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Abstract

This paper proposes a distributed solution for multi-area unit commitment
(UC) problem with continuous-time energy generation and storage, offering
an enhanced operation tool that leverages the available operational flexibil-
ity resources via higher fidelity modeling to enable effective resource shar-
ing among areas via coordinated continuous-time interconnection power ex-
change. The proposed methodology involves formulating a variational multi-
area UC problem with energy storage where decision variables (including
power, energy, and commitment statuses) are modeled as continuous-time
trajectories and ramping is defined as the time-derivative of the respective
power trajectory. The variational multi-area UC problem is then projected
into Bernstein function space, leading to a mixed-integer linear programming
(MILP) problem with Bernstein coefficients of dispatch and commitment sta-
tus trajectories as decision variables. The function space-based multi-area
UC problem is then decomposed into per-area UC sub-problems solved using
a distributed algorithm. Implemented on two different test networks and
compared against the benchmark centralized and traditional discrete-time
solutions, the numerical results highlight the solution accuracy and efficacy
of the proposed distributed method to achieve optimal decisions on inter-
connection power exchanges such that the energy and ramping needs of all
participating areas are met.

Keywords: distributed optimization, multi-area unit commitment, energy
storage, continuous-time scheduling
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1. Introduction

Electric power systems are undergoing substantial changes due to integra-
tion of large-scale renewable energy sources (RESs) to meet ambitious targets
for carbon emissions reduction [1, 2]. Despite their obvious environmental
and economic benefits, RESs pose operational challenges due to variability
and intermittency in power supply and increased likelihood of high ramp-
ing needs [3]. Imperative to fully realizing pertinent benefits of RESs while
maintaining reliable power supply is to take advantage of flexibility offered
by resources like energy storage (ES) devices and flexible loads, as well as to
modernize the associated control and communication infrastructure [4, 5, 6].
Moreover, the growing need for seamless integration of distributed energy
resources (DERs) and aggregators into power system operation models, as
highlighted by recent policies [7] and reports [8], necessitates an upgrade
to the current operational framework. A comprehensive review of emerging
challenges in current electricity market and power system operation solution
architectures, posed by the evolving generation and demand mix as well as
the requirement of short-time interval scheduling, is provided in [9]. While
a single, ideal solution to address the dynamic and evolving needs of mod-
ern power system operations may not yet be available, ongoing research is
exploring a variety of methods and strategies to tackle both immediate and
long-term challenges [10, 11]. This paper focuses on enhancing power sys-
tem operation models to account for inter-temporal variability and adjusting
market structures.

1.1. Related Work

The underlying optimization problem of power system operation mod-
els approximate the electric demand and generation with piecewise constant
functions of equal length spanning the scheduling horizon (e.g., hourly piece-
wise constant functions for day-ahead scheduling horizon) [12]. Such opera-
tion models have proven effective under relatively smooth changes in net elec-
tric demand (demand minus non-dispatchable renewable generation). How-
ever, the performance of present operation models may diminish as large-scale
renewable energy integration introduces greater variability to net demand,
posing risk of ramping inadequacy in power systems.

Recent work tackling the challenge of ramping inadequacy and inter-
temporal variability by providing various upgrades to power system opera-
tion models includes [13, 14], where a time-adaptive unit commitment (UC)
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model unlocks greater operational flexibility by adjusting the scheduling
time-interval lengths in response to net demand variations and resource
types, respectively. Furthermore, [15] highlights the benefits of embedding
continuous-time functions into optimization problems. This approach offers
a more effective means to leverage the provided flexibility while maintaining
controlled computational tractability, particularly as discrete time intervals
become significantly small. In another work, [16] demonstrates the compu-
tational effectiveness of using continuous-time function space to model the
inter-temporal flexibility of load aggregators and wind-power generation in
the UC problem. In [17], piecewise constant functions are substituted by
piecewise linear ones to enable trading of power instead of energy. More
function space modeling approaches are presented in [18, 19, 20, 21, 22],
where Bernstein splines of desired degrees replace the piecewise constant
functions in the traditional UC formulation, the outcome being an opti-
mization problem with Bernstein coefficients of generation trajectories as
decision variables. By explicitly defining the ramping trajectories as time-
derivatives of continuous-time power trajectories, the function space-based
method in [18, 19, 20, 21, 22] can accurately evaluate the net demand ramping
requirement and supplies it by tapping into the available flexibility resources
in the grid, leading to a closely approximated continuous-time generation
schedule with little increase in computation efforts.

While the aforementioned studies present a strong case for continuous-
time modeling as an alternative to conventional discrete-time approaches
for addressing variability and flexibility, their application in electricity mar-
ket structures for multi-area interconnected power systems is not fully in-
vestigated, especially in the context of integrating many distributed energy
resources. The term “multi-area interconnected power systems” refers to
a setup of independent grids (referred as areas in this paper) exchanging
power through tielines to improve system reliability and economics [23]. For
example, Independent System Operators (ISOs) operate wholesale electric-
ity markets within regional power grids while maintaining interconnections
with neighboring ISOs and grids through multiple tielines, facilitating re-
source sharing and coordination [24]. ISOs are often divided into multiple
internal sub-areas, such as capacity zones, key study areas, system planning
sub-areas, and Distribution System Operators (DSOs). Each serves specific
purposes, including optimizing resource allocation, improving grid reliability,
and supporting system planning.

While electricity market operators typically handle optimal generation
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scheduling as a single optimization problem, there is growing interest in
finding alternatives due to concerns over data privacy and cybersecurity
risks from large-scale data exchange in centralized systems [25], as well as
challenges in integrating small DERs and load aggregators into these cen-
tralized market solutions [8]. Among various emerging solutions, [26] sug-
gests that a differential privacy-based privacy-preserving mechanism could
be implemented in centralized electricity markets and highlights its potential
applicability in alternating direction method of multipliers (ADMM)-based
distributed settings. Alternatively, [27] highlights data privacy concerns in
centralized market structures and proposes a day-ahead distributed market
solution using optimality condition decomposition (OCD) as a more effec-
tive approach. When tested on the IEEE-RTS, this solution achieved similar
results to the centralized benchmark while ensuring privacy. Likewise, [28]
proposes an ADMM-based bi-level distributed day-ahead scheduling model
for islanded multi-microgrids in a carbon trading market, emphasizing data
privacy and reduced communication burden, while demonstrating ADMM’s
ability to find the global optimal solution of the upper level in a distributed
manner. Additionally, [29] addresses data privacy and centralized opera-
tion concerns for ISOs in multi-area interconnected power systems by using
ADMM combined with the regularized primal-dual interior point method to
iteratively solve a distributed nonconvex AC security-constrained UC prob-
lem.

