
1

Measurement-based Locational Marginal Prices for
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Abstract—This paper presents a measurement-based method
to calculate distribution locational marginal prices (DLMPs)
toward establishing real-time electricity markets that help to
support reliable and efficient operation of distribution systems.
The calculation of DLMPs typically relies on an accurate and
up-to-date distribution network model, but this may not be
available in practice. Instead, central to the proposed method
is the online estimation of linear sensitivity models that map
bus voltages to power injections and to line power flows using
only synchrophasor measurements collected at buses interfacing
market participants and in lines of interest. The estimated linear
models replace the nonlinear power flow constraints in a multi-
period look-ahead optimal power flow (OPF) problem, thus
obviating the need for an offline distribution network model in
obtaining DLMPs as the optimal Lagrange multipliers of the
linear sensitivity constraints. Moreover, the modified OPF prob-
lem with linear constraints is a convex quadratic programming
problem, for which computationally efficient solvers are readily
available. The resulting DLMPs also embed costs due to potential
congestion in certain lines monitored by synchrophasor mea-
surements. Numerical simulations demonstrate the effectiveness,
adaptability, and scalability of the proposed measurement-based
method to establish a real-time market for distributed generation,
energy storage devices, and flexible loads.

Index Terms—Distribution system, electricity market, loca-
tional marginal price, measurement, synchrophasor

I. INTRODUCTION

EXTENSIVE deployment of distributed energy resources
(DERs), e.g., distributed generation, energy storage de-

vices, and flexible loads, in power distribution networks is
crucial in the transition to a low-carbon electric energy future.
It is well recognized that benefits for grid operations can be
realized via active coordination of DERs, enabling them to
contribute to voltage support and congestion management [1].
Pivotal to broad adoption of these measures are electricity trad-
ing practices that can incentivize DERs to provide grid support
and compensate them through a fair pricing scheme instead of
payments based on fixed or time-of-use rates only [2]. Of par-
ticular interest for distribution networks are real-time markets
(in the range of minutes to hours) as accurate longer-term
forecasts of distributed generation and individual nodal loads
needed for, e.g., day-ahead markets, may be more difficult to
obtain [3]. A promising approach to establish distribution-level
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real-time markets draws inspiration from wholesale electricity
markets in the bulk transmission system, leading to the concept
of distribution locational marginal prices (DLMPs) [4].

In general, given a forecast of nodal loads and bids from
market participants over the scheduling horizon under consid-
eration, calculating DLMPs involves repeated and rolling solu-
tions of a multi-period look-ahead optimal power flow (OPF)
problem. Distinct from the transmission-level pricing prob-
lem often formulated with lossless and linear power flow
assumptions, the high resistance-to-reactance ratio typical of
distribution networks calls for the inclusion of full-blown
nonlinear power flow constraints, along with inter-temporal
characteristics of energy storage devices and flexible loads,
as well as operational limits related to DER capacities, line
flows, and bus voltages. Due to the nonlinear and nonconvex
nature of the resulting problem, the general approach may be
computationally burdensome for practical deployment in large-
scale distribution networks. Although various linearization and
convexification techniques can offer computational savings,
the solution approaches generally still require an accurate
network model reflecting the up-to-date operating point, but
this may not be available in real time [5]–[7]. The use of an
inaccurate or outdated offline model may lead to erroneous
DLMPs that do not support the market equilibrium, and ac-
companying decisions may result in suboptimal or undesirable
system behaviour.

This paper proposes a measurement-based approach to
overcome the aforementioned challenges. We extract DLMPs
as the optimal Lagrange multipliers of estimated linear
sensitivity-based equality constraints—replacing the nonlinear
power flow equations—in the multi-period look-ahead OPF
problem. The modified OPF problem with linear constraints is
a convex quadratic programming problem, for which computa-
tionally efficient solution techniques are readily available. The
linear constraints approximate the mapping from bus voltages
to power injections, and we estimate the mapping on a rolling
basis using only online measurements from synchropha-
sor technologies, e.g., distribution-level phasor measurement
units (D-PMUs). In this way, the calculation of measurement-
based DLMPs does not rely on any prior offline knowledge
of the underlying network, and the resulting DLMPs adapt
to the system’s evolving operating point and even changes
in the network topology. The sampling and communication
capabilities of D-PMUs ensure that the sensitivity model can
be updated within a given market period to reflect the up-to-
date system operating point [8]. With respect to measurement
coverage, D-PMUs are needed only at buses that interface
market participants, such as distributed generation (realized as
dispatchable DERs), energy storage devices, and flexible loads.
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Compared with DLMPs calculated with exact (but outdated)
nonlinear power flow constraints, the proposed measurement-
based DLMPs solved from the modified OPF problem embed-
ding an up-to-date (albeit linear) sensitivity model incur less
computational burden and offer greater accuracy, even with
relatively modest measurement coverage.

Prior work to address computational challenges associated
with calculating DLMPs includes efforts to formulate the
pertinent pricing problem by assuming radial topology and
employing a relaxed convex branch-flow model [9]–[14]. Re-
sulting DLMPs are applied to congestion management and
voltage support [9], hierarchical economic dispatch involv-
ing distribution- and microgrid-network layers [10], pricing
reactive power and ancillary services [11], and coordinating
between transmission and distribution system operators [12].
Also, analytical properties of DLMPs obtained from the
pricing problem formulated with a relaxed convex branch-
flow model for radial networks are the focus of [13], [14].
However, the radial topology may be overly restrictive for
future distribution networks with interconnected microgrids.
Another general approach that is applicable for any network
configuration leverages linear approximations in place of the
nonlinear power flow constraints in the OPF problem, such as
using the DC power flow approximation commonly invoked
for transmission systems [15], computing line flows with a
lossless line model and then lumping approximate losses as
additional loads on either end of the line [16], and directly
linearizing the nonlinear power flow equations around various
operating points [17], [18]. While all methods in [9]–[18]
tend to alleviate the computational burden of calculating
DLMPs in radial or arbitrary networks, they all still depend on
offline knowledge of (at least) the network topology, an up-
to-date and accurate version of which may not be available
in practice [5]–[7]. Meanwhile, the advancement of online
measurement technologies motivates the development of data-
driven approaches for power system operations, including
methods to solve security-constrained economic dispatch [19],
security-constrained OPF [20], and secure operation bound-
aries [21]. Furthermore, aimed at real-time decision making in
the distribution network, our earlier work formulates a single-
snapshot optimization problem intended to be solved every
few seconds to determine the next optimal DER dispatch
in a centralized [22] or distributed [23] manner. However,
the aforementioned data-driven approaches focus on optimal
decision making for (possibly security-aware) operations, and
potential application to pricing is mentioned only in passing
if at all.

