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Abstract—Increasing renewable integration leads to faster
and more frequent fluctuations in the power system net-load
(load minus non-dispatchable renewable generation) along with
greater uncertainty in its forecast. These can exacerbate the
computational burden of centralized power system optimization
(or market clearing) that accounts for variability and uncertainty
in net load. Another layer of complexity pertains to estimating
accurate models of spatio-temporal net-load uncertainty. Taken
together, decentralized approaches for learning to optimize (or
to clear a market) using only local information are compelling
to explore. This paper develops a decentralized multi-agent
reinforcement learning (MARL) approach that seeks to learn
optimal policies for operating interconnected power systems
under uncertainty. The proposed method incurs less computa-
tional and communication burden compared to a centralized
stochastic programming approach and offers improved privacy
preservation. Numerical simulations involving a three-area test
system yield desirable results, with the resulting average net
operation costs being less than 5% away from those obtained
in a benchmark centralized model predictive control solution.

Index Terms—Power system, reinforcement learning, uncer-
tainty, decentralized algorithm, actor-critic algorithm

I. INTRODUCTION

Optimizing the total operational costs of interconnected
power systems, amidst uncertain conditions, poses a significant
challenge for system operators. The uncertainty stems mainly
from the unpredictable nature of non-dispatchable renewable
energy sources, such as solar and wind power, coupled with
potential inaccuracies in load forecasting [1], [2]. This chal-
lenge becomes even more daunting in multi-stage problems
for which uncertainty may grow over the time horizon of
interest. These factors may considerably undermine the power
system’s reliable and efficient operation, potentially leading to
substantial economic loss. A robust optimization approach can
be used to identify solutions that guarantee the reliability of the
system. However, for multi-stage problems with compounding
uncertainty, this usually comes at the expense of solutions that
tend to be overly conservative [3]. Stochastic programming
techniques such as stochastic dual decomposition (SDDP)
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have proven quite useful in energy planning problems [4].
However, such techniques have a worst-case complexity that
scales exponentially in the number of decision variables,
which severely limits applicability to only low-dimensional
problems [5]. Also, in cases where the load distribution is
unknown, the advanced forecasting models embedded within
stochastic optimization techniques [6], [7] also incur high
computational burden. In contrast, reinforcement learning (RL)
approaches for stochastic dynamic optimization problems have
been shown to scale gracefully in complex, high-dimensional
environments, even without knowledge of the load distribu-
tion [8]. Furthermore, standard stochastic optimization-based
solutions rely on a centralized approach for both forecasting
and optimizing. However, in interconnected power market
operation, participants may not willingly disclose their pro-
prietary forecasts for spatio-temporal intermittent generation
and/or net-load uncertainty because these have significant
economic value. In this context, decentralized approaches for
learning to optimize (or to clear a market) by agents while
ensuring forecast information remains private are compelling
directions for research.

To address the aforementioned shortcomings, in this work,
we develop a decentralized multi-agent reinforcement learning
(MARL) algorithm for scheduling power and interconnection
flows in a decentralized fashion. The approach is based on an
actor-critic algorithm which has shown to be quite successful
in solving high-dimensional problems [8]. Via numerical sim-
ulations involving a three-area test system, we demonstrate
that the proposed scheme minimizes expected net operation
costs over multiple time periods without requiring centralized
forecasting or coordination. We show that resulting RL poli-
cies generalize to the test data sampled independently of the
training data and adapt to system uncertainty.

The remainder of this paper is organized as follows. In
Section II, we provide a review of reinforcement learning
applications in power system operation. We outline the multi-
area power scheduling problem with uncertainty in Section III.
In Section IV, we introduce a bi-level formulation for the
scheduling problem under study and propose a decentralized
multi-agent actor-critic algorithm to solve it. We evaluate the
proposed algorithm in a toy example involving a three-area
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test system and compare the performance with those of model
predictive control (MPC) and centralized reinforcement learn-
ing as benchmark techniques in Section V. Finally, Section VI
offers concluding remarks.