Other recent work further emphasizes decomposition techniques as viable
privacy-preserving solutions to the multi-area UC problem [30, 31, 32, 33, 34].
A comprehensive review of distributed/decentralized solutions for the UC
problem is presented in [30], identifying dual decomposition (DP), ADMM,
auxiliary problem principle (APP), and analytical target cascading (ATC),
as four major algorithms adopted in prior works. While dual decomposi-
tion based decentralized framework for UC is deemed practically inefficient
due to higher computation time, distributed frameworks based on ADMM,
APP, and ATC have been proposed in their standard and modified forms
in prior studies, demonstrating convergence of the algorithm to a local solu-
tion [30]. In [31], a decentralized UC problem is formulated for a large-scale
power system within ADMM framework, aided by refinements and heuris-
tics to mitigate oscillations and avoid local optima which could result from
nonconvexity of the UC problem. The multi-area UC problem in the pres-
ence of wind power uncertainty is formulated as a decentralized optimization
problem in [32] and the optimal interconnection power exchange along with
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geographical allocation of required reserve are determined using the APP
algorithm. Aimed at alleviating the computational burden, [33] proposes a
distributed ATC-based solution facilitated by a central coordinator to solve
the UC problem for large-scale power networks by virtually decomposing
them into multiple scalable zones, and a decentralized variation that removes
the central coordinator is presented in [34] to address more stringent privacy
requirements.

1.2. Summary of Contributions

Despite the strides made in advancing distributed/decentralized solutions
for the traditional multi-area UC problem, none have been applied to vari-
ational multi-area UC problem with continuous-time decision trajectories,
missing out on benefits offered by function space-based modeling. In this pa-
per, we extend our preliminary work [35] and the function space-based model-
ing approach to address a gap in the literature by proposing a computation-
ally efficient, function space-based distributed solution for the continuous-
time UC problem in multi-area networks, specifically applicable to day-ahead
power system operation models. The solution enables continuous-time power
exchange between interconnected areas, leverages enhanced operational flex-
ibility through higher fidelity modeling, supports integration of distributed
energy storage systems at the local level, and retains the data privacy and
computational benefits of distributed optimization approaches.

Distinct from [35] that develops a distributed solution for the continuous-
time optimal power flow (OPF) problem assuming predetermined commit-
ment statuses for generators and excluding ES devices from the generation
fleet, the current effort tackles the more involved UC problem incorporating
binary commitment status decisions and co-optimizing energy generation and
storage. Also unlike [35], the proposed model embeds a broader set of genera-
tor technical limitations including startup and shutdown costs and minimum
up and down time constraints, and enables sharing the ramping flexibility
offered by fast-ramping units and ES devices among interconnected areas,
thus enhancing the overall efficiency of the entire network. Finally, different
from [35] that employs the ADMM, we adopt an ATC algorithm, known to
offer greater flexibility than ADMM and APP algorithms for solving the UC
problem in terms of sub-problem coordination and penalty function selection
[33, 34]. The implementation of the proposed ATC-based distributed solu-
tion on the three-area IEEE Reliability Test System (IEEE-RTS) and a larger
six-area network demonstrates the performance of the proposed approach in
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Figure 1: Flow diagram of the proposed solution methodology.

terms of solution accuracy and scalability, as well as its ability to achieve op-
timal resource sharing among areas through interconnection power exchange
with higher granularity compared to discrete-time interval UC models.

The remainder of this paper is organized as follows. Section 2 is dedicated
to preliminaries including the multi-area transmission network model and
the variational multi-area UC problem formulation. The proposed solution
methodology is presented in Section 3, where the function space representa-
tion and distributed solution are presented. Numerical results are provided
in Section 4. Finally, we offer concluding remarks in Section 5.

2. Methodology Overview and Preliminaries

The overall methodology of this paper illustrated in Fig. 1 involves formu-
lating the multi-area network constrained unit commitment (NCUC) problem
with thermal generating units and ES devices as a variational optimization
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Figure 2: Generic multi-area power transmission network.

problem, followed by projecting the decision trajectories and operational con-
straints into Bernstein function space through which the original variational
problem converts to a mixed-integer linear programming (MILP) problem
with Bernstein coefficients of dispatch and commitment status trajectories
as decision variables, and subsequent distributed solution via an ATC algo-
rithm. We next present components of the multi-area transmission network
model followed by the variational multi-area UC problem formulation.

2.1. Multi-area Transmission Network

Consider a power transmission network with A areas collected in the set
A = {1, . . . , A}, as shown in Fig. 2. Each area a ∈ A is modeled as a directed
graph (Na,La), whereNa = {1, . . . , Na} and La = {(i, j) | i, j ∈ Na, j ≡ j(i)}
respectively represent the sets of nodes (buses) and edges (transmission lines).
Furthermore, the set Ltie

a = {(i, j) | i ∈ Na, j ∈ Nå, j ≡ j(i)} collects tielines
originating from area a. At each time t within the scheduling horizon T =
[0, T ], nodal loads in area a are collected in vector1 Da(t) = [(Da,n(t))n∈Na ]

T.
These loads are served by Ka generating units along with Ra ES devices,
respectively contained in sets Ka = {1, . . . , Ka} and Ra = {1, . . . , Ra},

1All vector variables are column vectors unless otherwise specified.
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and possibly by imports provided by neighboring areas. The power gen-
eration trajectories of units are collected in vector Ga(t) = [(Ga,k(t))k∈Ka ]

T,
their ramping trajectories are defined as the time-derivatives of correspond-
ing power trajectories and included in vector Ġa(t) = [(Ġa,k(t))k∈Ka ]

T, and
their commitment status trajectories form the vector Ia(t) = [(Ia,k(t))k∈Ka ]

T.
The charging (discharging) power of ES devices form the vector Des

a (t) =
[(Des

a,r(t))r∈Ra ]
T (Ges

a (t) = [(Ges
a,r(t))r∈Ra ]

T), the corresponding charging (dis-

charging) ramping trajectories are collected in vector Ḋes
a (t) = [(Ḋes

a,r(t))r∈Ra ]
T

(Ġes
a (t) = [(Ġes

a,r(t))r∈Ra ]
T), and their stored energy form the vector Ees

a (t) =
[(Ees

a,r(t))r∈Ra ]
T. The area nodal voltage phase-angle trajectories are collected

in vector θa(t) = [(θa,n(t))n∈Na ]
T, transmission line (tieline) power flows form

the vector Fa(t) = [(Fa,(i,j)(t))(i,j)∈La ] (Ta(t) = [(Ta,(i,j)(t))(i,j)∈Ltie
a
]). Finally,

Ba denotes the Na ×Na susceptance matrix for area a.

