache Spark, are powerful and general purpose

thanks to user-defined functions, which are written in the same language as the

data analytics system.

➔ Ideally, a CPM system would (heuristically) detect equivalent UDFs to share data

between them, by computing the same key for both UDFs.

➔ Prior work has shown that compilers can be used to detect program equivalence.

◆ If compilation(A) == compilation(B) then program A is equivalent to B.

◆ [Trivial Compiler Equivalence, ICSE 2015]

➔ No one has investigated this effect in the context of CPM.

We show how to share data between (some) equivalent UDFs.
8

9

Challenge #1:
Sharing is not always possible, so we need to design

low overhead CPM techniques.

Challenge #2:
Data produced by equivalent user-defined functions

should be shared when possible.

1. A simple to implement technique that computes keys for intermediate and final

results that are valid across programs to enable CPM.

2. A low overhead design that computes keys in under 350ms, with negligible

runtime overhead in practice. Overhead does not grow with data-set size.

3. Evaluation of compiler-assisted UDF equivalence with a new benchmark.

4. Implemented in Apache Spark 2.2

a. Modifications and benchmarks are available online:

b. https://github.com/craiig/spark-keychain

c. https://github.com/craiig/keychain-tools

Contributions: KeyChain

10

https://github.com/craiig/spark-keychain
https://github.com/craiig/keychain-tools

➔ Not a technique to decide what is beneficial to cache

◆ Prior work considers potential reuse, computation/serialization/transfer costs.

● Memoization in general [Michie 1968, Mostow 1985]

● Databases: materialized view selection [ROBUS, MISO, BigSubs]

● Data Processing: coordinated caching [Nectar, PACMan, Neutrino]

◆ All techniques rely on having a key for the candidate data.

◆ KeyChain computes a key so this prior work can be applied!

What KeyChain is not

11

KeyChain Details

12

Motivating Example: Apache Spark
➔ Apache Spark implements user-managed caching, but not CPM.

➔ Code must directly reference prior results.

➔ Assigns per-program integers to cached data

➔ Results in two problems:

group
by

read
A

First Query

key=0 key=1
group

by
read

A

key=2 key=3

Second Query

Program 1

Keys are not reused within a program

read
B

map

group
by

join

read
A

Program 2

key=0 key=1

key=2 key=3

key=4

Keys not valid across programs
13

Second Query

group
by

read
A

First Query

key=X key=Y

group
by

read
A

key=X key=Y

Program 1

Keys reused within a program

Solution: KeyChain uniquely identifies each node
➔ Keychain computes a key, KC

z

. that is valid across programs.

➔ Equivalent computations compute the same key.

14

read
B

map

group
by

join

read
A

Program 2

key=A key=B

key=X key=Y

key=C

Keys are valid across programs

➔ Goal: uniquely identify each node

➔ A key is a string that uniquely identifies each DAG node.

➔ Keys generated before the program is run or input data is read.

KeyChain Design:

Program
Description

read
input

map

group by

join

Communication
Pattern

User Defined
Function (UDF)

Input Data
Representation

Key
(a string,

one per node)

Node Properties

Name + Params

15

Bytecode (hash)

Origin Descriptor

In the paper!

➔ Need to represent input data as a unique string

➔ Prior work hashes input data [Nectar, Incoop]

◆ A large source of overhead and data traffic that grows with data size

◆ KeyChain avoids hashing input data.

➔ Our solution, Origin Descriptors:

◆ Simply describe where the data came from

◆ And: the last modified time OR the duration it is valid for

◆ Examples:

● “hdfs://path/to/your/data_nov-22-2018_12:32pm”

● “select * from … <database> (12:30pm-12:35pm)” (user needs to supply)

➔ Guaranteed never out of date because programs alway look for the right time.

