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Abstract—This paper presents a method to internalize the im-
pact of system frequency dynamics into real-time pricing of re-
serves. The proposed frequency dynamics-aware price of reserves
helps to incentivize and compensate generators for setting aside
reserves that contribute to de-risking real-time dynamic perfor-
mance subject to uncertainty in the net-load forecast. Central to
the proposed method is to augment a static chance-constrained
economic dispatch (CCED) with constraints modelling system fre-
quency dynamics driven by generator inertia response along with
primary and secondary frequency controls. Chance constraints in
the resulting dynamics-aware CCED enforce tolerable probability
of dynamic system frequency and generator power trajectories
violating their respective limits. We show that the dynamics-
aware price of reserves internalizes uncertainty in dynamic state
variables along with the risk of violating limits in frequency
excursions and generator outputs during frequency transients
as well as at steady state. We also assess the sensitivity of
the dynamics-aware price of reserves with respect to generator
parameters that directly affect system dynamic performance.
Numerical case studies involving the Western System Coordi-
nating Council and New England test systems confirm dynamics
in the proposed price of reserves, reveal additional revenue for
generators, and demonstrate computational scalability.

Index Terms—Chance constraints, economic dispatch, fre-
quency dynamics, pricing of reserves, uncertainty

I. INTRODUCTION

Extensive integration of renewable energy sources (RESs)
helps to address burgeoning environmental concerns associated
with fossil fuel-based generators. However, deploying low-
inertia RESs in the power system leads to larger, faster,
and more frequent variations in its net load—load minus
non-dispatchable RES generation—thereby presenting notable
challenges for reliable and efficient operation [1]. Real-time
supply-demand balancing is made even more difficult by
considerable uncertainty in forecasting RES generation, which
in turn calls for ever more operating reserves [2]. However,
additional reserves procured via new construction of fast-
response generators, €.g., combustion turbines, can cause more
emissions. A promising alternative involves having (possibly
a subset of) inverter-based RESs and battery storage devices
contribute to balancing the net demand and providing suffi-
cient reserves to offset forecast uncertainty, both on a second-
to-second basis, alongside existing turbine-based generators.
While technically feasible with modern power-electronic in-
verters furnished with frequency-responsive controllers, cru-
cial for real-world uptake of this potential solution are mar-
ket structures that seamlessly integrate services provided by
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inverter- and turbine-based assets and offer suitable compen-
sation for supplying energy and contributing to reserves to
support real-time dynamic and steady-state performance [3].

Central to the real-time electricity market problem is an
economic dispatch (ED) traditionally solved assuming that the
net-load forecast is known precisely [4]. For example, both
the Alberta Electric System Operator and PIM solve a real-
time ED every five minutes to minimize dispatch cost in a
co-optimization of energy and reserves to respectively serve
a deterministic load forecast and satisfy an explicit reserve
requirement for the system [5], [6]. Extensive integration of
RESs has motivated stochastic market designs that embed
probabilistic models of the growing uncertainty in the net-
load forecast. These facilitate the procurement of sufficient
reserves alongside the optimal dispatch of energy, thereby
ensuring that adequate capacity is available to handle poten-
tially large fluctuations in the net load across the scheduling
horizon [7]. Accompanying the optimal market-clearing so-
lutions are prices that then inform payments to be made to
generators for the energy that they produce and the reserves
that they set aside. The price of energy generally captures
the marginal cost of optimally supplying an additional unit of
electric load considering the cost of generation constrained by
supply-demand balance and generator capacity limits [8], and
the price of reserves covers the opportunity cost for a generator
to maintain available capacity on standby [9].

Prior work in stochastic markets includes scenario-based
optimization [10], robust optimization [11], and chance-
constrained optimization [12]. These generally modify a deter-
ministic ED (or ED-like) problem with costs and constraints
that enable uncertainty-aware decision-making and pricing
consistent with a particular choice of model for the net-load
forecast uncertainty. For example, [12] minimizes the expected
cost of generation while enforcing tolerable probability of
constraint violations given moment-based net-load forecast
probabilistic models, leading to the formulation of a chance-
constrained economic dispatch (CCED). The CCED avoids
trading off between expected and per-scenario performance
typical in scenario-based methods and potentially overly con-
servative decisions from robust optimization [12]. However, in
general, the aforementioned prior efforts in stochastic markets
do not capture the cost of setting aside sufficient reserves
to handle transient frequency excursions expected to become
larger and more frequent in future power systems due to
the displacement of high-inertia turbine-based generators with
low-inertia inverter-based resources. In this paper, we extend a
static CCED into a multi-interval multi-time scale optimization
problem and derive the ensuing real-time dynamics-aware
price of reserves and compensation for generators. The result-



ing price represents the marginal cost of setting aside reserve
capacity, for an incremental change in net-load uncertainty,
to limit the risk of violating frequency and power generation
constraints during system frequency transients as well as at
steady state.

Although the dynamics-aware price of reserves derives from
the optimal solution of an ED (or a CCED more precisely), the
focus of this paper is not on frequency-constrained dispatch of
conventional and inverter-based resources toward favourable
dynamic frequency response (see, e.g., [13]-[15] and refer-
ences therein). Instead, our aim is to compensate generators for
de-risking system dynamic performance under uncertainty and
pricing thereof, which has motivated recent work in procuring
new services, such as physical or virtual inertia [16]-[20], fast
frequency response reserves [17]-[19], and primary frequency
response reserves [17]-[20], to mitigate undesirable frequency
excursions. However, the proposition of creating new products
may be challenged by potential downstream effects on genera-
tors’ strategic participation in existing markets and opportunity
costs incurred by having more market products. Thus, we
seek to extend existing real-time markets in, e.g., [5], [6],
that co-optimize energy and reserves without creating any new
products or services. Instead, the extension lies in pricing
reserves set aside by generators toward restoring frequency to
synchronous steady state and de-risking dynamic performance
in the face of uncertainty in net load. With respect to dy-
namic modelling, prior literature tends to formulate common
dynamic performance requirements on, e.g., rate of change of
frequency [16]-[20], magnitude of frequency deviation [17]-
[20], and primary frequency response [18]-[20], as algebraic
approximations and incorporate them as constraints in an eco-
nomic dispatch. Unlike these algebraic approximations valid
only at specific snapshots in time, in this paper, we directly
incorporate frequency dynamics that capture the time-domain
dynamic response in its entirety across the scheduling horizon.
We have made use of this general approach in [21]-[23]
to derive dynamics-aware price of energy. Specifically, [21]-
[23] modify a static ED to formulate multi-interval multi-time
scale dynamics-aware EDs that embed constraints modelling
relatively fast frequency dynamics ascribed to (potentially
virtual) synchronous generators and slower set-point decisions
from secondary frequency control.