2.2. Variational Multi-area Unit Commitment Problem

We formulate the centralized variational UC problem as in [21], under the
assumption that a single system operator has complete information of the
entire interconnected network. We minimize the total operation cost of the
power system, consisting of generation costs Ca(Ga(t)) =

∑
k∈Ka

Ca,k(Ga,k(t))
and startup and shutdown costs SUa(t) = [(SUa,k(t))k∈Ka ]

T and SDa(t) =
[(SDa,k(t))k∈Ka ]

T, respectively, over the scheduling horizon T , as follows:2

min
Ω

∑
a∈A

∫
T

(
Ca(Ga(t))+1TKa

(
SUa(t) + SDa(t)

))
dt, (1a)

s.t. Baθa(t) +M tie
a Ta(t) =Mg

aGa(t)−Da(t)

+M es
a

(
Ges
a (t)−Des

a (t)
)
, ∀ a ∈ A, t ∈ T , (1b)

GaIa(t) ≤ Ga(t) ≤ GaIa(t), ∀ a ∈ A, t ∈ T , (1c)

ĠaI(t) + Ġ
SD

a

∫ t+ϵ

t−ϵ
İa(t)dt ≤ Ġa(t)

≤ ĠaI(t) + Ġ
SU

a

∫ t+ϵ

t−ϵ
İa(t)dt, ∀ a ∈ A, t ∈ T , (1d)

2Note that 1X and 0X denote the X-dimensional vectors of ones and zeros, respectively.
Unless otherwise specified, we make use of underline (overline) to represent the minimum
(maximum) limit of the corresponding variable.
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∫ t+UTa

t

Ia(t)dt ≥ Diag(UTa)

∫ t+ϵ

t−ϵ
İa(t)dt,

∀ a ∈ A, t ∈ T , (1e)∫ t+DTa

t

(
1Ka − Ia(t)

)
dt ≥ Diag(DTa)

∫ t+ϵ

t−ϵ
−İa(t)dt,

∀ a ∈ A, t ∈ T , (1f)

SUa(t) ≥ Va

∫ t+ϵ

t−ϵ
İa(t)dt, ∀ a ∈ A, t ∈ T , (1g)

SDa(t) ≥ Wa

∫ t+ϵ

t−ϵ
−İa(t)dt, ∀ a ∈ A, t ∈ T , (1h)

Ėes
a (t) = ηcDes

a (t)− ηd
−1
Ges
a (t), ∀ a∈A, t ∈ T , (1i)

0Ra ≤ Des
a (t) ≤ D

es

a , ∀ a ∈ A, t ∈ T , (1j)

0Ra ≤ Ges
a (t) ≤ G

es

a , ∀ a ∈ A, t ∈ T , (1k)

Ḋ
es

a ≤ Ḋes
a (t) ≤ Ḋ

es

a , ∀ a ∈ A, t ∈ T , (1l)

Ġ
es

a ≤ Ġes
a (t) ≤ Ġ

es

a , ∀ a ∈ A, t ∈ T , (1m)

Ees
a ≤ Ees

a (t) ≤ E
es

a , ∀ a ∈ A, t ∈ T , (1n)

Fa,(i,j)(t) =
θa,i(t)− θa,j(t)

xa,(i,j)
, ∀ a ∈ A,

∀ (i, j) ∈ La, t ∈ T , (1o)

Ta,(i,j)(t) =
θa,i(t)− θ̊a,j(t)

xtiea,(i,j)
, ∀ a ∈ A,

∀ (i, j) ∈ Ltie
a , t ∈ T , (1p)

−F a ≤ Fa(t) ≤ F a, ∀ a ∈ A, t ∈ T , (1q)

−T a ≤ Ta(t) ≤ T a, ∀ a ∈ A, t ∈ T , (1r)

θ1,1(t) = 0, t ∈ T , (1s)

Ees
a (0) = Ees,0

a , ∀ a ∈ A, t ∈ T , (1t)

SUa(t), SDa(t) ≥ 0Ka ∀ a ∈ A, t ∈ T , (1u)

in which Ω = {Ga(t), Ia(t), SUa(t), SDa(t), G
es
a (t), D

es
a (t),

Ees
a (t), θa(t), Fa(t), Ta(t)}t∈T ,a∈A comprises the decision trajectories. The nodal

power balance is enforced in (1b), where M tie
a , Mg

a , and M es
a respectively

denote mapping matrices relating tielines, generating units, and ES de-
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vices located in area a to corresponding buses. The power generation and
ramping of units are constrained through (1c) and (1d), where diagonal

matrices Ga (Ġa) and Ga (Ġa) refer respectively to minimum and maxi-

mum generation (ramping) limits, diagonal matrices Ġ
SU

a and Ġ
SD

a respec-
tively represent the maximum startup and shutdown ramps, and the vector
İa(t) = [(İa,k(t))k∈Ka ]

T represents the time-derivatives of commitment sta-
tus variables that embed impulse functions at ON/OFF time instants thus
characterizing startup/shutdown through integration over a ϵ-neighborhood
of those time instants. The minimum up and down times of units are im-
posed via (1e) and (1f), respectively, where vectors UTa and DTa respectively
contain the minimum up and down times of units. Evaluated in (1g) and
(1h) are respectively startup and shutdown costs, where diagonal matrices
Va and Wa respectively represent the unit startup and shutdown costs. The
ES energy state equation is formulated in (1i) where ηc and ηd are diagonal
matrices of charging and discharging efficiencies, respectively. The charging
and discharging power (ramping) of ES devices are confined to their limits
through (1j)–(1k) ((1l)–(1m)) and their energy limits are enforced in (1n).
Transmission line and tieline power flows calculated in (1o)–(1p) are con-
strained to their respective limits in (1q)–(1r) where xa,(i,j) and x

tie
a,(i,j) rep-

resent the pertinent line reactance values. Without loss of generality, we set
the voltage phase angle of bus 1 in area 1 to be zero as the system angle
reference in (1s). The ES stored energy trajectories are initialized at Ees,0

a in
(1t) and the startup and shutdown costs are forced to take positive values
through (1u). Finally, it is worth noting that the separation of variables and
constraints into their respective areas in (1) facilitates the decomposition
needed for the proposed distributed solution later.

3. Proposed Solution Methodology

3.1. Problem Statement

The continuous-time modeling of the multi-area UC problem in (1) leads
to an infinite-dimensional decision space and renders it a computationally in-
tractable optimization problem. In addition, the underlying assumption that
areas disclose full information regarding local generation, load, and transmis-
sion network with a central operator may be difficult to satisfy in practice
due to privacy concerns. Addressing these challenges calls for a computation-
ally efficient privacy-preserving solution approach that i) enables projecting
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the infinite-dimensional decision space of the problem in (1) into a finite-
dimensional decision space with customized accuracy, and ii) determines the
optimal generator and ES dispatch, as well as the interconnection power
exchange, with limited information exchange. Next, we propose Bernstein
function space for dimensionality reduction of the problem in (1) and deploy
an ATC algorithm to solve the resulting finite-dimensional MILP problem.