II. LITERATURE REVIEW

To mitigate the computational burden arising from increased
system size and to preserve the privacy of areas potentially op-
erating under different entities, distributed optimization tech-
niques for power system operation have received prominent at-
tention [9]. Networked MARL offers a decentralized approach
for addressing complex, large-scale control challenges. This
method allows communication among neighboring agents,
enabling its application in sectors such as traffic management,
as highlighted in [10]. [11] advances this field by providing
convergence guarantees within a linear function approximation
framework. Additionally, the proposed model in [12] involves
the use of deep neural networks to encode state information,
along with the construction of critics and actors for agents,
aiming to maximize a weighted return of rewards within
a close neighborhood. Despite the potential of networked
MARL to learn optimal and stable policies, it requires global
information about either the state or the reward. [12], [13]. In
what follows we briefly review a growing body of literature
on MARL approaches for power system operation.

A deep deterministic policy gradient in a multi-agent deep
RL framework is employed in [14] to solve the load frequency
control problem. This method requires significant computa-
tional resources and is designed to operate in environments
without uncertainty. In [15], the authors used a deep Q-
network for the distributed nonconvex economic dispatch
problem, an approach effective yet constrained by the time
needed for system-wide consensus which leads to a heavy
communication burden. A hierarchical RL method is used
in [16] to solve the multi-area economic dispatch problem.
This methodology bears similarities with our work with a
two-layer problem decomposition. The bottom layer uses Q-
learning for independent economic dispatch problems in each
area, and the top layer optimizes power flows on tielines.
However, the purpose of the usage of Q-learning is to deter-
mine the optimal power outputs in a sequential manner rather
than solve a multi-stage problem with multiple time periods
as we do. Like other approaches [17]–[23] implementing RL
to the power system problem, [14]–[16] use discrete action
space (e.g., generator outputs, transmission line flows), which
is accompanied by a trade-off between computational cost and
solution quality. Finer granularity in the action space requires
more computational effort during training but typically yields
higher-quality solutions. In contrast, the agents in our proposed
algorithm employ Gaussian policies to identify the optimal
decisions directly within the continuous action spaces.

III. MULTI-AREA POWER SCHEDULING PROBLEM

In this section, we introduce notation, models, and opera-
tional constraints pertinent to nodal loads, generators, energy

storage devices, transmission lines, and tielines. We also
formulate the multi-area power scheduling problem.

A. Notation and Operational Constraints
Consider an interconnected power network composed of A

areas indexed in the set A = {1, . . . , A}, where each
area a ∈ A is described by a directed graph (Na,La)
with Na = {1, . . . , Na} representing the set of buses
and La = {(i, j)|i, j ∈ Na, j ≡ j(i)} representing the
set of transmission lines therein (lines inside areas). We
further collect the tielines (lines between areas) in the set
Ltie = {(i, j)|i ∈ Na, j ∈ Na′ , j ≡ j(i), a, a′ ∈ A}. Our
focus is a multi-stage scheduling problem comprising T time
periods collected in T = {1, . . . , T}, and the goal is to
maximize the cumulative gains from power exchange amongst
areas. Nodal loads in each area a ∈ A are supplied by area
generation fleet composed of Ga online generators indexed in
the set Ga = {1, . . . , Ga}, Ka energy storage devices indexed
in Ka = {1, . . . ,Ka}, and possibly interarea tieline inflow.

1) Nodal Loads: At time t ∈ T , nodal loads in area a ∈ A
are decomposed into three components: i) an inflexible compo-
nent Li

a,t = [(Li
n,a,t)n∈Na

]⊤ requiring immediate fulfillment,
ii) a flexible component Lf

a,t = [(Lf
n,a,t)n∈Na

]⊤ allowing
for deferred fulfillment, and iii) an elastic component Le

a,t =
[(Le

n,a,t)n∈Na ]
⊤ representing price-sensitive demand that can

be adjusted to satisfy consumer utility.
Inflexible loads are subject to uncertainty ϵa,t =

[(ϵn,a,t)n∈Na
]⊤. Uncertainty here can arise due to errors in

day-ahead forecasts of loads and must-run renewable energy
sources, the latter mainly the result of the unpredictable nature
of the primary source of energy, e.g., solar radiation or wind
speed. Commonly used distributions to model the uncertainty
include Gaussian, Beta [24], Gamma [25], Weibull [26],
and lognormal [27] distributions. However, in practice, these
explicit distributions may be difficult to obtain, or they may
yield suboptimal or conservative decisions. Moreover, since
accurate forecast distributions have significant commercial
value, individual market participants may not be willing to
disclose such information to a central decision maker.