This paper extends the deterministic EDs in [21], [22]
subject to precise forecasts of net load by modelling proba-
bilistic uncertainty therein and formulating a dynamics-aware
CCED where chance constraints enforce tolerable probability
of dynamic system frequency and generator power trajecto-
ries violating their respective limits. Furthermore, unlike the
dynamics-aware CCED in [23] that penalizes the expected
value of system frequency deviations in the objective function
to enable secondary frequency control, the problem in this pa-
per is formulated to reflect actual system operations by incor-
porating a dynamical model of an industry-standard automatic
generation control (AGC). With uncertainty in the net-load
forecast across the scheduling horizon modelled as a Gaussian
random variable, the dynamics-aware CCED reformulates into
a deterministic optimization problem with quadratic cost and
linear constraints that can be solved at scale using off-the-

shelf optimization packages. From the optimal solution, we
derive the real-time price of reserves as the marginal cost
incurred to optimally offset an incremental change in the net-
load uncertainty while satisfying dynamic chance constraints.
We demonstrate that, unlike the uncertainty-oblivious price
of energy studied in [21]-[23], the dynamics-aware price of
reserves internalizes uncertainty in dynamic decision variables
as well as the risk of violating limits in frequency excursions
and generator outputs across system transients and into steady
state. Finally, extensive numerical simulations involving the
Western System Coordinating Council (WSCC) 3-generator
and New England 10-generator test systems confirm dynamics
in the proposed price of reserves, underscore its dependence
on generator parameters that directly affect system dynamic
risk profile, reveal additional revenue for generators, and
demonstrate computational scalability.

The remainder of the paper is organized as follows. Sec-
tion II outlines the static CCED and pertinent dynamical
models for the AGC and generators. In Section III, we
formulate the dynamics-aware CCED and model probabilistic
uncertainty in its decision variables. Section IV presents main
results on the proposed dynamics-aware price of reserves. Sec-
tion V provides extensive numerical simulations involving two
standard test systems. Finally, we offer concluding remarks
and directions for future work in Section VI.

II. PRELIMINARIES

This section presents a static CCED incorporating net-
load forecast uncertainty for a stochastic market followed by
models of the AGC and generators pertinent to system dy-
namic frequency response. Then, via a numerical example, we
motivate the need to embed dynamics into pricing of reserves.

A. Static Chance-constrained Economic Dispatch

Consider a transmission system with G online generators
in the set G = {1,..., G} supplying forecasted net load (in-
clusive of must-take renewable generation and losses) P2
Prevailing static ED formulations assume that the power sys-
tem operates at synchronous steady state. Suppose generator g
produces steady-state electrical power P, , with cost function
Cy(P,.0). Given P, , subject to uncertainty due to imprecise
predictions of the upcoming load demand and renewable
generation, the total expected cost of generation is E[C'(P;)] =
E[},cg Co(Pyo)l, where Py = [Pro,...,Paol". A static
single-snapshot CCED can be formulated as (see, e.g., [12])

minimize E[C(F,)] (la)
subject to 15 P, = Plad, (1b)
P, = gplad (1o
P(Py > Pyin) > (1 —¢")1g,  (1d)
]P(Po S Pmax) Z (1 - 5P)1Ga (16)

where participation factors collected in 7 € R distribute
system net load and uncertainty therein amongst all generators,
eP € (0,1) represents the tolerable probability of violating
chance constraints in (1d)-(le), and 14 is a (G-dimensional



vector of 1s. The scalar variable P°*! can be modelled
using statistical moments of the underlying uncertainty via
a Gaussian distribution, in which case P, would follow a
joint Gaussian distribution in accordance with (1c). The CCED
in (1) can then be reformulated into a convex deterministic op-
timization problem that can be solved efficiently at scale [12].

B. System Frequency Dynamics

Let P* = [P},..., P5|", where P} denotes the reference
set-point of generator g € G. For a single-area power system,
P is obtained as [24]

P =P, +7(¢ - 1%P,), (2)

where P, represents the most recent optimal solution of a static
ED and accompanying a linear perturbative analysis thereof
around that optimal solution are AGC participation factors
collected in 7 = [mq,...,7g|", with mg > 0, Vg € G and
12« = 1. Furthermore, in (2), £ is the AGC state variable
with dynamics modelled by [24]

7A€ = —€ — ACE + pP'oad, (3)

where 7 is the AGC time constant typically ranging from
30 [sec] to minutes [25], ACE = —kSAw is the area control
error (ACE) for a single-area power system, and the system
load P2 must be balanced by electrical outputs summed
across all generators at any given time. The ACE is calculated
by scaling Aw = w — wg, where w denotes the prevailing fre-
quency for the area and ws = 2760 [rad/s] is the synchronous
speed, by the product of a constant k¥ < 0 and the area’s
bias factor 3. The value of the bias factor is typically set
as the area’s frequency-response characteristic [24], [26]. The
model in (2)—(3) is equivalent to the control block diagram
depicted in [24, p. 494], and it can easily extend to the case
of multiple areas (see, e.g., [27]) at the expense of greater
notational burden. Regarding time-scales of operation, industry
implementations of the AGC generally sample the ACE signal
and then update the generator reference set-points every two
to four seconds [25], [26]. These serve to inform the longer
time step in the dynamics-aware CCED to be formulated in
Section III, where we extract values for Aw for the ACE signal
via dynamical models outlined next.

Let P™ = [P, ..., PZ]T, where P,* denotes the turbine
mechanical power of generator g € G. Assuming that electri-
cal distances amongst different generators in the system are
negligible, the electrical angular frequency of generator g € G,
denoted by w,, would follow the same transient behaviour as
all other generators with w, = w, Vg € G [28]. Then dynamics
in the system frequency deviations Aw := w —wj for the time-
scales of our interest can be modelled by

Mg Ad = 1EP™ — DogAw — P 4)

7P™ =P — P™ - R MAw, (5)

where Mg = deg M, with M, denoting the inertia con-
stant of generator g, Deg 1= Y 9eG D, with D, denoting the
damping constant of generator g, and 7 = diag([7y,...,7¢]")
and R~ = diag([R;",..., R5"]") respectively collect the
turbine-governor time constants and inverse-droop constants

TABLE I: Dynamic parameter values for generators in the WSCC test system
(boldface distinguishes values that differ from the default in the standard test
case).

l Generator [ Case(s) [ My [sec] [ Dy [ Rg_1 [ Tg [sec] ]
g=1 1,2, 3 23.64 20 100 2
g=2 1,2,3 6.4 20 100 2
1 3.01 20 0 2
g=3 2 3.01 20 100 2
3 13.01 50 125 1
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Fig. 1: (Example 1). Dynamic trajectories in uncertainty realized by setting
generator parameters to values provided in Table I in response to an increase
in net load associated with Gaussian uncertainty: standard deviation values
of the marginal uncertainty distribution of (a) mechanical power of the most
expensive generator and (b) system frequency deviations.

of all generators [26]. The model in (4)—(5) is of order
G + 1, where each entry in (5) is constructed for an individual
generator (or aggregate power plant), so the model indeed dis-
tinguishes amongst response speeds and droop characteristics
of different generators. Moreover, dynamic frequency support
from inverter-based resources can be readily incorporated
into (4)—(5) by controlling the active-power loops as so-
called virtual synchronous generators [29]. Finally, the system
initially operates at steady-state equilibrium with w(0) = wy
given the initial net load P'°?4(0) = Plead =3~ - Pr  with

9€g 570’
generator g initially operating at P;(0) = P,;*(0) = Py ..