This paper builds on preliminary work reported in [24]
and provides extensions in several directions. First, the multi-
period OPF problem formulated with inter-temporal con-
straints enables the inclusion of energy storage devices and
flexible loads as market participants in addition to the dis-
patchable DERs considered in the simplified single-period
formulation in [22]–[24]. This is consistent with current imple-
mentations of multi-period look-ahead scheduling and markets
prevalent in the bulk transmission system, which serve as
inspiration for establishing distribution-level markets rooted in
locational marginal pricing. Further extending beyond [22]–

[24], we impose minimum and maximum flow limits on
a subset of lines for which synchrophasor line active- and
reactive-power flow measurements are available so that re-
sulting measurement-based DLMPs embed congestion effects.
Included as additional equality constraints in the OPF problem
are linear sensitivity models that relate the pertinent line flows
to bus voltages, which we also estimate on a rolling basis
using online measurements only. We further provide exten-
sive numerical simulations involving a 33-bus test system to
demonstrate the effectiveness and adaptability of the resulting
measurement-based DLMPs compared to their model-based
counterparts for establishing real-time markets, especially in
the presence of variations in operating point and changes in
network topology. Finally, we report execution times involved
with estimating the linear sensitivity models and solving the
multi-period OPF in the proposed method for various numbers
of market participants in an 874-bus test system.

The remainder of this paper is organized as follows. Sec-
tion II outlines models for the distribution network and market
participants along with the model-based multi-period look-
ahead OPF problem to calculate DLMPs. In Section III,
we present measurement-based DLMPs as the solution to a
modified OPF problem that embeds an estimated sensitivity
model as linear constraints in place of nonlinear power flow
equations. Numerical simulations in Section IV demonstrate
the effectiveness of the proposed measurement-based DLMPs.
Finally, we provide concluding remarks in Section V.

II. PRELIMINARIES

In this section, we describe models for the distribution net-
work power flow and for DERs serving as market participants,
including dispatchable DERs (representing distributed genera-
tion), energy storage devices, and flexible loads. We then for-
mulate a general multi-period look-ahead OPF problem subject
to nonlinear power flow constraints and various operational
limits, the optimal solution of which includes model-based
DLMPs. For the OPF problem, consider a scheduling horizon
from time t0 to t0 + T , where T is in the range of several
hours. The scheduling horizon subdivides into multiple market
periods of equal interval ∆t, where ∆t is in the range of 5
to 15 minutes. We collect end points of the market periods in
the set Tt0 = {t0 + ∆t, t0 + 2∆t, . . . , t0 + T}.

A. Distribution Network Model

Consider a distribution system with N buses collected in
the set N = {1, . . . , N} and L transmission lines in the set
L = {1, . . . , L}. Suppose dispatchable DERs (representing
distributed generation) are connected to G buses collected in
the set G ⊆ N , energy storage devices are connected to S
buses collected in the set S ⊆ N , flexible loads are connected
to R buses collected in the set R ⊆ N , and inflexible loads
are connected to all buses in N . Without loss of generality,
assume bus 1 is the substation, and further define the setN− =
N \ {1}. The substation power injection into the distribution
feeder is modelled as the output of a dispatchable DER, so
bus 1 ∈ G by default.
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Let θt = [(θi,t)i∈N− ]T and Vt = [(Vi,t)i∈N− ]T, where
θi,t and Vi,t respectively denote the voltage phase angle and
magnitude at bus i ∈ N− and at time t ∈ Tt0 . Note that
the substation is excluded from θt and Vt as it represents the
slack bus at which voltage is fixed and known. Then power
flow equations can be compactly expressed as

Pt = fPt (θt, Vt), t ∈ Tt0 , (1)

Qt = fQt (θt, Vt), t ∈ Tt0 , (2)

where fPt : R2N−2 → RN , fQt : R2N−2 → RN , and the net
bus active- and reactive-power injections are given by

Pt = W gP g
t +W es(P es,d

t − P es,c
t )−W fP f

t − P d
t , (3)

Qt = W gQg
t +W esQes

t −W fQf
t −Qd

t . (4)

Above, P g
t = [(P g

g,t)g∈G ]T and Qg
t = [(Qg

g,t)g∈G ]T re-
spectively collect active and reactive power produced by
dispatchable DERs at time t ∈ Tt0 , P es,c

t = [(P es,c
s,t )s∈S ]T

(P es,d
t = [(P es,d

s,t )s∈S ]T) collects charging (discharging) active
power from energy storage devices at time t ∈ Tt0 , Qes

t =
[(Qes

s,t)s∈S ]T collects reactive-power outputs from energy stor-
age devices at time t ∈ Tt0 , and P f

t = [(P f
r,t)r∈R]T (P d

t =
[(P d

i,t)i∈N ]T) and Qf
t = [(Qf

r,t)r∈R]T (Qd
t = [(Qd

i,t)i∈N ]T)
respectively collect active- and reactive-power withdrawals
by flexible (inflexible) loads at time t ∈ Tt0 . Furthermore,
W g ∈ RN×G, W es ∈ RN×S , and W f ∈ RN×R are matrices
of 1s and 0s that map entries related to dispatchable DERs
in G, energy storage devices in S, and flexible loads in R,
respectively, to corresponding bus indices in N . Further define
πt = [(π`,t)`∈L]T and ϕt = [(ϕ`,t)`∈L]T, where π`,t and ϕ`,t
respectively denote the active- and reactive-power flow in line
` ∈ L at time t ∈ Tt0 . Given a particular power flow solution
satisfying (1)–(2) at time t ∈ Tt0 , we can express line active-
and reactive-power flows compactly as follows:

πt = hPt (θt, Vt), t ∈ Tt0 , (5)

ϕt = hQt (θt, Vt), t ∈ Tt0 , (6)

where hPt : R2N−2 → RL and hQt : R2N−2 → RL.
Here, it is important to note that, implicitly represented in

the functions fPt (·), fQt (·), hPt (·), and hQt (·) in (1)–(2) and
(5)–(6) is the dependence on network parameters (such as cir-
cuit breaker status and line impedances) and any other power
injections not explicitly modelled in (3)–(4). In general, these
functions may vary over time due to, e.g., network topology
reconfiguration or changes in other system parameters. We
next outline models and constraints pertinent to dispatchable
DERs, energy storage devices, and flexible loads.

B. Market Participants

We consider distributed generation (realized as dispatchable
DERs), energy storage devices, and flexible loads as market
participants in the real-time distribution-level electricity mar-
ket. Below, we describe their models and operational limits.

1) Dispatchable DERs: We model the active and reactive
power produced by dispatchable DERs at time t ∈ Tt0
as negative constant-power loads collected in P g

t and Qg
t ,

respectively. The substation bus is treated as a slack bus,
which can be represented by a virtual DER, and its active- and
reactive-power injections into the distribution feeder at time
t ∈ Tt0 appear as the first entries in P g

t and Qg
t , respectively.