Input Representation: Origin Descriptors group
by

read
A

16

Contribution #1: KeyChain is simple to implement
➔ KeyChain used to implement CPM in Apache Spark 2.2

◆ 14 lines of code per operator on average (26 operators total)

➔ Uses our JVM UDF Hashing Library < 1000 LoC (Reusable)

➔ Also added cross-instance sharing (optional, not part of KeyChain)

➔ Total Spark changes: ~1100 LoC

17

Master

Worker Worker

Cache

...

Spark Instance

Master

Worker Worker

Cache

...

Spark Instance

Cross-instance
data sharing

Summary: KeyChain in Spark enables more sharing
Assuming data has already been cached, when can we get a cache hit?

➔ When the same program can reference a prior result:

➔ When same Spark instance independently computes the same result:

➔ When different Spark instances independently computes the same result:

18

Apache Spark: HIT Spark + Keychain HIT

Apache Spark: MISS Spark + Keychain HIT

Apache Spark: MISS Spark + Keychain HIT

➔ What are the performance benefits with more sharing in Apache Spark?

➔ What is the overhead of KeyChain when no sharing occurs?

➔ How well can UDF hashing detect equivalent code?

Evaluation

19

Join Query Cache Miss (s) Cache Hit (s) Speedup

Same Code
Same Instance

100s 0.36s 281x

Different Instance 100s 27.0s 3.6x

Evaluation: CPM Performance Benefits in Spark

➔ Depending on the system, data movement can be an expensive operation.

➔ Data movement costs are specific to Spark, not to KeyChain.

➔ Ways to mitigate serialization overheads:

◆ Optimize for the expected data re-use pattern [Neutrino, HotStorage 2016]

◆ Avoid de/serialization with common format [Skyway, ASPLOS 2018]

20

Data movement
costs

Evaluation: CPM Performance Benefits in Spark

21

CPM with KeyChain yields significant
speedup when sharing is possible.

Evaluation: End-to-end TPC-DS
● What are the overheads of KeyChain in practice?

● TPC-DS Evaluation on Microsoft Azure

○ Small - 4 machines each with 4 cores, 16GB RAM, Scale = 10 GB

○ Large - 21 machines each with 8 cores, 60GB RAM, Scale = 1 TB

○ NO CACHED DATA

22

KeyChain
overheads are
negligible in
practice
Other sources of
variation:
garbage collection, JIT
compilation, stragglers,
VM scheduling

Relative performance

Overhead does
not grow with the

data-set size.

➔ KeyChain Overheads: String concatenation + UDF Hashing

➔ Hashing equivalence test suite: < 350 ms

◆ Cold JVM for each variant of test case

➔ Hashing in practice on all of TPC-DS:

◆ Min: <0.1 ms / Mean: 2 ms / Max: 265 ms / Total: 18s (~9,000 UDFs)

◆ Benefits from warmed up JVM and cached hashes (>99% high hit ratio)

➔ In general:

◆ UDF hashing grows with the number of instructions hashed.

◆ Does not grow with the data set size.

Evaluation: UDF Hashing Overheads for JVM

23

Evaluation: End-to-end TPC-DS

24

Contribution #2:
Low overheads lets us safely enable CPM

all the time!

Always benefit from potential sharing
with negligible overhead.

Finding #1:
All compilers can detect
equivalence when
programs differ on only
whitespace or variable
names.
(Hashing bytecode better
than program source.)

Evaluation: Can we detect equivalent UDFs?
➔ Test different compilers to inform CPM implementations (not just Spark)

➔ Contribution, new benchmark: 64 unique test cases, each with multiple variations.

◆ Each case measures a specific type of code change, i.e. changing variable names

● Pass if all variations compile to one unique output: compilation(A) == compilation(B)

◆ Sources: TPC-DS, Compiler docs, Related work, Misc

25

Java
1.8

Scala
2.12-opt

GCC
4.9

GCC
7

LLVM
7

Full Passes 5 10 33 35 47

Qualified Passes 11 11 12 14 13

Finding #3: Fundamentally limited when syntax implies different execution behaviour
(i.e. evaluation ordering, early exits)

Finding #2:
Optimizing compilers
are better at
equivalence checking
and being improved
over time.