C. Problem Statement

The static CCED in (1) does not explicitly model system
dynamics, so subsequent solutions lack insight into pricing
during frequency transients. Consequently, approaches relying
on static models to price reserves do not offer explicit in-
centives or compensation to generators for supporting system
dynamic frequency response, as we demonstrate next.

Example 1 (WSCC 3-Generator Test System). Consider the
WSCC test system from [30] consisting of two cheaper
generators and a more expensive third. We solve the static
CCED in (1) with uncertainty in the net-load forecast modelled
as a Gaussian random variable with zero mean and standard
deviation 0.2 [p.u.]. We examine system dynamics in response
to a 20% increase in the nominal (or mean) values of all



loads at time ¢t = 10]sec] under three sets of generator
parameter values given in Table I, where generator 3 does
not contribute to primary frequency response in case 1 with
Ry L= 0, otherwise all parameters in cases 1 and 2 take their
default values from the standard test system. In each case,
we perform 1,000 independent dynamic simulations, each of
which randomly samples Gaussian uncertainty in net load that
then propagates to uncertainty in system dynamic states. From
the resulting simulated trajectories of the mechanical power of
the most expensive generator, i.e., generator 3, and the system
frequency deviations, we calculate their standard deviation at
each time step and plot them in Fig. 1.

In Fig. 1a, the uncertainty trajectory for generator 3 in case 1
remains constant during the simulation period and is thus
consistent with the steady-state assumption under which the
static CCED is solved. On the other hand, in Fig. 1b, case 2
depicted in blue colour ostensibly represents more desirable
risk profile for the system with lower uncertainty in frequency
deviations than case 1 in red colour. Case 3 further ascribes
values for inertia, damping, droop, and turbine-governor time
constants of generator 3 that exposes system frequency de-
viations to even lower uncertainty, as highlighted in green
colour in Fig. 1b. Clearly, the uncertainty distributions for
dynamic state variables vary over time and across the three
cases. However, these differences are not captured by the static
CCED in (1) because frequency dynamics are not modelled,
and (1c) requires the net load (and its uncertainty) to distribute
across generators in proportion to constant participation factors
in 7w regardless of their contribution to support the system’s
dynamic risk profile over time. |

The example above highlights that generators and system
frequency deviations are, in fact, exposed to varying levels
of uncertainty and thereby risk over time, contrary to the
steady-state assumption implicit in static CCED. However,
the price at which generators are conventionally compensated
for putting aside reserve capacity is determined under the
steady-state assumption. Also, parameter values of generators
(and inverter-based resources) impact their dynamic response
to disturbances and lead to varying levels of risk exposure.
However, conventional frequency regulation services generally
do not compensate generators explicitly for the risk that they
undertake during transients based on their contribution to sys-
tem dynamic performance, and only sometimes for response
speed under additional so-called mileage payments. Finally,
fast-response inverter-based resources that can participate in
inertial or primary frequency response alongside conventional
generators do not yet do so [19]. To address these issues, we
generalize the static CCED in (1) and the resulting price of
reserves to embed the effects of frequency dynamics, with
the overarching goal being to provide conventional generators
and inverter-based resources alike with compensation that
is consistent with their contribution to supporting dynamic
frequency performance under net-load forecast uncertainty.

III. DYNAMICS-AWARE CCED

This section formulates the dynamics-aware CCED by gen-
eralizing over the problem in (1). We then model uncertainty

in the net load and system dynamic state variables and refor-
mulate the CCED into a deterministic optimization problem.

A. Chance-constrained Problem Formulation

For the CCED problem, consider a scheduling horizon from
time ¢y to to + T with, e.g., length 7" = 5 [min], for real-
time markets. We subdivide the scheduling horizon according
to longer time steps of length AtS (e.g., 5[sec]) reflecting
the granularity of slower AGC action to adjust generator
reference set-points and shorter time steps of length AtP (e.g.,
0.05 [sec]) adequately capturing faster generator frequency
dynamics. The two time steps At> and AtP respectively
subdivide the scheduling horizon into equal intervals with
endpoints collected in the sets 7,5 = {to, to+At5, ..., to+T}
and T,20 = {to,to + AtP, ... to + T}.

The proposed dynamics-aware CCED incorporates one set
of ED set-points across the entire scheduling horizon of
length T, generator reference set-points determined by the
AGC at intervals of AtS, and frequency dynamics updated
at intervals of AtP. Due to forecast errors, the upcoming net
load over the scheduling horizon Ptlo‘"‘d, te T]O), is not known
precisely and uncertainty is associated with decision variables.
The dynamics-aware CCED is then formulated as follows:

minimize > E[C(P)]ALP (6a)
teTy

Awt_;’_AtD — AWt

subject to Meﬂ‘< ) = 12PtIn — Do Awy

AP
_Ptloadv te ﬁ?\{t0+T}7 (6b)
pm _ pm
AtD t T m _
r(%) — P, — P" ~ R1¢Aw,

e TS\ {to+ T},
te{t, ..., t' + A5 — AtP},

TA (‘5tl+AAtSts_ gt/) = —&v + kBAwy + P,

(6¢)

e TS\ {to+ T}, (6d)
=P, + (& — 1GP), ' € TS, (6e)
1
T load
1GPO:WZP1§ ; (6f)
teTo
P(Aw; < Awpmax) > 1 —%, t € TP, (6g)
P(Aw; > Awpin) > 1—€¥, t € 7;]037 (6h)
P(PP<PR)>1c(1=€"), teTl, (6
P(PP>PR) > 1c(1—€7), te T2, (6)

where Q = {F,, P}, &, P, Awt}teﬁmﬁt,eﬁ% collects the
decision variables of the optimization pro%)lem and |-| denotes
the cardinality operator. The objective in (6a) is the expected
value of operation cost E[C'(P;")] = E[}_ . Cy(F}7)] under
uncertainty in net-load forecast. Amongst the constraints,
discrete-time system dynamics in (6b)—(6e) result from a first-
order approximation of the continuous-time dynamics in (2)—
(5), where the generator and AGC dynamics are respectively
discretized at shorter time steps of AtP and longer time steps
of AtS. The value of AtP can be informed by a trade-off



between discretization accuracy and computational burden to
solve (6), and the value of AtS reflects the AGC actuation
interval. Instead of resorting to first-order approximation,
(6b)—(6d) can readily be replaced by discrete-time dynamics
synthesized from other discretization methods. Further, the
constraint in (6f) enforces ED set-points across all generators
to sum up to the net-load forecast averaged over the course
of the scheduling horizon. Finally, chance constraints in (6g)—
(6h) and (61)—(6j) respectively impose £“ and e? as the tol-
erable probability of violating limits in system frequency and
generator mechanical powers to, e.g., satisfy certain reliability
criteria in a given system.