Power produced by dispatchable DERs are constrained to the
following minimum and maximum limits:

P g ≤ P g
t ≤ P

g
, t ∈ Tt0 , (7)

Qg ≤ Qg
t ≤ Q

g
, t ∈ Tt0 . (8)

2) Energy Storage Devices: At time t ∈ Tt0 , let Ees
t =

[(Ees
s,t)s∈S ]T, where Ees

s,t denotes the energy accumulated in
energy storage device at bus s ∈ S. The operational constraints
of energy storage devices include the energy state

Ees
t = Ees

t−∆t +
(
ηcP es,c

t − (ηd)
−1
P es,d
t

)
∆t, t ∈ Tt0 , (9)

where ηc and ηd are diagonal matrices of charging and
discharging efficiency coefficients, respectively, and where Ees

t

is constrained by

Ees ≤ Ees
t ≤ E

es
, t ∈ Tt0 . (10)

Energy storage devices are also subject to bounds in charging
and discharging active power and in reactive-power outputs as

0 ≤ P es,c
t ≤ P es,c

, t ∈ Tt0 , (11)

0 ≤ P es,d
t ≤ P es,d

, t ∈ Tt0 , (12)

Qes ≤ Qes
t ≤ Q

es
, t ∈ Tt0 . (13)

3) Flexible Loads: Let P des
t = [(P des

r,t )r∈R]T and Qdes
t =

[(Qdes
r,t )r∈R]T, where P des

r,t and Qdes
r,t respectively denote the

user’s desired active- and reactive-power withdrawals by the
flexible load at bus r ∈ R and at time t ∈ Tt0 . Further let
Edfc
t = [(Edfc

r,t )r∈R]T, where the nonnegative Edfc
r,t represents

the energy deficit accumulated for the flexible load at bus r ∈
R due to the mismatch in the scheduled load away from the
corresponding desired value by time t ∈ Tt0 . The accumulated
energy deficit can be expressed as

Edfc
t = Edfc

t−∆t +
(
P des
t − P f

t

)
∆t, t ∈ Tt0 , (14)

where the scheduled active-power load is constrained to

P f ≤ P f
t ≤ P

f
, t ∈ Tt0 , (15)

with P f and P
f

being informed by the flexible load’s technical
limits, such as the minimum and maximum charging rates for
an electric vehicle. Flexible loads may also be bound to time
deadlines that can be imposed on the energy deficit as

0 ≤ Edfc
t ≤ Edfc

t , t ∈ Tt0 , (16)

where the entry in E
dfc

t pertinent to the flexible load connected
to bus r ∈ R is given by

E
dfc

r,t =

{
0, if t = τr,

+∞, if t 6= τr,
(17)
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implying that its energy deficit ought to be cleared by the
specified deadline τr. For example, an electric vehicle may
need to be fully charged before a particular time. We assume
that the scheduled reactive-power withdrawals from flexible
loads Qf follow similar changes as the scheduled active-power
withdrawals, meaning that

(P des
t )Tdiag(Qf

t) = (Qdes
t )Tdiag(P f

t ), t ∈ Tt0 , (18)

where diag(·) denotes the diagonal matrix formed with the
argument as the diagonal entries. It is worth noting that
we utilize a queuing model for flexible loads, where P des

t

and P f
t correspond to the arrival and departure components,

respectively, and Edfc
t represents the queue backlog. The

constraint in (18) actualizes a joint queue for both active-
and reactive-power withdrawals from flexible loads. Before
moving on to formulate the model-based OPF problem, we
mention that other market participants and quality of service
constraints may be included, such as delay constraints for
electric vehicles at public charging stations [25]. However,
we refrain from offering an exhaustive selection to contain
notational burden while spotlighting the main contributions.

C. Model-based DLMPs and Problem Statement

In general, the DLMP at a bus represents the rate of
change of optimal distribution system operation cost due to
incremental changes in load at that bus [26]. Suppose we
are furnished with a forecast of inflexible nodal active- and
reactive-power loads P d

t and Qd
t , respectively, for t ∈ Tt0 .

With models for the distribution network power flow and
market participants established previously, the DLMPs can be
obtained alongside the optimal solution of the following multi-
period look-ahead OPF problem:

minimize
Ω

∑
t∈Tt0

C(P g
t , Q

g
t ) (19a)

subject to Pt = fPt (θt, Vt), t ∈ Tt0 , (λt), (19b)

Qt = fQt (θt, Vt), t ∈ Tt0 , (µt), (19c)

πt = hPt (θt, Vt), t ∈ Tt0 , (αt), (19d)

ϕt = hQt (θt, Vt), t ∈ Tt0 , (βt), (19e)

π ≤ πt ≤ π, t ∈ Tt0 , (χ−t , χ
+
t ), (19f)

ϕ ≤ ϕt ≤ ϕ, t ∈ Tt0 , (ψ−t , ψ
+
t ), (19g)

V ≤ Vt ≤ V , t ∈ Tt0 , (ν−t , ν
+
t ), (19h)

DER power injection limits in (7)–(8), (19i)
Energy storage model in (9)–(13), (19j)
Flexible load model in (14)–(18), (19k)

where Ω = {θt, Vt, πt, ϕt, P g
t , Q

g
t , P

es,c
t , P es,d

t , Qes
t , E

es
t , P

f
t ,

Qf
t, E

dfc
t }t∈Tt0 collects the decision variables over which

the optimization is solved. The total operation cost of the
distribution system is summed over the scheduling horizon
for all t ∈ Tt0 and minimized in the objective function (19a),
which includes the cost to produce power from dispatchable
DERs and to purchase power from the transmission system.
The total cost is minimized subject to constraints pertinent
to the network power flow in (19b)–(19e), as well as upper

Tτ+∆t

Tτ

τ −∆t τ τ +∆t τ + 2∆t

· · ·
τ + T τ +∆t+ T

Time

∆ts

· · ·

Fig. 1: Time scales involved with repeated and rolling instances of estimation
and optimization in the proposed measurement-based market. As an example,
at time τ , we solve the measurement-based OPF problem in (24) with t0 = τ
for the look-ahead scheduling horizon Tτ of length T . The OPF problem
embeds an updated linear sensitivity model estimated using measurements
collected at ∆ts intervals prior to time τ . This procedure is repeated at time
τ+∆t for the look-ahead scheduling horizon Tτ+∆t, and so on. We consider
∆ts, ∆t, and T in the ranges of seconds, minutes, and hours, respectively.

and lower limits for line active- and reactive-power flows
in (19f)–(19g) and bus voltages in (19h). Lagrange multipliers
are included in parentheses after corresponding constraints.
Additionally, models and constraints pertinent to dispatchable
DERs, energy storage devices, and flexible loads are included
in (19i), (19j), and (19k), respectively. Mathematically, the
active-power (reactive-power) DLMP at a bus is the first
derivative of the optimal Lagrangian of (19) with respect to the
active-power (reactive-power) load at that bus [27]. Denote by
λ?t and µ?t the optimal values taken by Lagrange multipliers
λt and µt, respectively. Using the chain rule in calculus
and the optimality conditions derived from the Karush-Kuhn-
Tucker (KKT) conditions, it is straightforward to show that
the i-th entry of λ?t ∈ RN (µ?t ∈ RN ) represents the locational
marginal price attributed to the active-power (reactive-power)
load at bus i ∈ N and at time t ∈ Tt0 .