3.2. Function Space Representation

We adopt the methodology in [18, 19] and project the continuous-time
decision variables and parameters into a Bernstein function space of degree
Q = 3, spanned by a set of polynomial basis functions defined as

b(Q)
q (t) =

(
Q
q

)
tq(1− t)Q−q,

t ∈ [0, 1), q ∈ Q = {0, 1, . . . , Q}, (2)

through which the continuous-time UC problem in (1) converts to a tradi-
tional optimization problem of finite dimension with Bernstein coefficients as
decision variables.

Subdivide the scheduling horizon T into S nonoverlapping intervals Ts=
[ts, ts+1),→ T =∪S−1

s=0 Ts of equal length ∆, and construct for each interval s
a set of shifted and scaled basis functions as follows:

b(Q),sh
q,s (t) = b(Q)

q

(
t− ts
∆

)
, q ∈ Q, t ∈ [ts, ts+1). (3)

Now concatenate the interval basis functions in (3) to form a single vector

e(Q)(t) = [(b
(Q),sh
q,s (t))s∈{0,...,S−1},q∈Q]

T spanning the entire scheduling horizon
and including P = S(Q+1) components. It will be useful to also collect the
interval indices in set s ∈ S = {0, . . . , S − 1}.

With these basic functions defined, we now outline the Bernstein func-
tion space representation of various components of the continuous-time UC
problem in (1).

3.2.1. Generating Units

Power generation trajectories projected into the Bernstein function space
spanned by e(Q)(t) are expressed as

Ga(t) = Ĝae
(Q)(t), ∀ a ∈ A, t ∈ T , (4)
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where Ĝa is a Ka × P matrix of Bernstein coefficients. Generation ramping
trajectories are then given by [36, 37]

Ġa(t) = Ĝaė
(Q)(t) = Ĝa

(
Mdere(Q−1)(t)

)
(5)

= ̂̇Gae
(Q−1)(t), ∀ a ∈ A, t ∈ T , (6)

whereMder is the P×(P−S) matrix relating the time-derivatives of Bernstein
basis functions of degree Q to basis functions of degree Q− 1 and

̂̇Ga = ĜaM
der, ∀ a ∈ A. (7)

Let the binary variable trajectories Ia(t) remain constant for each interval
Ts ∈ T , as shown in Fig. 3. Denote the interval-specific binary variables by
Ia(ts)s∈S and project the resultant trajectories in the function space spanned

by e(Q)(t) as Ia(t) = Îae
(Q)(t), ∀ a ∈ A, t ∈ T , where Îa is a Ka × P matrix

of Bernstein coefficients. By enforcing the following conditions on Bernstein
coefficients of commitment status trajectories of generator k in area a

Îa,k,(Q+1)s+q =

{
Ia,k(ts), q ∈ {0, . . . , Q− 2},
Ia,k(ts+1), q ∈ {Q− 1, Q},

(8)

we guarantee that the approximate trajectory follows a smooth transition
between intervals as shown by the solid black trace in Fig. 3. This then
facilitates imposing the generation limits in the function space as

GaÎa ≤ Ĝa ≤ GaÎa, ∀ a ∈ A, t ∈ T . (9)

The startup and shutdown costs in each time interval Ts, excluding the first
interval, are denoted respectively by SUa(ts)s∈S\{0} and SDa(ts)s∈S\{0} and
calculated as

SUa(ts) ≥ Va (Ia(ts)−Ia(ts−1)) , ∀ a∈A, s∈S\{0}, (10)

SDa(ts) ≥ Wa (Ia(ts−1)−Ia(ts)) ,∀ a∈A, s∈S\{0}, (11)

SUa(ts), SDa(ts) ≥ 0Ka , ∀ a∈A, s∈S\{0}. (12)

We refer interested readers to [18] for details on modeling minimum up and
down time constraints and ramping constraints.
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3.2.2. ES Devices

The ES charging and discharging power trajectories are projected into
function space as Des

a (t) = D̂es
a e

Q(t), Ges
a (t) = Ĝes

a e
Q(t),∀ a∈A, t∈T , where

D̂es
a and Ĝes

a represent Ra × P matrices of Bernstein coefficients constrained
to their limits as follows:

0Ka1
T
P ≤ D̂es

a ≤ D
es

a 1
T
P , ∀ a ∈ A, (13)

0Ka1
T
P ≤ Ĝes

a ≤ G
es

a 1
T
P , ∀ a ∈ A. (14)

Similar to generating units, the charge and discharge ramping trajectories
are then modeled aŝ̇Des

a = D̂es
a M

der, ̂̇Ges

a = Ĝes
aM

der, ∀ a ∈ A, (15)

where ̂̇Des

a and ̂̇Ges

a are the Ra × (P − S) matrices of Bernstein coefficients
that are constrained by

Ḋ
es

a 1
T
P ≤ ̂̇Des

a ≤ Ḋ
es

a 1
T
P , ∀ a ∈ A, (16)

Ġ
es

a 1
T
P ≤ ̂̇Ges

a ≤ Ġ
es

a 1
T
P , ∀ a ∈ A. (17)

In order to model the ES energy trajectories, we integrate the energy state
equation in (1i) and recast the resultant as

Ees
a (t) = Ees,0

a +
(
ηcD̂es

a − ηd
−1
Ĝes
a

) ∫ t

0

e(Q)(t) dt
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= Ees,0
a +

(
ηcD̂es

a − ηd
−1
Ĝes
a

)
M inte(Q+1)(t)

= Êes
a e

(Q+1)(t), ∀ a ∈ A, t ∈ T ,

where the P × (P + S) matrix M int relates the integrals of Bernstein basis

functions of degree Q to basis functions of degree Q + 1 [36, 37], and Êes
a

represents the Ra × (P + S) matrix of Bernstein coefficients defined as

Êes
a =Ees,0

a 1T(P+S)+
(
ηcD̂es

a −ηd
−1
Ĝes
a

)
M int,∀ a ∈ A, (18)

and constrained by

Ees
a 1

T
(P+S) ≤ Êes

a ≤ E
es

a 1
T
(P+S), ∀ a ∈ A. (19)

3.2.3. Network Constraints

Project voltage phase angles and line and tieline power flow trajectories
into function space as θa(t) = θ̂ae

Q(t), Fa(t) = F̂ae
Q(t), and Ta(t) = T̂ae

Q(t),
respectively, ∀ a ∈ A, t ∈ T . The flows are constrained by

−F a1
T
P ≤ F̂a ≤ F a1

T
P , ∀ a ∈ A, (20)

−T a1TP ≤ T̂a ≤ T a1
T
P , ∀ a ∈ A, (21)

where θ̂a, F̂a, and T̂a are respectively Na × P , |La| × P , and |Ltie
a | × P

matrices of Bernstein coefficients. With θ̂a, F̂a, and T̂a in place, it is also
straightforward to recast (1o) and (1p) as

F̂a,(i,j) =
θ̂a,i − θ̂a,j
xa,(i,j)