Remark 1 (Network Power Flow Constraints). In (6), the
inclusion of chance constraints on transmission line flows
would be methodologically straightforward using injection
shift factors, in a manner similar to the approach in [22].
However, this hypothetical approach would yield locational
prices of reserves varying across the system instead of a single
uniform price, unlike industry practice [5], [6], academic
literature [10], [12], and standard textbook reasoning presented
in, e.g., [4, Chap. 5.4], that advocate for pricing reserves
centrally across a control area (or so-called “reserve zone” in
the context of reserve procurement) to mitigate uncertainty in
aggregate load (or other unpredictable events). In light of this,
we deliberately impose power balance across the system in (6f)
instead of at each individual bus. Moreover, the exclusion of
network power flow equations is consistent with our intention
to generalize over the static CCED in (1) imposing only system
net power balance in (1b). |

B. Uncertainty Models

We decompose the net-load forecast as

—load

Ptload P Pload te 7;D’ (7)

where Fioad is the nominal (or mean) value and ]Stload
represents the uncertain component. Following this, system
dynamic state variables Aw;, P, &, and P}, can each be
similarly decomposed into two components, as follows:

Awy = Awy + Ay, t € T, (8)
P =P, +P™ teTP, ©9)
(v =8y + &, t' €T, (10)
P, =P, +P, t' T}, (11)

where ~ denotes the nominal value of the corresponding
state variable and ~ denotes the component encapsulating
its uncertainty. Substitution of (7)—(11) into (6b)—(6d) reveals
that (6b)—(6d) can be equivalently expressed as the sum of
two constituent linear dynamical systems. The first system in
this sum models the mean trajectories of the dynamic state
variables, as follows:

[A%HAW}I{Awﬂ+BPMd+CPL
Pt+AtD Pt

eTo\{to+ T}, te{t,... .t + A5 — AP}, (12)

load
Evins=aly+ P+ cAwy, t' € TS\ {to + T}, (13)

where matrices A, B, and C as well as scalar constants a, b,
1 — D A¢D T LGALP ]

and c are given by

A:[ TG AP  diag(ly) -+ AP
AP 0%
:l ) C= |:7_—1AtD:| ’

B = ]\/I
eff
7A At 5 Cc = 7A kﬁAt .

a=1-71'At5 b= (14)

The second dynamical system in the sum models the uncertain
components of the dynamic state variables, given by

[Agntl-&-AtD] —A [Aﬁgt} _’_Bﬁtload +0,C ~trl’

t+AtP t
teTo\{to+ T}, te{t,....t' + A — AP}, (15)
Epynss = aly+ DPR* + cABy, ¥ € T2\ {to + T3, (16)
where the indicator variable O; = 1 if ¢t € 7}% and O; = 0
otherwise. The same decomposition further enables (6¢e) to be
expressed as the sum of the following two components:

Py =P, +7(& —15P), t' € TS,

tr’:ﬂ-gt' t' 67;07

-T

a7
(18)

where P, is the deterministic dispatch decision and so only
contributes to the nominal value of P,.

With the above in place, we focus on (15)—(16) modelling
the uncertain components of dynamic state variables. Substi-
tuting (18) into (15) then combining the resultant with (16)
yields the following linear time-varying dynamical system:

AE)H-AtD Awt
Pltam |= A Ji +B Pt e TP\ {to+T}, (19)
€t+AtD gt

where matrices Zt and Et are given by

T A ‘ OtCﬂ' 5 B
A= 00 05 Kua } b= [Otb}
with K, =11ift € TS and K; = 1/a otherwise.

We characterize {Pl‘)dd}teTD as independent Gaussian ran-
load

(20)

dom variables with zero mean and standard deviation o;
ie., Plood ~ N(0, (01°24)?). Since (19) is a linear system
we can propagate the uncertainty in {Ploa }teTD and model

Awg, P, and §t by a joint Gaussian dlstrlbutlon with zero
mean and covariance matrix ¥, € R(G+2)*(G+2)  namely

_ 1T
(A3, (BT &) ~N (0w, teTP @D
Above, X; can be evaluated in closed form as
t—AtP B
Y= Z (‘I’t v+AtDB )( load) (‘I’t,u+AtD Bv)T7 (22)
v=to
where the state transition matrix ¥; ,, A0 is given by
t—AtP
HAU+AtD7 UG{to,.,t—ZAtD},
\Ijt,v+AtD - v+ ALD (23)
diag(lgie), v=t—AtP.



The initial condition Xy, = O(g2)x(a+2) since the corre-
sponding state variables are assumed to be known precisely,
i.e., with full certainty, at time ¢y. At the expense of greater no-
tational burden, the uncertainty propagation procedure above
extends easily to accommodate correlation amongst different
time samples of the net-load forecast by modelling the vector
variable [{ P}**},c 7] as a multivariate Gaussian distribution
with nonzero off-diagoonal entries in its covariance matrix.
Key to reformulating the CCED in (6) into a compu-
tationally tractable deterministic optimization problem is to
notice that the uncertainty in dynamic state variables can
be fully characterized before solving the problem in (6).
This is because the Gaussian distribution in (21) depends
only on the uncertainty in the net-load forecast across the
scheduling horizon along with system dynamics described by
time-varying matrices A; and By, but not the optimal decisions
of (6). For the deterministic reformulation outlined next, we
will find it helpful to decompose the covariance matrix ¥, into
constituent blocks associated with dynamic state variables as

(o) =7 =P
S= | xhe wP o wbhe (24)
; P
£ =57 (0F)

where all submatrices are suitably sized, e.g., ©7 € RE*C,

C. Deterministic Problem Reformulation

Consider a typical quadratic cost function

C(P") = P diag(q) P+ P + 1¢d, (25)
where ¢ = [q1,...,qc]%, r = [r1,...,7¢]T, and d =
[d1,...,dg]T respectively represent its quadratic-, linear-, and

constant-term coefficients. Now, bearing in mind that generator
dynamic mechanical power trajectories are decomposed into
nominal and uncertain components as in (9), we can express
the objective function in (6a) as

> (C(P]) + (of ) diag(q)of

D
teTy

JALP, (26)

which holds given that the uncertain components are modelled
by the Gaussian distribution in (21) with of € RY denoting
the element-wise square root of the vector of diagonal entries
in XF. In other words, each entry in o7 represents the standard
deviation of the marginal distribution of the uncertainty in the
corresponding generator’s mechanical power.