The OPF problem in (19) is constrained by exact power flow
constraints, rendering the problem nonlinear and nonconvex.
Hence, the calculation of DLMPs by solving (19) may incur
significant computational burden incongruous with timelines
accompanying fast changes in the electricity demand and
generation expected at the grid edge. Although solving the
OPF problem formulated with linearized or relaxed power flow
constraints (see, e.g., [9]–[18]) helps to alleviate the computa-
tional burden, accurate DLMPs still rely on an offline system
model that comprises the up-to-date network topology, line
parameters, and operating point, which may not be available
in practice [5]–[7]. In this paper, aimed at practical calculation
of DLMPs for real-time markets with respect to both com-
putational burden and reliance on offline models, we replace
the nonlinear power flow constraints in (19b)–(19e) by linear
sensitivity models estimated from only online synchrophasor
measurements, obviating the need for any prior knowledge of
the underlying physical network that is being measured.

III. MEASUREMENT-BASED MARKET CLEARING

In this section, we describe the estimation of linear sensitiv-
ity models that then replace the nonlinear power flow equations
in the multi-period look-ahead OPF problem. The solution
of the modified OPF problem comprises measurement-based
DLMPs alongside optimal setpoints for market participants.
Figure 1 illustrates the time evolution of the proposed repeated
and rolling instances of estimation and optimization.
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A. Estimating Linear Sensitivity Models

Let E ⊆ N represent the set of E buses in the dis-
tribution network equipped with D-PMUs. The calculation
of measurement-based DLMPs at buses with market partic-
ipants requires D-PMU measurements at these locations, so
we assume that G ∪ S ∪ R ⊆ E . Additionally, it may be
prudent to monitor buses that are at greater risk of violating
operational constraints. Further let E− = E \ {1}. Collect
voltage phase angles and magnitudes of measured buses (ex-
cept those of the substation where the voltage is assumed
to be fixed and known) in vectors θE,t = [(θi,t)i∈E− ]T and
VE,t = [(Vi,t)i∈E− ]T, respectively. Also collect the inflexible
active- and reactive-power loads at measured buses in vectors
P d
E,t = [(P d

i,t)i∈E ]
T and Qd

E,t = [(Qd
i,t)i∈E ]

T, respectively.
Net active- and reactive-power injections, collected in vec-
tors PE,t = [(Pi,t)i∈E ]

T and QE,t = [(Qi,t)i∈E ]
T are then

given by1

PE,t=MgP g
t +M es(P es,d

t − P es,c
t )−M fP f

t − P d
E,t,

t ∈ Tt0 , (20)

QE,t=MgQg
t +M esQes

t −M fQf
t −Qd

E,t, t ∈ Tt0 , (21)

where Mg ∈ RE×G, M es ∈ RE×S , and M f ∈ RE×R are
matrices of 0s and 1s that map entries in G, S, and R,
respectively, to the corresponding ones in E . In addition to
nodal quantities, we consider F particular lines in the set
F ⊆ L that are equipped with flow measurements. These may
include particularly sensitive transformers or lines requiring
additional monitoring to ensure flow limits are not exceeded.
The active- and reactive-power flows of measured lines are
collected in πF,t = [(π`,t)`∈F ] and ϕF,t = [(ϕ`,t)`∈F ],
respectively.

Suppose measurements of pertinent system variables are
sampled at time ts = k∆ts, k = 0, 1, . . . , where ∆ts is the
sampling interval (in the range of several seconds or less [8]).
For notational consistency, we distinguish measured or esti-
mated values with ·̂ placed above corresponding variables.
Collect measured bus voltage phase angles and magnitudes at
time step k in x̂E,ts = [θ̂T

E,ts , V̂
T
E,ts ]

T. Further collect the mea-
sured net power injections (including those of the substation)
and line power flows at time step k in ŷE,ts = [P̂T

E,ts , Q̂
T
E,ts ]

T

and ẑF,ts = [π̂T
F,ts , ϕ̂

T
F,ts ]

T, respectively. We hypothesize a
linear relationship between the measured injections/flows and
voltages given by[

ŷE,ts

ẑF,ts

]
= Hts x̂E,ts + cts , (22)

where Hts ∈ R2(E+F )×2(E−1) and cts ∈ R2(E−1) represent
the linear- and constant-term coefficients, respectively. By
collecting a minimum of 2E most recent sets of measurements
sampled in time and stacking the corresponding (transposed)
instances of (22) while assuming Hts and cts remain constant

1Throughout this paper, we routinely make use of wi to denote the ith entry
of vector variable w, wi,t to denote the value taken by wi at time t, and wt
to denote the value taken by w at time t. Furthermore, wX = [(wi)i∈X ]T

collects entries in vector variable w for which corresponding indices belong
to the set X , and wX ,t denotes the value taken by wX at time t.

across these samples, it is straightforward to utilize the ordi-
nary least squares (OLS) algorithm to obtain estimates of Hts

and cts , denoted by Ĥts and ĉts , respectively. However, the
OLS algorithm may lead to ill-conditioned regressor matrices
due to correlation among voltages of nearby buses. The partial
least squares (PLS) algorithm may be a promising alternative
to overcome the collinearity problem and to provide meaning-
ful estimates for Ĥts and ĉts [22], [23]. We refer interested
readers to [22] for further details on the PLS algorithm and
its performance. For this paper, it suffices to assume that, at
each sampling time step k, Ĥts and ĉts can be obtained using
recent measurements via a suitable algorithm.

B. Calculating Measurement-based DLMPs

To calculate measurement-based DLMPs, we modify the
OPF problem in (19) in two ways. First, instead of assuming
forecasts of inflexible loads are available at all buses, the
modified OPF problem is solved with nodal loads forecasted
at the measured buses only, i.e., P d

E,t and Qd
E,t, t ∈ Tt0 .