, ∀ a ∈ A, (i, j) ∈ La, (22)

T̂a,(i,j) =
θ̂a,i − θ̂a′,j
xtiea,(i,j)

, ∀ a ∈ A, (i, j) ∈ Ltie
a , (23)

respectively, where θ̂a,i and θ̂a,j respectively refer to the ith and jth rows of

θ̂a, and (i, j) refers to the pertinent row in F̂a and T̂a. Further, to enforce
the zero voltage phase angle of the reference bus over the scheduling horizon,
the associated Bernstein coefficients are all set to zero as

θ̂T1,1 = 0P . (24)

Finally, by substituting the voltage phase angle, generation, and tieline power
trajectories with their function space representation, and denoting the nodal

14



load Bernstein coefficients with the Na × P matrix D̂a, the nodal power
balance constraint in (1b) can be expressed as

Baθ̂a +M tie
a T̂a =Mg

a Ĝa − D̂a, ∀ a ∈ A. (25)

3.2.4. Objective Function

We approximate the convex cost function Ca,k(Ga,k(t)) of generator k ∈
Ka with a piece-wise linear function of Ha,k segments. To each segment
h ∈ {1, . . . , Ha,k} we ascribe a positive-valued auxiliary variable trajectory
ga,k,h(t) and the segment length ga,k,h and collect the hth auxiliary variables
attributed to generators located in area a in vector ga,h(t) = [(ga,k,h(t))k∈Ka ]

T

and the segment lengths in vector ga,h therein. By substituting the continuous-
time trajectories with the pertinent function space approximations and lever-
aging the integral property of Bernstein polynomials [36, 37], the objective
function in (1a) is recast as follows

Ja =
∑

s∈S\{0}

1TKa
(SUa(ts) + SDa(ts))

+ ∆
∑
s∈S

∑
k∈Ka

Ia,k(ts)Ca,k(Ga,k)

+ ∆

∑Ha,k

h=1 1TKa
γa,hĝa,h1P

Q+ 1
, (26)

where γa,h represents the Ka×Ka diagonal matrix containing the slope of the
secant connecting the two endpoints of linear cost function approximation,
and ĝa,h represents the Ka × P matrix of Bernstein coefficients attributed
to auxiliary variables, i.e., ga,h(t) = ĝa,he

(Q)(t), ∀ a ∈ A, h ∈ Ha,k, t ∈ T .
The function space coefficients of generation trajectories relate to that of
auxiliary variables and commitment statuses as

Ĝa = GaÎa +

Ha,k∑
h=1

ĝa,h, (27)

and ĝa,h is subject to the following box constraint:

0Ka1
T
P ≤ ĝa,h ≤ ga,h1

T
P . (28)

15



3.2.5. Centralized Unit Commitment Problem

Given the function space representation of operational constraints fur-
nished above, the continuous-time UC problem in (1) is converted to the
following traditional optimization problem:

min
Ω̂

∑
a∈A

Ja (29a)

s.t. Constraints (7)–(28), (29b)

Generation Ramping Constraints, (29c)

Minimum Up/Down Time Constraints, (29d)

Continuity Constraints, (29e)

optimizing over the set of decision variables Ω̂ = Ω̂1 ∪ Ω̂2, where Ω̂1 =
{Ĝa, Îa, Ĝ

es
a , D̂

es
a , Ê

es
a , θ̂a, F̂a, T̂a}a∈A and Ω̂2 = {Ia(ts), SUa(ts), SDa(ts)}a∈A,s∈S .

We refer interested readers to [18, 19] for details on continuity constraints
that enable smooth transition of optimal decision trajectories between inter-
vals Ts and Ts+1.

3.3. Distributed Solution for Continuous-time UC Problem

We employ an ATC algorithm (see, e.g., [38]) to solve the centralized
multi-area UC problem projected into Bernstein function space in (29) in an
iterative and distributed manner. The solution algorithm is conceptualized
as hierarchical coordination of a two-level optimization problem where the
lower and upper levels consist of per-area UC sub-problems and a central co-
ordinator problem, respectively. The coordination is enabled by identifying
shared variables among areas (i.e., boundary-bus voltage phase angles) and
corresponding duplicate variables (i.e., copy of those shared variables as seen
by adjacent areas) to them, enforcing consensus constraints to equate the
shared and duplicate variables via augmented Lagrangian approach, and ob-
taining the optimal penalty multipliers as well as duplicate variables through
iterative data exchange between upper- and lower-level problems (see Fig. 4
for a visual illustration). A detailed account of the ATC algorithm is pre-
sented next.

Define Ba as the set of boundary buses in area a ∈ A and associate a
P -dimensional row vector of duplicate variables ψ̂a,i to each bus i ∈ Ba.
Likewise, ψ̂a′,i represent the duplicate variables for the shared variable θ̂a′,j,
which is a copy of boundary bus voltage angle of adjacent area. For (i, j) ∈
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Area 1 UC 

Sub-problem

Area 2 UC 

Sub-problem

Area A UC 

Sub-problem

Central Coordinator Problem

Figure 4: Hierarchical structure of an ATC algorithm where per-area UC sub-
problems (31) are solved at each iteration of the algorithm and the optimal shared
variables, θ̂⋆, a ∈ A, are communicated to the central coordinator, which then
solves the problem in (32) and returns the optimal duplicate variables ψ̂⋆, a ∈ A,
to each area.

Ltie
a , the consistency constraints equate the Bernstein coefficients of voltage

phase angles and the corresponding duplicate variables as

θ̂a,i = ψ̂a,i, θ̂a′,j = ψ̂a′,j, ∀ a, a′ ∈ A, (i, j) ∈ Ltie. (30)

The solution algorithm is implemented through the following three steps.

3.3.1. Solving Per-area UC Sub-problem (Step 1)

Each area solves the following UC sub-problem with augmented objective
function at each iteration z

min
θ̂
(z)
a,i ,θ̂

(z)

a′,j

J (z)
a +

∑
(i,j)∈Ltie

a

(
ψ̂
⋆(z−1)
a,i − θ̂

(z)
a,i

)
λ
⋆(z−1)
a,i

+ ∥
(
ψ̂
⋆(z−1)
a,i − θ̂

(z)
a,i

)
ρ
⋆(z−1)
a,i ∥22

+
(
ψ̂
⋆(z−1)
a′,j − θ̂

(z)
a′,j

)
λ
⋆(z−1)
a′,j

+ ∥
(
ψ̂
⋆(z−1)
a′,j − θ̂

(z)
a′,j

)
ρ
⋆(z−1)
a′,j ∥22 (31a)

s.t. Constraints [(7)–(28)]a, (31b)

[Generation Ramping Constraints]a, (31c)

[Minimum Up/Down Time Constraints]a, (31d)

[Continuity Constraints]a, (31e)

where ψ̂
⋆(z−1)
a,i and ψ̂

⋆(z−1)
a′,j are optimal duplicate variables calculated in Step

2 of iteration z−1, and λ
⋆(z−1)
a,i , λ

⋆(z−1)
a′,j , ρ

⋆(z−1)
a,i and ρ

⋆(z−1)
a′,j are P -dimensional

vectors of penalty multipliers updated in Step 3 of the iteration z − 1.
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The consistency constraints are enforced by forming the augmented La-
grangian in (31a), and [·]a indicates the subset of constraints pertinent to
area a. We note that, unlike the centralized UC problem in (29), which
is an MILP, the per-area sub-problem in (31) is a mixed-integer quadratic
programming (MIQP) problem.