Critical in reformulating the dynamics-aware CCED in (6)
into a deterministic problem is the ability to evaluate ¥,
in closed form with (22), rendering X; independent of the
optimal decisions solved from (6). Using this fact along with
the updated objective function in (26), we reformulate the
dynamic-aware CCED in (6) into the following computation-
ally tractable deterministic counterpart:

mlnunlze Z( P + (o) diag(q)ol )AtD (27a)

teTy
Aw — Aw. —m
subject to MEH(W) = 1E~Pt Do Ay
—load
P, (), teTD\{to+ T}, (@7b)

T(%) ~P, - P, - R 10w,
(m), t' € TE\ {to + T},
te{t,. ...t + A — AP}, (27¢)
. (%) E, + kBADy + P
(), ¢ € T\ {to+ T}, (27d)
?§1=P +7T(Et’ - 151’) (Ht/) t'e Ty, (27e)
1 Z —lomd (27f)
teTD
ATy + 09D 11 — %) < Awmaxs (p7),
te Ty, (279
Awy — of @ (1 — %) > Awmin, (7).
teTy, (27h)
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where Q = {P,, Aw;, P, , P,/, ft,}teTD veTs collects deci-
sion variables of the reformulated deterministic problem with
quadratic cost and linear constraints that can be solved at
scale using off-the-shelf optimization packages. Above, (27g)—
(27j) are deterministic constraints reformulated from chance
constraints in (6g)—(6j), where the required reserve margins
are informed by the uncertainty in associated dynamic decision
variables (quantified by 0% and o}’) subject to tolerable risk
of violating their limits (imposed by % and ), with ®~1(-)
denoting the inverse of the cumulative distribution function of
the standard Gaussian distribution.

Remark 2 (Non-Gaussian Uncertainty). For more general
non-Gaussian net-load uncertainty, approaches to reformulate
a CCED into a deterministic problem include using non-
parametric probability distributions [31], Gaussian mixtures
models [32], and first and second moments of a family
of distributions estimated from empirical data [33]. These
methods can be applied to solve the dynamics-aware CCED
formulated in (6) in a straightforward manner at the expense
of potentially greater complexity to reformulate the chance-
constrained optimization problem into an equivalent or approx-
imate deterministic counterpart and subsequent computational
burden to solve it. ]

Remark 3 (Joint Double-sided Chance Constraints). Our
approach to reformulating the CCED into a deterministic
problem follows prior work in [34]-[36], where joint double-
sided chance constraints are approximated using less conser-
vative separate single-sided constraints. This approximation
simplifies the problem reformulation and facilitates subsequent
solution tractability. At the same time, we note that chance-
constrained problems embedding joint two-sided chance con-
straints can still be reformulated into deterministic counter-
parts using various other approximations [37]-[39]. Moreover,
there is flexibility in the problem formulated in (6) for a



system operator to enforce varying risk profiles by adjusting
the tuneable parameters ¥ and e representing the tolerable
probability of violating separate single-sided limits. |

Before deriving the dynamics-aware price of reserves in the
next section, we express the Lagrangian of the deterministic
reformulation of the dynamics-aware CCED in (27) as

L= ((c@) + (o) diag(a)o! ) At

teTY
+ pf (Awy + 07 @ (1 — %) — Awpmax)
+pr (Awmm Aw; + Uf@_l(l - 5‘“))

+ g (P +ol @t (1-eP)— P2

i (P = P+ afcrlu =)
+ Z /ﬁ]t/ t/ — — W(gf/ — 1TPO))

t’eT%

Aw - Aw —m
£ 3 (oM (R - 187
teTo \{to+T}
l d FHI A b — FHI
+ DogAw, + P ) T (7(7” N )

—PL+ P+ R—llgAwt))

+ Z Yer (’TA(

tETS \{to+T}

Z Pload 1 o) .

teTD

fturAtS

£,
ALS : ) + &y — kBAwy —

lomd)

(28)

We introduce notation for the optimal Lagrangian as L*
and the optlmal decisions of the problem in (27) as Q=
—=TI*x —%
{P* Aw;, P, P, ,5t,}teTD ve7s - Also let Lagrange mul-
to’ to,
tipliers evaluated at the optimal solution be distinguished with
superscript x. For example, y;7* and j; * respectively refer to

values taken by u?‘ and p,; at the optimal solution.

I'V. DYNAMICS-AWARE PRICE OF RESERVES

The paper’s main results outlined in this section relate to
the dynamics-aware price of reserves defined as the system
marginal operation cost due to an incremental change in the
net-load uncertainty while satisfying dynamic constraints.

Theorem 1. Given the optimal Lagrangian L£* of the
dynamics-aware CCED after being reformulated into a deter-
ministic problem, i.e., the problem in (27), and its optimal

*m* I‘* -

solution {Pr, Awy, P, , P, ,Et,}teTD veTs the dynamics-
aware price of reserves at time ¢ € 7, is expressed as

do¥
+*x —% (%)
t AtD Z e ( + Py )aa)lfoad
ETt?rAtD
! - oyt 007
+ AtD Z P 1(1 _EP)(FLI U*)Taaload
D t
ETtJrAtD
ool
+ Z leag )&ri"ad’ 29)

D
67—t+AfD

where TD

A = {t+ AP 2480,

,to+ T}, and a‘a%d

and

oF
a Md are, respectively, the first and next G entries of

1 Odiag(%,)

80%02“1 (30)

1, . _
5(dlag(Ev)) “Lata,
and diag(X,) denotes a diagonal matrix containing entries in
the main diagonal of ¥,, and zeros elsewhere.