Inflexible loads at remaining buses are treated as unknown
system parameters that may vary over time, and any such
variations would be implicitly captured in the linear sensitivity
models estimated using up-to-date online measurements. We
also replace the nonlinear power flow constraints in (19b)–
(19e) with estimated linear sensitivity models pertinent to
the scheduling horizon beginning at time t0, denoted by Ĥt0

and ĉt0 , obtained via a suitable algorithm as mentioned in
Section III-A. In practice, we advocate for using recently es-
timated models that would best reflect the up-to-date network
topology and system operating point. Also, for the problem
formulation and discussion to follow, we will find it useful to
decompose Ĥt0 and ĉt0 as

Ĥt0 =

[
Ĵt0
K̂t0

]
=


ĴPθt0 ĴPVt0
ĴQθt0 ĴQVt0
K̂Pθ
t0 K̂PV

t0

K̂Qθ
t0 K̂QV

t0

 , ĉt0 =

[
b̂t0
d̂t0

]
=


b̂Pt0
b̂Qt0
d̂Pt0
d̂Qt0

 , (23)

where the dimensions of submatrices are consistent with
previously defined variables. For example, linear-term matrix
coefficients include Ĵt0 ∈ R2E×2(E−1), ĴPθt0 ∈ RE×(E−1),
and ĴPVt0 ∈ RE×(E−1), and constant-term vector coefficients
include b̂t0 ∈ R2E and b̂Pt0 ∈ RE .

With the above modifications to the OPF problem in (19)
in mind, we formulate the measurement-based multi-period
look-ahead OPF problem as follows:

minimize
Ω′

∑
t∈Tt0

C(P g
t , Q

g
t ) (24a)

subject to PE,t = ĴPθt0 θE,t + ĴPVt0 VE,t + b̂Pt0 ,

t ∈ Tt0 , (λ′t), (24b)

QE,t = ĴQθt0 θE,t + ĴQVt0 VE,t + b̂Qt0 ,

t ∈ Tt0 , (µ′t), (24c)

πF,t = K̂Pθ
t0 θE,t + K̂PV

t0 VE,t + d̂Pt0 ,

t ∈ Tt0 , (α′t), (24d)

ϕF,t = K̂Qθ
t0 θE,t + K̂QV

t0 VE,t + d̂Qt0 ,
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t ∈ Tt0 , (β′t), (24e)

πF ≤ πF,t ≤ πF , t ∈ Tt0 , (χ′−t , χ
′+
t ), (24f)

ϕF ≤ ϕF,t ≤ ϕF , t ∈ Tt0 , (ψ′−t , ψ
′+
t ), (24g)

V E ≤ VE,t ≤ V E , t ∈ Tt0 , (ν′−t , ν′+t ), (24h)
DER power injection limits in (7)–(8), (24i)
Energy storage model in (9)–(13), (24j)
Flexible load model in (14)–(18), (24k)

where Ω′ = {θE,t, VE,t, πF,t, ϕF,t, P g
t , Q

g
t , P

es,c
t , P es,d

t , Qes
t ,

Ees
t , P

f
t , Q

f
t, E

dfc
t }t∈Tt0 collects the decision variables in the

optimization. The operation cost of the distribution system
is minimized in the objective function (24a) subject to the
estimated power flow constraints in (24b)–(24e), as well
as upper and lower limits of measured line active- and
reactive-power flows in (24f)–(24g) and measured bus voltages
in (24h). Constraints pertinent to dispatchable DERs, energy
storage devices, and flexible loads are reproduced from the
model-based OPF problem in (19) as (24i), (24j), and (24k),
respectively. Lagrange multipliers associated with different
constraints in the modified OPF problem are included in
parentheses thereafter.

Denote, by λ′?t and µ′?t , the optimal values taken by
Lagrange multipliers λ′t and µ′t, respectively. Similar to the
arguments made for the problem in (19), straightforward
application of optimality conditions derived from the KKT
conditions for the problem in (24) reveals that entries of
λ′?t ∈ RE (µ′?t ∈ RE) represent the locational marginal
prices attributed to the active-power (reactive-power) load at
the corresponding buses and time t ∈ Tt0 . Next, we establish
conditions under which the measurement-based DLMPs coin-
cide with their model-based counterparts via arguments based
in optimality conditions.

C. Drawing Connection to Model-based DLMPs

Recall E collects buses that are equipped with D-PMUs.
Further let E = N \ E collect unmeasured buses. Decompose
net active-power (reactive-power) injections into measured and
unmeasured components, i.e., PE,t and PE,t (QE,t and QE,t).
Similarly decompose the voltage phase angles (magnitudes)
into measured and unmeasured quantities, i.e., θE,t and θE,t
(VE,t and VE,t). Further define measured variables yE,t =

[PT
E,t, Q

T
E,t]

T and xE,t = [θT
E,t, V

T
E,t]

T and unmeasured vari-
ables yE,t = [PT

E,t, Q
T
E,t]

T and xE,t = [θT
E,t, V

T
E,t]

T. The opti-
mal solution of the model-based OPF problem in (19) satisfies
power flow equations in (1)–(2), reordered and decomposed
into measured and unmeasured components as follows:

y?E,t = fE,t(x
?
E,t, x

?
E,t), t ∈ Tt0 , (25)

y?E,t = fE,t(x
?
E,t, x

?
E,t), t ∈ Tt0 , (26)

where fE,t(·) and fE,t(·) consist of entries in
[(fPt (·))T, (fQt (·))T]T corresponding respectively to measured
and unmeasured buses. Also recall that F collects lines that
are equipped with flow measurements. By collecting active-
and reactive-power flow variables pertinent to measured lines
only into the vector zF,t = [πT

F,t, ϕ
T
F,t]

T and picking out

corresponding entries in (5)–(6), we can express these line
flows at the optimal solution of (19) as

z?F,t = hF,t(x
?
E,t, x

?
E,t), t ∈ Tt0 , (27)

where hF,t(·) comprises entries in [(hPt (·))T, (hQt (·))T]T cor-
responding to measured line active- and reactive-power flows.

Proposition 1. Given the optimal solution Ω? of the model-
based problem in (19), measurement-based DLMPs coincide
precisely with their model-based counterparts if

Ĵt0 = J?EE,t − J?EE,t(J
?
EE,t)

−1J?EE,t, ∀t ∈ Tt0 , (28)

b̂t0 = b?E,t + J?EE,t(J
?
EE,t)

−1(y?E,t − b
?
E,t), ∀t ∈ Tt0 , (29)

K̂t0 = K?
FE,t −K?

FE,t(J
?
EE,t)

−1J?EE,t, ∀t ∈ Tt0 , (30)

d̂t0 = d?F,t +K?
FE,t(J

?
EE,t)

−1(y?E,t − b
?
E,t), ∀t ∈ Tt0 , (31)

where Jacobian-type matrices are evaluated at the optimal
solution of (19), as follows:

J?EE,t=
∂fE,t
∂xE,t

∣∣∣∣
(x?
E,t,x

?
E,t

)

, J?EE,t=
∂fE,t
∂xE,t

∣∣∣∣∣
(x?
E,t,x

?
E,t

)

, (32)

J?EE,t=
∂fE,t
∂xE,t

∣∣∣∣
(x?
E,t,x

?
E,t

)

, J?EE,t=
∂fE,t
∂xE,t

∣∣∣∣∣
(x?
E,t,x

?
E,t

)

, (33)

K?
FE,t=

∂hF,t
∂xE,t

∣∣∣∣
(x?
E,t,x

?
E,t

)

, K?
FE,t=

∂hF,t
∂xE,t

∣∣∣∣∣
(x?
E,t,x

?
E,t

)

, (34)

and constant terms are given by

b?E,t = y?E,t − J?EE,tx?E,t − J?EE,tx
?
E,t (35)

b?E,t = y?E,t − J
?
EE,tx

?
E,t − J?EE,tx

?
E,t, (36)

d?F,t = z?F,t −K?
FE,tx

?
E,t −K?