3.3.2. Optimizing Duplicate Variables (Step 2)

Each area obtains the optimal Bernstein coefficients θ̂
⋆(z)
a,i and θ̂

⋆(z)
a′,j from

the solution of (31) in Step 1 and sends them to the coordinator, which
then calculates the optimal duplicate variables through the solution of the
following unconstrained optimization problem:

min
ψ̂
(z)
a,i ,ψ̂

(z)

a′,j

∑
a∈A

∑
(i,j)∈Ltie

a

(
ψ̂

(z)
a,i − θ̂

⋆(z)
a,i

)
λ
⋆(z−1)
a,i

+∥
(
ψ̂

(z)
a,i − θ̂

⋆(z)
a,i

)
ρ
⋆(z−1)
a,i ∥22+

(
ψ̂

(z)
a′,j − θ̂

⋆(z)
a′,j

)
λ
⋆(z−1)
a′,j

+∥
(
ψ̂

(z)
a′,j − θ̂

⋆(z)
a′,j

)
ρ
⋆(z−1)
a′,j ∥22, (32)

where θ̂
⋆(z)
a,i and θ̂

⋆(z)
a′,j are optimal voltage phase angle Bernstein coefficients

calculated in Step 1 of iteration z.

3.3.3. Updating Penalty Multipliers (Step 3)

For a ∈ A and (i, j) ∈ Ltie
a , penalty multipliers are updated as

λ
⋆(z)
a,i = λ

⋆(z−1)
a,i + 2

(
ρ
⋆(z−1)
a,i

)◦2 ⊙ (ψ̂⋆(z)a,i − θ̂
⋆(z)
a,i

)
, (33)

λ
⋆(z)
a′,j = λ

⋆(z−1)
a′,j + 2

(
ρ
⋆(z−1)
a′,j

)◦2 ⊙ (ψ̂⋆(z)a′,j − θ̂
⋆(z)
a′,j

)
, (34)

ρ
⋆(z)
a,i = αρ

⋆(z−1)
a,i , ρ

⋆(z)
a′,j = αρ

⋆(z−1)
a′,j , (35)

where “(·)◦2” and “⊙” respectively indicate the component-wise square and
product operators, and α is a the update coefficient which takes values greater
than or equal to 1 [33] [38]. The iterative algorithm starts with the initializa-
tion of penalty multipliers and duplicate variables in step 1 and stops under
the condition that

abs
(
ψ̂
⋆(z)
a,i − θ̂

⋆(z)
a,i

)
, abs

(
ψ̂
⋆(z)
a′,j − θ̂

⋆(z)
a′,j

)
≤ ϵ1P ,

∀ a ∈ A, ∀ (i, j) ∈ Ltie
a , (36)

where “abs” denotes the component-wise absolute value operator and ϵ rep-
resents a predetermined mismatch threshold. Since the relationship between
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Figure 5: Continuous-time system demand for the three-area IEEE-RTS.

penalty multipliers and solution efficiency is more experiential than epistemic,
determining the most efficient penalty multipliers in step 1 requires some trial
and error to balance multiplier values with computational performance [38].

4. Numerical Case Studies

In this section, we provide details on simulation setting, introduce per-
formance indices, and present the numerical results to demonstrate the ef-
fectiveness and performance of the proposed solution methodology.

4.1. Simulation Setting and Performance Indices

The proposed distributed solution approach for variational multi-area UC
problem, presented in Section 3.3, is applied to the three-area IEEE-RTS [39]
with 96 generating units, 73 buses, 115 transmission lines, and 5 tielines. The
continuous-time trajectories are projected into a Bernstein function space,
and span a scheduling horizon of T = [0, 24] [hr]. The Bernstein coefficients
of system load trajectory is obtained from 5-minute real-time load data of
California ISO (CAISO) for August 10, 2023 [40], scaled down to the three-
area IEEE-RTS peak load of 8550 [MW] as shown in Fig. 5. The system load,
in turn, is distributed over individual buses proportional to pertinent load
factors provided in [39]. We adopt a cold-start approach within the ATC

algorithm by initializing the optimal duplicate variables, ψ̂
⋆(0)
a,i and ψ̂

⋆(0)
a′,j , in

(31) at 0s and set the mismatch threshold ϵ to be 0.006.
To examine the performance of distributed solution as compared to cen-

tralized counterpart, i.e., the solution of (29), the following performance
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indices are defined and calculated:

δcost =

∑
a∈A abs

(
J ⋆
a − J ⋆(Z)

a

)∑
a∈A J ⋆

a

× 100%, (37)

δgen =

∑
a∈A

∫
t∈T 1T

Ka
abs
(
G⋆
a(t)−G

⋆(Z)
a (t)

)
dt∑

a∈A
∫
t∈T Da(t)dt

× 100%, (38)

δes =

(∑
a∈A

∫
t∈T 1T

Ra
abs
(
Ges⋆
a (t)−G

es⋆(Z)
a (t)

)
dt∑

a∈A
∫
t∈T Da(t)dt

+

∑
a∈A

∫
t∈T 1T

Ra
abs
(
Des⋆
a (t)−D

es⋆(Z)
a (t)

)
dt∑

a∈A
∫
t∈T Da(t)dt

)
× 100%, (39)

δRT =

∫
t∈T

(∑
a∈A

1T
Ka

absG⋆
a(t)−

∑
a∈A

Da(t)
)
dt, (40)

where Z is the minimum number of iterations needed to satisfy (36), and

J ⋆
a (J ⋆(Z)

a ), G⋆
a(t) (G

⋆(Z)
a (t)), Des⋆

a (t) (D
es⋆(Z)
a (t)), and Ges⋆

a (t) (G
es⋆(Z)
a (t)) are

respectively the optimal per-area operation cost, generation dispatch, and
charging and discharging power trajectories obtained from the centralized
(distributed) solution. The index δcost represents the relative cost mismatch
between distributed and benchmark centralized solutions, and δgen and δes

indicate the total energy mismatch between distributed and centralized so-
lutions relative to total energy demand of the three-area network over the
scheduling horizon, respectively attributed to generating units and ES de-
vices. For simplicity of exposition, we refer to the indices as percentage
relative errors.