Proof. The price of reserves can be defined as the sensitivity of
the optimal Lagrangian with respect to uncertainty in the net-
load forecast [11], [12]. In our case, this uncertainty is quan-
tified by the standard deviation of the net-load forecast 129,
te TO , so the dynamics-aware price of reserves is expressed
as the following derivative of the optimal Lagrangian:

.1 ocr

D
Af = e e TR

1
AfD gojord” GD

where dividing by AtP yields units consistent with the
cost function. Via visual inspection of (28) in conjunction
with (22), we see that £* is related to 0;°*¢ through 0%
and of, v € 7;2 Ao+ Thus, applying the chain rule in
calculus, (31) evaluates as

e am X (e (05) ). oo

which then yields (29) via straightforward differentiation
of (28) followed by algebraic manipulation of the resultant.
P

Next, to get 3 md and (;)bad needed in (29), we recognize
from the varlabfes defined in (24) that
0 7| _ odiag(S.))}
—— o, | = ————"—"-1 , 33
ao.load % aa)ltoad G+2 ( )
UU

the right-hand side of which evaluates as (30) via direct
differentiation followed by the chain rule in calculus. O

We next highlight key characteristics of the dynamics-aware
price of reserves as expressed in (29):

i) Similar to the solution of the static CCED in (1), the
dynamics-aware price of reserves internalizes uncertainty
in decision variables and generator risk tolerance via
explicit dependence on ¥; and e, respectively. Gen-
eralizing over its static counterpart, the dynamics-aware
price additionally incorporates the uncertainty associated
with dynamic state variables during the post-disturbance
transients as well as in steady state.

ii) The dynamics-aware price of reserves further extends
beyond conventional static alternatives with a term ex-
plicitly accounting for the risk of violating frequency
limits during system transients prior to converging to
steady state, thus offering a systematic approach to price
generator reserves that contribute to de-risking dynamic
frequency performance.

iii) The explicit dependence of the dynamics-aware price
of reserves on X; couples it with individual generator
parameters that directly impact the system dynamic risk
profile. Specifically, the closed-form expression for X



in (22) involves system matrices ﬁt and f?t, te TE’, that
in turn embed dynamic parameters of generators, i.e., M,
Dy, 74, and R;', g € G, as well as the AGC, i.e., Ta,
k, and . This feature is useful to incentivize inverter-
based resources capable of modifying their controller
parameters in support of dynamic frequency response.

iv) The dynamics-aware price of reserves at time ¢ in (29)
depends on future dynamics in both system uncertainty
and Lagrange multipliers, occurring after time ¢. This is in
contrast to the physical power system dynamics depend-
ing on the past before time ¢. Here, we can conclude
that the price of reserves indeed serves to compensate
generators for de-risking future performance.

Remark 4 (Non-binding Inequality Constraints). We further
note that entries of Lagrange multipliers p* or p}* in (29)
are nonzero only if upper limits for the corresponding system
frequency or generator mechanical power chance constraints,
respectively, are binding at time v, otherwise they are zero.
The same holds for p;* and p;, * related to lower limits. Now
suppose the aforementioned inequality chance constraints are
not binding at the optimal solution, so the first two summation
terms in (29) yield exactly zero, and the price of reserves
simplifies as the nonzero third term in (29) given by

A* P\T 7: 805
P= D 2ol diagle) 5 (34)
veTP t
t+AtD

The quantity in (34) can be interpreted as the cost to re-
dispatch reserves due to an incremental change in net-load
uncertainty at time ¢, in the absence of binding generator
power or system frequency inequality chance constraints. W

A. Evaluating Dynamics-aware Reserve Revenue

The dynamics-aware price of reserves at time ¢ € 7']03, A7,

evaluates as (29) aided by (30) We further make use of the fact
that % dlag( to calculate % in (30)

in closed form by taking the diagonal entries of

0,
80'1150&(1

o load

(W, amB)T,

vE TR am, (33)

i.e., the derivative of (22). Given the dynamics-aware price of
reserves A}, we calculate the generator reserve revenue as

> Aol AP,

teTo

= 2(®v,t+AtD§t)Ut

(36)

where o is obtained in closed form from (22) as the element-
wise square root of the vector of diagonal entries in X7

Example 2 (WSCC 3-Generator Test System). Using the same
test system as in Example 1, we consider a scheduling horizon
starting from time ¢y = 0[sec| of length T = 90 [sec] (i.e.,
1.5 [min]). Shorter time intervals of length AtP = 0.05 [sec]!

1Via simulations of standard test systems, we find that the choice of AP =
0.05 [sec] adequately captures dynamics in the time-scales of our interest
while containing computational burden of solving the CCED. Smaller or larger
discretization intervals may be chosen to satisfy specific requirements in model
accuracy or limitations in computational resources, respectively.
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Fig. 2: (Example 2). Trajectories of the price of reserves obtained from optimal
solution of the reformulated dynamics-aware CCED, i.e., (27), with dynamic
parameter values given in Table I.
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Fig. 3: (Example 2). Dynamic mechanical power trajectories for generator 2
realized with dynamic parameter values given in Table I. Individual traces
represent the nominal (or mean) trajectories, which are associated with the
Gaussian distribution given by (21) propagated from uncertainty in the net-
load forecast. To illustrate concepts, the uncertainty distribution around the
nominal trajectory is plotted as a translucent band for case 2 only, while those
for the other two cases are omitted to promote clarity of the figure.

capture faster frequency dynamics. Then longer time intervals
are set to AtS = AtP rendering 7> = 7,2, in accordance with
Proposition 1 in [22]. Furthermore, Gauss1an uncertainty in the
net-load forecast is modelled with standard deviation o°2d =
0.15 [p.u.], V¢ € 7,. The tolerable limits in the probability of
violating chance constraints are set as e’ = 0.1 and ¥ = 0.1.
This tolerance may be set to meet certain system reliability
criteria, such as expected energy not served [12]. Consistent
with standard practice (see, e.g., [24], [26]), the area bias factor
in the AGC is setas 8 =3 ;(Dg + R,1'). Then, for each
set of dynamic parameter values reported in Table I and with
the upper limits of generator mechanical power as Py, =
[3,2,3]T [p.u.], we model the problem in (27) in the MATLAB
YALMIP toolbox and solve it using MOSEK.

Given the optimal solution of (27), we evaluate the
dynamics-aware price of reserves A} using (29) in conjunction
with (30) and (35) and plot their trajectories in Fig. 2. Prior to
the load increase at time ¢ = 10 [sec|, the price takes a small
nonzero value equal to the third term in (29). Following the
load increase, the chance constraint pertaining to the upper
limit of generator 2 mechanical power becomes binding. The
gap observed between the nominal trajectories and the limit
of 2[p.u] in Fig. 3 constitutes the reserve margin required
to satisfy the pertinent chance constraint. This leads to the
increase in the price of reserves, as shown in Fig. 2. The
price of reserves then converges to steady state alongside
the nominal trajectories of the dynamic state variables, as
comparison of the zoomed portions in Fig. 3 illustrates. Both
the dynamics-aware price of reserves and the subsequent total
reserve revenue, calculated using (36) and plotted in Fig. 4,
increase from case 1 to 3, consistent with the trend of improved
system dynamic risk profile highlighted in Example 1. Also
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Fig. 4: (Example 2). Total reserve revenue shared amongst the three generators
for dynamic parameter values given in Table L.

increasing from case 1 to 3 is the individual reserve revenue for
generator 3 because it is exposed to greater uncertainty (and
thus risk of violating its generation limits) with its changing
parameter values, as shown in Fig. la. Conversely, individual
reserve revenues for generators 1 and 2 decrease as they are
exposed to lower uncertainty and risk. ]

B. Assessing Impact of Varying Dynamic Parameter Values

The dynamics-aware price of reserves in (29) internalizes
uncertainty in decision variables via its dependence on ¥
and ada%o(i“), t € 7;103 v € ’7;2 Agp» €valuated in closed
form via (22) and (35), respectively. Visual inspection of these
closed-form expressions reveals that they, in turn, depend on
system matrices A; and By, t € 7']03, that embed generator
dynamic parameters Mg, Dy, 74, and Rg_l, g € G, as well
as AGC parameters 74, k, and . This explicit dependence is
critical to couple the pricing of reserves with individual gen-
erator contributions to system dynamic risk profile subject to
industry-standard primary and secondary frequency controls.
Via a numerical example, we next illustrate how values taken
by dynamic parameters of a generator affect its reserve revenue
under the proposed dynamics-aware pricing of reserves.