Evaluation: Can we detect equivalent UDFs?

Contribution #3:
Hashing bytecode helps to detect

(some) equivalent UDFs!

26

Conclusion and Takeaways
(#1) Simple design makes KeyChain easy to add CPM to data processing systems.

(#2) KeyChain’s low overhead means systems can always benefit from CPM, even

when sharing potential is unknown or low.

(#3) Bytecode hashing helps to share data between (some) equivalent UDFs.

Modified Spark and benchmarks available online:

https://github.com/craiig/spark-keychain

https://github.com/craiig/keychain-tools

27

https://github.com/craiig/spark-keychain
https://github.com/craiig/keychain-tools

28

Backup Slides

29

Data dependency edges

model inputs and

outputs of nodes

Background: Structure of Data Processing Programs
➔ Many data processing systems model programs as a directed acyclic graphs

(DAG)

➔ Input nodes and transformation nodes and data dependency edges

group
by

read
A

Input nodes read data

from outside the

computation model

(HDFS, databases, etc)

Transformation nodes

represent operations on data.

Transformation node =

 Input data (from nodes)

+ Communication Pattern:

 Map, reduce, group-by, join

+ User-defined Function

 How pattern affects data

30

➔ Represent input data as a globally valid string

➔ Prior work hashes the data [Nectar, Incoop]

◆ A large source of overhead and data traffic that grows with data size

➔ Our solution, Origin Descriptors:

◆ Simply describe where the data came from

◆ And: the last modified time OR the duration it is valid for

◆ Examples:

● “hdfs://path/to/your/data_nov-22-2018_12:32pm”

● “select * from … <database> (12:30pm-12:35pm)”

➔ Guaranteed never out of date because program always look for the right time.

➔ If it is not possible to give valid time range, is it may not be valid to cache

String Representations of Input Nodes group
by

read
A

31

Compute key by concatenating:

➔ Input data:

◆ The keys of any prior input nodes. (Chaining)

➔ Communication pattern: group-by, filter, map, etc

◆ The string name of the pattern + parameters

➔ User Defined Function:

◆ Assuming the UDF is deterministic (most are)

◆ Any executable string: source code, bytecode, asm code

◆ Best to hash UDF after compilation/optimization

● JVM - Bytecode

● C/C++ - Assembly Code or LLVM IR

String Representations of Transformation Nodes
group

by
read

A

Communication
Pattern

User Defined
Function (UDF)

Input Data
Representation

Node Properties

32

● Standalone UDF hashing library for the JVM: <1000 LoC

● Hash(function) -> String
○ Hashes all reachable bytecode and global values with SHA256

○ Caches results of previously hashed functions

● Challenge: Hashes vary due to reachable but irrelevant variables.

○ i.e. Spark assigns a Random UUID to each JVM instance

○ Solution:

■ Hashing Trace + Diff Tool: Easy to check what produced a given hash

■ Filters to ignore unnecessary variables

● On GitHub: https://github.com/craiig/keychain-tools/

Implementation: UDF Hashing Library

33

https://github.com/craiig/keychain-tools/

Ensuring no false positives falls to CPM implementer who

should have a good understanding of the systems.

+ Avoid CPM when there is a risk of false positives.

➔ Input data:

◆ Understand the data source semantics to ensure proper

details are included for each data source.

➔ Communication pattern:

◆ Understand of the behaviour of communication

patterns, which parameters change data results.

➔ User Defined Function Hashing:

◆ Safe by default, but sometimes overly conservative

◆ Filtering out the wrong variable leads to false positives.

Avoiding false positives:

34

group
by

read
A

Communication
Pattern

User Defined
Function (UDF)

Input Data
Representation

Node Properties

Handling data generators
Treat data generators as input nodes, with special Origin Descriptor.

Encode the parameters of the data generator as the Origin Descriptor

Instead of “hdfs://path/to/your/file”

We have: “prng=<W>_seed=SEED_dataWidth=32bytes_numItems=Z”

35