4.2. Simulation Results

We consider the following three cases involving the three-area IEEE-RTS:
i) Case 1: with unaltered ramp limits, ii) Case 2: with reduced ramp limits,
and iii) Case 3: Case 2 + energy storage. For all cases, we use the three-area
IEEE-RTS network data available at [39], except we reduce the maximum
power capacity limits of the tielines connecting buses 13 and 21 in area 1
respectively to bus 15 in area 2 and bus 25 in area 3 from 500 [MW] to
100 [MW]. This was done to enable potential congestion in tielines.

In Case 1, the penalty multipliers λ
(0)
a,i , λ

(0)
a′,j, ρ

(0)
a,i , ρ

(0)
a′,j are initialized at 60

and the update coefficient α at 1.0 , as discussed in Section 3.3.3. The pro-
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Figure 6: Convergence of the first Bernstein coefficient, q = 0, of shared (duplicate)
variables attributed to time intervals s = 6, 12, 18 that correspond respectively to

the 25th, 49th, and 73th entries of vector θ̂
⋆(z)
a,i (ψ̂

⋆(z)
a,i ) where a ∈ A and i ∈ Ba.

The three representative buses i = 7, 23, 25 in areas a = 1, 2, 3, respectively, are
highlighted with black, red, and blue colors with solid (dashed) traces indicating
the shared (duplicate) variable coefficients, while rest of variables are denoted by
dotted gray traces.

gression of shared and duplicate variable Bernstein coefficients versus num-
ber of iterations is plotted in Fig. 6, where the three representative buses
7, 23, and 25 respectively in areas 1, 2, and 3 are distinguished with black,
red, and blue colors with solid (dashed) traces indicating the shared (du-
plicate) variable coefficients, while the rest of variables are denoted by dot-
ted gray traces. For the first 20 iteration, given that the consensus has
not yet been established, the shared variable coefficients differ from that
of duplicate counterparts. As the iterations progress, the shared variables
coordinate with their respective duplicates to optimize the generated and
imported/exported power in each area, eventually satisfying the maximum
threshold mismatch condition (36) in 53 iterations and leading to optimal
multi-area operation cost of $1,468,544. The optimal decision trajectories
obtained from distributed solution closely match those of centralized coun-
terpart as confirmed by performance indices presented in Table 1, amounting
to δcost = 0.108% and δgen = 2.22%.

In Case 2, we synthesize an extreme condition of ramping capability short-
age via scaling down the ramping limits of all generators located in area 1 by
a factor of 3. Initialize the penalty multipliers λ

(0)
a,i , λ

(0)
a′,j, ρ

(0)
a,i , ρ

(0)
a′,j at 55 and
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Table 1: Performance Indices for Cases 1–3
Case δcost [%] δgen [%] δes [%]

1 0.108 2.22 -
2 0.128 2.63 -
3 0.105 1.60 0.31
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(a)
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Figure 7: Aggregate peaking generation for areas (a) 1, (b) 2, and (c) 3, which
are distinguished with black solid, dashed, and dotted traces for Cases 1–3, re-
spectively. The blue trace represents the net power generated in Case 3 by the ES
device in area 1 with negative and positive values referring respectively to charging
and discharging powers.

the update coefficient α at 1.0. The distributed solution takes 39 iterations
to satisfy (36), where the relative errors δcost and δgen respectively evaluate
to 0.128% and 2.63% (see Table 1), highlighting the capability of distributed
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solution to reach close vicinity of centralized solution. Despite the stricter
ramping constraints imposed on generators in area 1, the optimal multi-area
operating cost increases merely by $872 due to contribution of fast-ramping
resources in areas 2 and 3 in collaboratively supplying the load ramp require-
ment in area 1. This is confirmed by Figs. 7b and 7c where the aggregate
peaking generation3 in areas 2 and 3 increase in Case 2 (dashed black trace)
as compared to Case 1 (solid black trace) to counterbalance the reduced
peaking generation in area 1 in Case 2, as shown in Fig. 7a.

In Case 3, we build on Case 2 by adding a fast-ramping ES device of
400 [MW] charge and discharge power capacity, 2,000 [MWh] of energy ca-
pacity, 25 [MW/min] of ramping capability, and 90% of charge and discharge
efficiency, to bus 20 in area 1. Sized roughly around the generation capacity of
the largest unit in the three-area IEEE-RTS, this ES device mimics a utility-
owned asset with no charging utility and discharging cost assigned (aligned
with the objective function (1a) with ES utility/cost functions neglected4).
Having initialized the penalty multipliers and the update coefficient at the
same values as in Case 1, the distributed solution of Case 3 satisfies the
threshold mismatch condition of (36) in 48 iterations with relative errors
δcost, δgen, and δes evaluating respectively to 0.105%, 1.60%, and 0.31% as
provided in Table 1. The operation cost in Case 3 reduces by $11,080 as
compared to Case 2 due to economic efficiency offered by the ES device via
peak-demand supply and fast-ramping capability. More specifically, the ES
device picks up a share of peak-demand not only in area 1 but also in areas 2
and 3, thus, substituting for the more expensive peaking generation resources
plotted in Fig. 7 as the dotted black (blue) trace referring to aggregate peak-
ing generation (ES device net power).

The power flow trajectory of the tieline connecting bus 21 in area 1 to
bus 25 in area 3 is plotted in Fig. 8 for Cases 1–3. In Cases 1 and 2,
the tieline is congested during [1, 12] [hr] so that the maximum transferable
power is exported from area 1 to area 3. In Case 1, as the load increases in
[12, 24] [hr], area 1 reduces the power export to area 3 to enable supplying
the local peak demand. In Case 2, however, the power export from area 1 to
area 3 reduces considerably to the extent that area 1 imports power during

3The aggregate peaking generation is defined as the sum of dispatched power from the
relatively expensive units (U100 and U197) started up to supply peak demand.

4It is straightforward to incorporate ES charging utility and discharging cost functions
in the objective function of (1a). Interested readers are referred to [19].
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Figure 8: Power flow of the tieline connecting bus 21 in area 1 to bus 25 in area 3,
for Cases 1–3.

Table 2: Computational Performance of Distributed Solution for three-area IEEE-RTS

Case Number of Iterations CPU Time [sec]

1 53 3,346
2 39 3,753
3 48 4,298

[17, 21] [hr] to alleviate ramping capability shortage. In Case 3, the power
export from area 1 to area 3 reduces during [1, 6] [hr] to accommodate for
local charging of ES device while the export increases considerably during
peak-load hours as compared to Cases 1 and 2 due to ES discharging. The
numerical results of Cases 3 highlights the ability for the proposed distributed
solution to enable effective sharing of ES operational flexibility among areas.