Example 3 (WSCC 3-Generator Test System). Revisiting
the test system and simulation setup from Example 2, we
repeatedly calculate the dynamics-aware reserve revenue avail-
able to generator 3 under different values taken by Ms, D3,
and 73, while fixing parameter values for generators 1 and
2 to those reported for case 2 in Table I. In Fig. 5, greater
reserve revenue for generator 3, shown as green-colour traces,
are associated with faster primary frequency response made
possible by smaller value taken by 73, while orange-colour
traces represent lower revenue for generator 3 offering slower
primary frequency response. Furthermore, parameterizing with
respect to 73 in Fig. 5a, setting M3 to larger values provides
generator 3 with greater reserve revenue, commensurate with
its contribution to inertial response immediately after a dis-
turbance. Similarly, in Fig. 5b, larger values taken by Ds
are associated with greater reserve revenue to compensate
generator 3 for contributing to improvements in transient
frequency damping. ]

V. CASE STUDIES

This section presents detailed numerical case studies involv-
ing the WSCC test system [30]. They demonstrate improved
system dynamic performance and greater generator revenues

o
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Fig. 5: (Example 3). Dynamics-aware reserve revenue for generator 3 with
different values taken by its (a) inertia constant M3 and (b) damping constant
D3, and parameterized by its turbine-governor time constant 73. The o
symbols represent the revenues given parameter values in case 2 from Table I.

resulting from the proposed method when compared to the
solution of the static CCED in (1), dynamics-aware reserve
revenue adequacy for the system, and cost recovery for each
generator. Further demonstrated via numerical simulations in-
volving the New England test system [40] is the computational
scalability of the proposed approach.

A. Dynamic Performance

We modify the simulation setup from Example 2 by setting
generator dynamic parameters to their default values provided
in Table I as case 2. The cost of generation across the schedul-
ing horizon of length T' = 300 [sec] (i.e., 5 [min]) is given by

C(P"™) = (P™)"diag([0.22 0.085 0.6125])P"

+[5 1.2 5P teTP. (37)

We impose several step changes in the nominal net-load
forecast, as shown in Fig. 6, consisting of an increase by 15%
at time ¢t = 20 [sec|, followed by decreases of 5% and 10%
at times t = 60[sec] and ¢t = 80 [sec|, respectively, and a
subsequent increase of 15% at time ¢ = 100 [sec] then constant
thereafter. Similar to Example 2, uncertainty in the net load
is modelled as a Gaussian distribution. The maximum power
limit for generator 2 is again set to be 2 [p.u.]. The correspond-
ing chance constraint becomes binding from ¢ = 20 [sec] to
t = 60 [sec| and again after ¢ = 100 [sec| consistent with larger
net-load forecast values during these periods.

1) Price of Reserves: We use (29) to evaluate the dynamics-
aware price of reserves at the optimal solution of the problem
in (27) subject to various levels of net-load forecast uncertainty
and tolerable probability of chance constraint violation. The
resulting prices of reserves are plotted in Fig. 7. Particularly,
in Fig. 7a, greater net-load forecast uncertainty realized with
larger standard deviation values results in higher price of
reserves, commensurate with the greater subsequent risk un-
dertaken by generators in potentially violating their operational
limits. Related to this, as shown in Fig. 7b, lower level of risk
of violating operational limits tolerated by generators yields
higher price of reserves, consistent with improved ability to
de-risk system dynamic performance under uncertainty.

2) Generator Mechanical Powers: As shown in Fig. 8§,
generator 2 increases its production in response to the net-load
increases imposed at times ¢ = 20 and ¢ = 100 [sec]. We ob-
serve that the mechanical power trajectory and its uncertainty
distribution (highlighted in purple colour) solved from the
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Fig. 6: System net-load forecast profile with uncertainty distribution plotted
as a translucent band around the nominal trajectory.
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Fig. 8: Time-domain mechanical power trajectories of generator 2, for which
the maximum limit is 2 [p.u.], realized with the static and dynamics-aware
CCED set-points. Uncertainty distributions are plotted as translucent bands.

TABLE II: Total generator revenues, costs, and profits realized from static and
dynamics-aware CCEDs for various levels of changes in forecasted loads.

[ Percentage of Load Profile [ 90% [ 100% [ 110% [ 120% ]

Revenue [$] St.atic 583.8 | 608.5 | 636.4 | 665.0
Dynamics-aware | 802.4 | 832.7 | 860.3 | 899.2

Cost [$] St.atic 384.1 | 3954 | 407.6 | 423.8
Dynamics-aware | 497.6 | 512.6 | 528.1 | 5483

Profit [$] Stvatic 199.7 | 213.1 | 228.8 | 241.2
Dynamics-aware | 304.8 | 320.1 | 332.2 | 350.9
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Fig. 7: Price of reserves evaluated at the optimal solution of the problem
in (27) subject to various levels of (a) net-load uncertainty and (b) generator
risk tolerance, quantified respectively by standard deviation of the forecast
uncertamty Uload te TE), and tolerable probability of violating generation
limits

dynamics-aware CCED satisfy the chance constraint pertinent
to generator 2’s maximum power limit. For comparison, we
apply the optimal set-points solved from the static CCED
in (1) with the initial load forecast as the generator references
in a dynamic simulation performed in PSAT [41]. Custom
MATLAB code augmenting the standard PSAT toolbox imple-
ments the AGC to regulate system frequency, the model for
which is described in Section II-B. Plotted in orange colour
in Fig. 8, the resulting dynamic mechanical power trajectory
and associated uncertainty distribution patently violate the
maximum generation limit for a considerable amount of time.

B. Costs, Revenues, and Profits

We calculate costs, revenues, and profits realized from the
proposed dynamics-aware price of reserves and i) compare
them to the solution of the static counterpart in (1), ii) assess
system reserve revenue adequacy, and iii) verify cost recovery
for each generator. To offer comparisons over a broader range
of scenarios, we consider four nominal net-load profiles that
all begin with the same initial value as in Fig. 6 but then each
followed by 90%,100%, 110%, and 120% of the variations
described in Section V-A at times ¢ = 20, 60, 80, and 100 [sec].