FE,tx
?
E,t. (37)

Proof. Linearization of (25)–(27) around the optimal solution
of (19) yields the following approximation:

yE,t ≈ J?EE,txE,t + J?EE,txE,t + b?E,t, t ∈ Tt0 , (38)

yE,t ≈ J?EE,txE,t + J?EE,txE,t + b?E,t, t ∈ Tt0 , (39)

zF,t ≈ K?
FE,txE,t +K?

FE,txE,t + d?F,t, t ∈ Tt0 . (40)

Straightforward algebraic manipulation of (38)–(40) yields

yE,t ≈
(
J?EE,t − J?EE,t(J

?
EE,t)

−1J?EE,t
)
xE,t

+ b?E,t + J?EE,t(J
?
EE,t)

−1(y?E,t − b
?
E,t), t ∈ Tt0 , (41)

zF,t ≈
(
K?
FE,t −K?

FE,t(J
?
EE,t)

−1J?EE,t
)
xE,t

+ d?F,t +K?
FE,t(J

?
EE,t)

−1(y?E,t − b
?
E,t), t ∈ Tt0 . (42)

Recognizing the above, we find that the optimality conditions
arising from the OPF problems in (19) and (24) are equivalent
if (28)–(31) hold. In this case, the optimal solutions (including
the DLMPs) of the two problems coincide precisely.

The above implies that the optimality conditions of the
model- and measurement-based OPF problems are equivalent
if the estimated sensitivity model exactly coincides with the
Kron-reduced first-order approximation of the nonlinear power
flow equations with respect to voltage phase angles and
magnitudes evaluated at the optimal solution.
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D. Key Benefits and Potential Limitations

We next describe the benefits of the proposed measurement-
based approach to calculate the DLMPs and highlight a few
limitations inherent therein.

1) Key Benefits: The proposed approach does not rely on
any prior offline knowledge of the underlying network, and
it solves computationally tractable convex quadratic program-
ming problems on a rolling basis. These benefits stem from
the fact that the proposed method does not aim to estimate
parameters in the physical circuit from which measurements
are taken, but rather linear sensitivities relating voltages and
injections at measured buses only. Assuming it is estimated
correctly, the linear sensitivity model coincides exactly with
the Kron-reduced first-order approximation of the nonlinear
power flow equations with respect to voltage phase angles and
magnitudes at measured buses, evaluated at the operating point
from which measurements are obtained. This claim can be
substantiated via a similar line of argument as the one used in
Proposition 1. Furthermore, since an updated linear sensitivity
model is estimated before each solution of the OPF problem
in (24), the resulting DLMPs adapt to the system’s evolving
operating point and even changes in network topology, as
we demonstrate via numerical case studies in Section IV.
Another scenario to which the measurement-based DLMPs
can adapt is the loss of a market participant at bus i and its
measurements. After this contingency occurs, E ′ = E \ {i}
would represent the set of E′ = E − 1 buses equipped
with D-PMUs. The estimation and optimization stages of the
proposed method would proceed as described in Sections III-A
and III-B, respectively, except with E and E replaced by E ′
and E′, respectively. Here, the DLMPs at bus i would not
accompany the solution of (24), but this is not an issue because
the loss of the resource at bus i precludes it from participating
in the market or being dispatched. Finally, the proposed
measurement-based approach requires measurements at only
buses with market participants in order to extract their nodal
DLMPs. This criterion represents the minimum measurement
coverage needed, and no additional measurements are needed
to satisfy conditions related to, e.g., observability.

2) Potential Limitations: The conditions given in (28)–(31)
are, in general, difficult to satisfy because we solve the modi-
fied OPF problem constrained by the same sensitivity models
across the entire scheduling horizon and these sensitivity
models are obtained at the beginning of the scheduling horizon
before the optimal solution is realized. Particularly, errors in
the measurement-based DLMPs may become more prominent
if sufficiently drastic variations in the optimal operating point
take place over the scheduling horizon. These essentially ren-
der the single measurement-based sensitivity model estimated
before the scheduling horizon to be insufficient to approxi-
mate the power flow constraints across the entire scheduling
horizon. Simulation results presented in Section IV-B support
this hypothesis by showing mismatch between the proposed
and benchmark methods in the market period immediately
after a major network reconfiguration. During this market
period, however, an updated linear sensitivity model represen-
tative of the reconfigured network topology is estimated, so

measurement-based DLMPs calculated in subsequent market
periods match the benchmark model-based solution obtained
with an accurate system model. In this way, repeated and
rolling estimation of the sensitivity model followed by solution
of the OPF problem (as depicted in Fig. 1) enable the
proposed method to adapt to updated operating points within
a few market periods. Stemming from the fact that the linear
sensitivity model relates voltages and injections (or flows) at
measured buses (or lines) only, another potential limitation of
the proposed method is that it does not account for constraints
in nodal voltages and line flows for unmeasured buses or lines.
Similarly, it also does not incorporate potentially available load
forecasts at unmeasured buses. In practice, we may wish to
strategically place D-PMUs at buses or lines that are more
likely to violate their limits, such as buses at the end of a
feeder, in addition to buses connected to market participants.

IV. NUMERICAL SIMULATIONS

In this section, we demonstrate the effectiveness of the
proposed measurement-based DLMPs toward establishing a
real-time market for dispatchable DERs, energy storage de-
vices, and flexible loads. We show that the measurement-
based DLMPs are able to i) adapt to changes in topology
and operating point, ii) closely match model-based solution
obtained with an accurate system model, and iii) outperform
the model-based solution obtained with an outdated model.
Numerical case studies involve a 33-bus distribution network
modified from the IEEE 33-bus test system (see, e.g., [28]).
The single-line diagram of the test system is shown in Fig. 2.
We consider two measurement coverage scenarios: i) full
coverage with D-PMUs at all buses in E = {1, . . . , 33}, and
ii) partial coverage with D-PMUs at buses in the set E =
{1, 3, 6, 7, 9, 11, 12, 15, 18, 19, 22, 25, 28, 31, 33}, representing
approximately 50% of all buses, including buses connected
to all market participants as well as buses 9 and 31. We
assume that D-PMUs provide synchronized measurements of
voltage phase angles and magnitudes as well as net active-
and reactive-power injections, all sampled at ∆ts = 5 [sec]
intervals.