4.3. Computational Performance and Comparisons

The proposed distributed solution approach is implemented in GAMS
[41] and the computations are carried out on a desktop computer with a
3.70 [GHz] i9 CPU and 32 [GB] RAM, using CPLEX 12.10.0 solver [42] with
the duality gap set at 0.01%. The CPU times and number of iterations to
satisfy (36) are reported in Table 2 for all three cases, and Fig. 9 plots the
changes in percentage relative cost error, δcost, as the iterations progress.
For day-ahead scheduling, the proposed distributed approach provides a rea-
sonably accurate solution, as measured by the indices in Table 1, within a
practically adoptable CPU time of less than 1.2 hours for all cases. Notably,
although the performance index δcost for cases 1–3 starts at a high value of
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Figure 9: Convergence of relative percentage cost error δcost for three-area IEEE-
RTS

.

approximately 40%, it rapidly decreases to reasonably low values within the
first 30 iterations.

4.3.1. Computational Scalability

To evaluate the computational scalability of the proposed algorithm, we
extend its implementation to a larger 146-bus network comprising 6 areas
and 13 tielines. This larger network is formed by mirroring the IEEE-RTS
from Case 1 and connecting the two mirrored networks with 3 additional
tielines, parameters for which are reported in Table 3. Initializing the penalty
multipliers and the update coefficient at the same values as in Case 1, the
distributed solution for this larger network meets the stopping criteria of (36)
in 60 iterations with relative errors δcost of 0.11% and with operating cost of
$2,837,466. The performance of the algorithm for different values of update
coefficients is illustrated in Fig. 10 and Table 4. Despite the greater numbers
of buses, areas, and tielines, the proposed distributed algorithm demonstrates

Table 3: Parameters for Additional Tielines in Six-Area Mirrored IEEE-RTS
Tieline
Number

Sending End
(Area-Bus)

Receiving End
(Area-Bus)

Reactance
(pu)

Capacity
(MW)

T11 1-6 1’-8 0.075 100
T12 2-2 2’-9 0.075 100
T13 3-1 3’-7 0.097 100

25



0 10 20 30 40 50 60
0

10

20

30

40

50

Figure 10: Convergence of relative percentage cost error δcost for the six-area mir-
rored IEEE-RTS with different values of update coefficient α.

Table 4: Computational Performance of Distributed Solution for the Six-Area Mirrored
IEEE-RTS

α Number of Iterations CPU Time [Sec] Operating Cost [$] δcost

1.0 62 2,918 2,826,669 0.14

1.02 64 3,283 2,831,245 0.10

1.03 60 3,863 2,837,466 0.11

performance metrics that are very close to those of Case 1, showcasing its
ability to scale to larger systems.

4.3.2. Comparison with Discrete-time Models

Using Bernstein basis functions in the proposed method enables near-
optimal continuous-time trajectories that capture real-time load and genera-
tion variations while preserving the essence of hourly intervals. At the same
time, a straightforward alternative to enhance solution granularity and better
address real-time imbalances compared to current hourly-interval models is
to reduce the scheduling interval in discrete-time formulations, but they sig-
nificantly increase the overall problem size by introducing many more binary
commitment variables [43].

Table 5 compares the number of binary and continuous variables for gen-
erating units in a 24-hour UC problem on IEEE-RTS using continuous- and
discrete-time methodologies, highlighting the sharp increase in binary vari-

26



Table 5: Total Numbers of Commitment Status (Binary) and Generation (Continuous)
Variables in 24-hour UC problem for IEEE-RTS

UC Model
Commitment

Status
Generation

Continuous-time (distributed) 768 3,072
Continuous-time (centralized) 2,304 9,216
Discrete-time (hourly intervals) 2,304 2,304

Discrete-time (quarter-hourly intervals) 9,216 9,216

Table 6: Comparing Performance Metrics of Different UC Models for IEEE-RTS

UC Model
CPU Time

[Sec]
Operating
Cost [$]

δRT

[MW]

Continuous-time (distributed) 3,346 1,468,544 6,999
Continuous-time (centralized) 395 1,466,951 5,609
Discrete-time (hourly intervals) 21 1,469,504 6,183
Discrete-time (quarter-hourly

intervals)
294 1,486,247 31,397

ables as the length of scheduling interval decreases. The use of distributed
methodology further reduces the binary variables for each area’s sub-problem
(formulated as MIQP), yielding locally optimal solution within the duality
gap, for each iteration. Likewise, since the coordinating problem solved at
the central coordinator (i.e., the QCP) is convex, it guarantees a local opti-
mal solution, leveraging the properties of the adopted distributed algorithm.
Furthermore, due to convexity, any local solution to the linear optimization
problem in functional space is also globally optimal. Solutions to linear op-
timization models in functional space can be efficiently approximated with
available solvers (e.g., CPLEX, Gurobi). In contrast, discrete-time integer
optimization is nonconvex, meaning a locally optimal solution may not be
close to the global optimum. Moreover, discrete-time optimization models
face scalability issues, as the combinatorial explosion in the search space
significantly increases computation time.

Plotted in Fig. 11 are comparisons of the aggregate generation schedule
obtained from three different solution methodologies with the real-time load
profile presented in Fig. 5, and the overall performance is summarized in
Table 6. Despite involving fewer binary variables, the proposed distributed
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Figure 11: (a) Aggregate generation in IEEE-RTS solved from discrete-time UC
models formulated with hourly and quarter-hourly intervals and from the proposed
distributed continuous-time UC model, (b) Deviation of aggregate generation from
real-time load profile in Fig. 5

solution methodology closely matches the real-time load demand, leading to
lower real-time operational costs and a reduced need for ramping resources
compared to discrete-time solutions.

5. Concluding Remarks

In this paper, we proposed a distributed solution for a variational multi-
area UC problem incorporating energy storage. The multi-area UC prob-
lem was formulated as a variational optimization problem, followed by the
projection of continuous-time parameter and decision trajectories into Bern-
stein function space, thereby forming a more computationally tractable MILP
problem. We then decomposed the ensuing function space-based multi-area
UC problem into per-area UC sub-problems that collectively reach an efficient
interconnection power exchange through sharing limited information with a
central coordinator, thus, preserving the local resource data privacy. The

28



numerical results of implementing the proposed distributed solution on the
three-area IEEE-RTS demonstrate close matching between the distributed
and centralized solutions via representative performance indices for opera-
tion cost and power schedules. In addition, the results highlight the sensitiv-
ity of the distributed continuous-time UC solution to ramping requirements
in the system demand and its effectiveness in optimally scheduling the gen-
erating units and ES devices in areas with abundant ramping capability to
serve demand in areas with limited ramping resources. The solution method-
ology was further tested on a larger six-area mirrored IEEE-RTS network,
demonstrating its scalability, and compared with discrete-time solutions to
emphasize its benefits. Future work will account for net demand uncertainty
in developing distributed algorithms for the multi-area UC problem where
the continuous-time generation and reserve are co-optimized and cover the
aspects of real-time operations.
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