1) Total Across All Generators: The total dynamics-aware
revenue is calculated as

Z (AiD oOL* )PloadAtD+ Z A*lGUfAtD (38)

—Joad
D D
teTh teT;,

oP,

where the second term represents reserve revenue evaluated as
the sum of all entries of (36) and the first term is the revenue

) . . x
for energy produced with corresponding price AiD oL

oP,
obtained via straightforward differentiation of the opt1ma1

Lagrangian in (28) (see, e.g., [22]). To calculate the cost of
generation, we consider the average value given by

> @A,

teTy

(39)

Quantities needed to evaluate (38) and (39), namely the
nominal generator mechamcal power Pin , its uncertainty
distribution quantified by o}, and dynamics-aware price of
reserves A}, all accompany the optimal solution of the problem
in (27), i.e., the deterministic reformulation of the dynamics-
aware CCED. The difference between the revenue in (38) and
the cost in (39) represents the total profit. We also solve the
deterministic reformulation of the problem in (1) subject to the
initial load forecast to obtain the dynamics-oblivious prices of
reserves and energy. The corresponding optimal generator set-
points are applied to a PSAT simulation augmented with the
AGC to yield mechanical power trajectories that are then used
to calculate generation cost.

For each net-load forecast scenario, Table II reports total
revenues, costs, and profits as the difference between the
two. The dynamics-aware CCED solution indeed offers greater
revenues for generators compared to its static counterpart as
the dynamics-aware price of reserves A} internalizes uncer-
tainty in dynamic state variables (like system frequency and
generator mechanical power) and acceptable levels of risk of
violating their operational limits during transients. Meanwhile,
greater costs in the dynamics-aware case can be attributed to
the ability to de-risk dynamic performance during transients
not possible under the steady-state assumption in the static
CCED. To see this, consider as an example the mechanical
power trajectories of generator 2 in Fig. 8. Here, decisions
from the static CCED violate the maximum generation limit,
whereas the dynamics-aware CCED solution satisfies the limit



TABLE III: Verifying dynamics-aware reserve revenue adequacy given various
levels of changes in forecasted loads.

[ Percentage of Load Profile [ 90% | 100% [ 110% [ 120% |
39.2 41.2 423 44.5

34.1 359 37.4 38.8

Revenue from Customers [$]
Payment to Generators [$]

TABLE IV: Verifying cost recovery for all generators given various levels of
changes in forecasted loads.

[ Percentage of Load Profile | 90% [ 100% [ 110% [ 120% |
1 Revenue [$] 3324 | 345.1 356.4 372.6
9= Cost [$] 289.3 298.1 307.0 318.7
—9 Revenue [$] 414.5 430.3 444.5 464.6
9= Cost [3] 1585 | 1633 | 1682 | 1745
—3 Revenue [$] 55.1 57.2 59.1 61.8
9= Cost [$] 49.7 51.3 52.8 54.8

at the cost of increasing the dispatch from the other two more
expensive generators. Finally, although the dynamics-aware
CCED leads to greater costs of generation (on average), these
are not as significant as the gains in revenues on offer from the
dynamics-aware pricing of reserves and energy in (38). In this
way, the dynamics-aware pricing indeed serves to incentivize
generators to de-risk system dynamic performance against
greater net-load uncertainty and larger and more frequent
transient excursions expected in future power systems.

2) System Revenue Adequacy: We evaluate revenue ade-
quacy for the system operator to procure reserves by verifying
that the total payment to all generators needed for reserves
(i.e., the second term in (38)) satisfies

Z A 1Lol AP < Z AFoload AP,
teTo teTn

(40)

where the right-hand side represents the revenue yielded from
load serving entities (i.e., customers). As shown in Table III,
the revenue obtained from customers indeed exceeds the
payment to generators, thereby confirming revenue adequacy
under the proposed dynamics-aware pricing of reserves.

3) Generator Cost Recovery: We evaluate each generator’s
ability to recover its cost by verifying that the cost satisfies

Z C, 1 oL )

AtD S Z ( D ,—load AtD
teTp Al op,
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teTy
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teTy

where the right-hand side comprises generator g’s revenue
for energy production and for setting aside reserves (i.e., the
components of (38) associated with generator g). Above, ?5:5
is the optimal average electrical power output from generator g
at time ¢, which can be evaluated given the optimal decisions
solved from (27) as
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In Table IV, we report revenues and costs for each generator
and verify that, in all cases, each generator’s revenue is indeed
sufficient to recover its cost.

TABLE V: Time [sec] incurred to solve the dynamics-aware CCED for various
lengths of scheduling horizons in case studies involving the WSCC and New
England test systems.

[ Length of Scheduling Horizon [sec] [ 100 [ 200 [ 300 | 600 |

WSCC (3 generators) 1.21 | 3.05 | 6.17 | 13.3
New England (10 generators) 248 | 5.13 | 9.73 | 20.2

C. Computational Scalability

In Table V, we report the combined computation time in-
curred to compile the dynamics-aware CCED in the MATLAB
YALMIP toolbox and to solve it using MOSEK for the WSCC
and the New England test systems. Here, we impose random
variations between —5% and +5% every 20 [sec] in the fore-
cast of each load in a test system and solve the dynamics-aware
CCED for various lengths of scheduling horizons ranging from
100 to 600 [sec]. As shown in Table V, computation times grow
with longer scheduling horizons but remain well within them
for both test systems. All numerical results are obtained from
case studies performed on a typical desktop computer with a
3.6 [GHz] i7 processor and 32 [GB] RAM.

VI. CONCLUDING REMARKS

This paper presented a method to compute dynamics-aware
real-time pricing of reserves accompanying the optimal solu-
tion of a CCED constrained by system frequency dynamics
arising from generators and the AGC. Given uncertainty in
the net-load forecast across the scheduling horizon, chance
constraints enforce tolerable probability of dynamic system
frequency and generator power trajectories violating their
respective limits. The dynamics-aware CCED reformulates
into a deterministic optimization problem, and we derived
the price of reserves from its optimal Lagrangian. Numerical
simulations demonstrate the benefit of the dynamics-aware
price of reserves in providing more revenue and profit for
generators that tune their dynamic parameters to contribute
to improved system dynamic performance characterized by
metrics like risk of violating frequency constraints. While
case studies demonstrate system reserve revenue adequacy and
generator cost recovery numerically, a compelling direction for
future work is more rigorous analysis of key market properties.
Future work also includes incorporating chance constraints on
line flows via injection shift factors into the CCED to study
transmission-constrained dynamics-aware price of reserves.
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