A. Simulation Setup

For all t ∈ Tt0 , the voltage magnitude at bus i ∈ E is
constrained to Vi,t ∈ [0.95, 1.05] [p.u.], and the substation bus
voltage phase angle and magnitude are fixed at θ1,t = 0 [rad]
and V1,t = 1 [p.u.], respectively. As annotated in Fig. 2,
the modified 33-bus test system includes dispatchable DERs
connected to buses in G = {1, 6, 7, 12, 18, 22, 25, 33} (includ-
ing the substation bus), energy storage devices connected to
buses in S = {11, 28}, and flexible loads connected to buses
in R = {3, 6, 12, 15, 18, 19, 22, 25}. Parameters for the cost
functions of dispatchable DERs (appearing in (19a) and (24a))
are reported in Appendix A.

For all t ∈ Tt0 , the active- and reactive-power injec-
tions from the substation bus are respectively confined to
P g

1,t ∈ [−1, 1] [p.u.] and Qg
1,t ∈ [−1, 1] [p.u.], and the

active- and reactive-power outputs of the DER at bus g ∈
G are respectively bounded by P g

g,t ∈ [0, 0.12] [p.u.] and
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Fig. 2: One-line diagram for 33-bus test system modified to include dispatch-
able DERs, energy storage (ES) devices, and flexible loads (FLs). Bus 1 is
assumed to be connected to a virtual DER. Switches SW1 and SW2 are
normally open, and switches SW3 and SW4 are normally closed. The dashed
box marks the line that becomes congested.

Qg
g,t ∈ [−0.012, 0.012] [p.u.]. For the energy storage device

at bus s ∈ S, the charging (discharging) active power is con-
strained within P es,c

s,t ∈ [0, 0.1] [p.u.] (P es,d
s,t ∈ [0, 0.1] [p.u.]),

reactive power is set to Qes
s,t = 0 [p.u.], energy state is

confined to Ees
s,t ∈ [0, 0.4] [p.u.], initial energy is set to

Ees
s,0 = 0, and charging and discharging efficiency coefficients

are ηc
s = ηd

s = 0.95.
The total system active- and reactive-power loads are plot-

ted in Fig. 3, and all nodal loads follow the same profile
but scaled proportionally to their respective nominal values
reported in [28]. At buses with flexible loads, the flexible
component constitutes 20% of the total load at that bus,
with the rest being inflexible. For the flexible load at bus
r ∈ R, the energy deficit should be cleared by the deadline
τr = 2.75 [hr], and the scheduled active-power load is confined
to P f

r,t ∈ [0, 3×max{P des
r,t }|t∈Tt0 ]. Active- and reactive-power

components of inflexible loads at all buses vary randomly
around their nominal values as Gaussian distributed random
variables with zero mean and 1% standard deviation relative
to the respective nominal load values. Note that the nominal
load values change over time following the trend shown in
Fig. 3, and such changes would be reflected in measurements
acquired afterward.

B. Simulation Results

We consider a look-ahead scheduling horizon of T = 3 [hr],
starting at time t0, which subdivides into |Tt0 | = 12 equal
intervals of ∆t = 15 [min] each. Given a forecast of the
inflexible components of active- and reactive-power loads
connected to measured buses in the set E for the next 3 [hr],
the model- and measurement-based OPF problems in (19)
and (24), respectively, are solved every 15 [min] on a rolling
basis, i.e., at time t0 = 0, 15, 30, . . . [min]. The rolling
solutions consist of the optimal values for decision variables
as well as accompanying DLMPs across the entire scheduling
horizon of interest, but actually dispatched are DER setpoints
from the first market period in each rolling scheduling horizon
only, i.e., from time t0 to t0 + ∆t. We note that although we
follow the market intervals and dispatch policy outlined above,
the results presented in this section are typical in the sense that
similar observations in comparing the proposed measurement-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

Fig. 3: Total active- and reactive-power load profile in the 33-bus test system.

0 0.5 1 1.5 2 2.5 3
150

250

350

450

Meas-based 100%

Fig. 4: Comparing operation costs obtained by solving i) the model-based
OPF problem in (19) with accurate (�) and outdated (×) models, and ii) the
measurement-based OPF problem in (24) with full measurement coverage (◦).
Each step represents the cost incurred within the look-ahead scheduling
horizon started from corresponding time interval, with change in network
topology occurring at time 1 [hr] 16 [min].

based DLMPs to their model-based counterparts can be made
for other policies as well.

Before solving each instance of the measurement-based
OPF problem in (24), we estimate an up-to-date linear sen-
sitivity model using synchrophasor measurements collected
during the current 15 [min] market period via the PLS al-
gorithm. We assume that the network topology changes at
time 1 [hr] 16 [min] by closing the normally-open switches
SW1 and SW2 and simultaneously opening the normally-
closed switches SW3 and SW4. Afterward, we examine the
solutions of the model-based OPF problem in (19) solved with
i) the accurate up-to-date model, and ii) the out-of-date model
assuming that the system operator is unaware of the network
reconfiguration. In this comparison, the model-based DLMPs
solved with an out-of-date model serve to underscore potential
pitfalls of relying on an inaccurate offline model. The model-
based nonlinear OPF problem is formulated as a second-
order cone programming (SOCP) problem embedding relaxed
branch flow equations and solved via the method described
in [29]. We use Gurobi solver and extract the DLMPs as
optimal Lagrange multipliers of the SOCP problem directly.

1) Benchmark Comparisons: Plotted in Fig. 4 are the
operation costs resulting from rolling solutions of the model-
based OPF problem embedding accurate and outdated models
as well as the measurement-based OPF problem under full
measurement coverage. The operation costs obtained by solv-
ing the measurement-based OPF problem closely follow the
benchmark model-based solution except for the mismatch ob-
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Fig. 5: Comparing active-power DLMPs obtained with (a)(b) nonbinding line flow constraints and (c)(d) binding flow constraints in the line connecting
buses 6 and 7. Active-power DLMPs are solved from i) the model-based OPF problem in (19) with accurate (�) and outdated (×) models, and ii) the
measurement-based OPF problem in (24) with 100% full (◦) and 50% partial (?) measurement coverage. (a)(c) Time-domain trajectories of DLMPs for buses
7 (orange colour), 25 (blue colour), 33 (green colour) with change in network topology occurring at time 1 [hr] 16 [min]. (b)(d) Snapshot of DLMPs for all
buses taken at time 2 [hr] 15 [min].

served in the market period immediately following the network
reconfiguration (i.e., t ∈ [1.5, 1.75] [hr]). This mismatch stems
from the linear sensitivity model used in the corresponding
look-ahead measurement-based OPF, which is calculated using
measurements collected before the network reconfiguration
occurs. Later market periods are not affected because the
sensitivity models are updated using measurements obtained
after the reconfiguration. In contrast, the model-based solution
obtained with an outdated model substantially underestimates
the costs in all post-reconfiguration intervals. Extrapolating
from this observation, the measurement-based method may
perform poorly if major changes like network reconfiguration
occur in every market period, so that even the newly estimated
sensitivity model becomes outdated by the time the next look-
ahead OPF problem is solved. In practice, however, we would
not expect such major events to occur so frequently.

We examine the active-power DLMPs solved from the
model-based (with accurate and outdated models) and
measurement-based (under full and partial measurement cov-
erage) OPF problems in Figs. 5a–5b. Specifically, Fig. 5a con-
tains time-domain trajectories of active-power DLMPs at buses
7, 25, and 33, and Fig. 5b plots DLMPs at time 2 [hr] 15 [min]
for all buses. Similar to operation costs, measurement-based
DLMPs obtained under both full and partial measurement
coverage are nearly identical to the benchmark model-based
solution across the entire scheduling horizon except for a
mismatch in the market period immediately following the
reconfiguration, for the same reason articulated earlier. The
snapshot of DLMPs at all buses presented in Fig. 5b further

showcase the accuracy of the proposed measurement-based
DLMPs obtained at measured buses, outperforming the model-
based method with an outdated model. Here, none of the
line power flow limits are binding, so the variations observed
among DLMPs at different buses are mainly due to line power
losses and binding voltage constraints.

2) Line Congestion: We constrain active- and reactive-
power flows in the line connecting buses 6 and 7 (marked
by the dashed box in Fig. 2) to 0.5 [MW] and 0.5 [MVAR],
respectively, in either direction. In the presence of binding
line flow constraints, more pronounced variations are observed
across DLMPs at different buses, as shown in Figs. 5c–5d, in
comparison to those in Figs. 5a–5b. For example, the DLMPs
at bus 7 depicted as the orange-coloured trace in Fig. 5c
are considerably lower (higher) before (after) reconfiguration
as compared to the corresponding trace in Fig. 5a. Also,
time-sampled DLMPs at buses 7–11 shown in Fig. 5d are
substantially higher than corresponding DLMPs at the same
buses in Fig. 5b. The measurement-based DLMPs obtained
under both full and partial measurement coverage effectively
embed the impact of line congestion and provide accurate
values for DLMPs compared to the model-based counterparts
solved with an accurate model.

In Fig. 6, we plot the time-domain trajectories of active-
and reactive-power flows in the line connecting buses 6 and 7
using optimal setpoints obtained from solving the model-
based OPF problem (with accurate and outdated models)
and measurement-based OPF problem under full measurement
coverage. Under both binding and nonbinding line flow con-
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Fig. 6: (a) Active- and (b) reactive-power flows in the line connecting buses
6 and 7 where they are i) not limited and ii) limited to 0.5 [MW] and
0.5 [MVAR], respectively, in both directions. Upper and lower line flow limits
are marked as red dotted traces.

straints, the measurement-based method effectively adapts to
the topology change and provides optimal setpoints that result
in the same power flows as solving the model-based OPF prob-
lem with an accurate model. In contrast, model-based setpoints
solved with an outdated model leads to substantial error after
the network reconfiguration. Furthermore, by imposing line
flow limits, the active-power flow limit becomes binding in
reverse (forward) direction before (after) reconfiguration, as
shown by the trace corresponding to the benchmark model-
based solution in Fig. 6a. The post-reconfiguration flows are
perfectly replicated by the measurement-based method, but the
model-based method is oblivious to even the change in power
flow direction after reconfiguration. The measurement-based
method performs similarly well for reactive-power flows.

Finally, it is worth mentioning that although we do not
report directly on the optimal dispatch decisions, the proposed
measurement-based method matches closely to the accurate
model-based benchmark with similar trends as those observed
in Figs. 4–6. We refer interested readers to our earlier work
in [22], [23] focused on measurement-based optimal DER
dispatch for more detailed comparisons.

C. Execution Times

To assess the computational burden and the scalability
of the proposed measurement-based framework, we report
execution times involving the 874-bus test system from [30],
in which up to 100 DERs are connected to arbitrary sets of

TABLE I: Execution times for estimating an up-to-date linear sensitivity
model and solving one instance of the multi-period look-ahead OPF problem
in (24), as well as the sum of the two stages, for different numbers of
market participants in an 874-bus test system. Reported are per-solution values
averaged across 12 look-ahead market runs.

Number of
Market Participants 20 40 60 80 100

Estimation [s] 0.04 0.09 0.31 0.53 0.97
Optimization [s] 0.81 0.98 1.30 1.83 2.43

Total [s] 0.85 1.08 1.61 2.36 3.40

buses. In Table I, we report the execution times required for
(i) estimating an up-to-date linear sensitivity model needed
to construct the constraints in (24b)–(24e), (ii) solving one
instance of the convex quadratic multi-period look-ahead OPF
problem in (24) using Gurobi solver, and (iii) the sum of
the estimation and optimization stages. Reported in Table I
are per-solution values averaged across 12 look-ahead market
runs. All solutions are performed in MATLAB R2022a on
a personal computer with Intel Core i9-10900X processor
at 3.70 GHz, and 32 GB RAM. We find that the proposed
method can be executed well within the market interval of
15 [min] considered in Section IV-B for 100 market partic-
ipants using the relatively limited computational resources
available on a personal computer.

V. CONCLUDING REMARKS

In this paper, we presented a measurement-based method to
calculate DLMPs toward establishing real-time DER markets.
Critical to the proposed method is replacing the nonlinear
power flow equations in the pertinent multi-period look-ahead
OPF problem by linear sensitivity models that are estimated
using only online synchrophasor measurements of voltages
and power injections at buses with market participants. The
measurement-based DLMPs attributed to active and reactive
power are respectively obtained as the optimal Lagrange
multipliers of the estimated active- and reactive-power balance
constraints. The measurement-based DLMPs also implicitly
embed costs associated with congestion in lines of inter-
est for which flow measurements are acquired. Extensive
numerical simulations demonstrate the effectiveness of the
proposed method to calculate accurate DLMPs at measured
buses without relying on an up-to-date offline model of the
distribution network. Compelling directions for future work
include measurement-based pricing of combined energy and
flexibility provided by DERs and distributed and privacy-
preserving calculation of measurement-based DLMPs.

APPENDIX

A. Cost Function in (19a) and (24a)
In (19a) and (24a), we assume that the quadratic operation

cost function takes the form C(P g, Qg) = P gTdiag(a)P g +
bP g + c, where a = [0, 1, 4, 2, 1.5, 2.5, 3.5, 4.5] [$/(MWh)2],
b = [30, 10, 40, 20, 15, 25, 35, 45] [$/MWh], and c = 0 [$].
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