For flexible loads, denote the deferred amount (i.e., the
difference between the desired load Lf

a,t and the scheduled
load at time t) by Ld

a,t = [(Ld
n,a,t)n∈Na

]⊤. Negative-valued
entries in Ld

a,t represent previously deferred load supplied
at time t, and nonnegative-valued entries therein represent
the amount deferred at time t. We further model the sum
of deferred loads up to time t (the queued load) with the
positive-valued variable Da,t = [(Dn,a,t)n∈Na

]⊤, governed
by the following state equation:

0 ≤ Da,t+1 = Da,t + Ld
a,t, a ∈ A, t ∈ T \{T}, (1)

where its initial value is

Da,1 = 0, a ∈ A. (2)

Further, the condition below ensures that all deferred loads
are supplied by the end of scheduling horizon

Da,T = 0, a ∈ A. (3)

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



As per its definition, Ld
a,t is constrained as follows:

−Da,t ≤ Ld
a,t ≤ Lf

a,t, a ∈ A, t ∈ T . (4)

Finally, the third component of nodal loads, i.e., elastic
loads, is nonnegative in value and it is constrained with lower
and upper limits as1

0 ≤ Le
a,t ≤ L

e

a, a ∈ A, t ∈ T . (5)

2) Generators: Denote the power produced by generators
by Pa,t = [(Pg,a,t)g∈Ga

]⊤. Power output limits of generators
are imposed through the following upper and lower bounds:

Pa ≤ Pa,t ≤ Pa, a ∈ A, t ∈ T . (6)

In the interest of simplicity, we do not include generator
ramping limits, but we note that they can be incorporated in
a straightforward manner at the expense of greater notational
and computational burden.

3) Energy Storage Devices: Denote the charging and dis-
charging power of energy storage devices respectively by
Pc

a,t = [(P c
k,a,t)k∈Ka

]⊤ and Pd
a,t = [(P d

k,a,t)k∈Ka
]⊤, and

their energy by Ea,t = [(Ek,a,t)k∈Ka
]⊤. The energy storage

charging and discharging power limits are enforced as

0 ≤ Pc
a,t ≤ P

c

a, a ∈ A, t ∈ T , (7a)

0 ≤ Pd
a,t ≤ P

d

a, a ∈ A, t ∈ T , (7b)

and the stored energy is calculated as

Ea,t+1=Ea,t+ηc
aP

c
a,t−ηd

a

−1
Pd

a,t, a ∈ A, t ∈ T \{T}, (8)

where ηc
a and ηd

a respectively represent diagonal matrices
of charging and discharging efficiencies, and with initial
condition

Ea,1 = Eini
a , a ∈ A. (9)

The amount of stored energy is constrained to

Ea ≤ Ea,t ≤ Ea, a ∈ A, t ∈ T . (10)

4) Power Deficits: In the event of a power shortfall, the
power deficit Ldfc

a,t = [(Ldfc
n,a,t)n∈Na

]⊤ would be procured from
more expensive emergency sources, and it is confined to

0 ≤ Ldfc
a,t ≤ Li

a,t, a ∈ A, t ∈ T . (11)

5) Transmission Lines and Tielines: Denote intra-area
transmission line and inter-area tieline power flows with
Fa,t = [(F(i,j),a,t)(i,j)∈La

]⊤ and Tt = [(T(i,j),t)(i,j)∈Ltie ]⊤,
respectively. Transmission line and tieline power flows are
constrained to their thermal limits as

−Fa ≤ Fa,t ≤ Fa, a ∈ A, t ∈ T , (12a)

−T ≤ Tt ≤ T, t ∈ T . (12b)

1As a matter of convention, in the remainder of the paper, overlined and
underlined variables respectively refer to their maximum and minimum limits.

6) Nodal Power Balance: The nodal power balance is
enforced through following constraint:

Mg
aPa,t +Mes

a (Pd
a,t −Pc

a,t)− (Li
a,t + ϵa,t)− Le

a,t − Lf
a,t

+Ld
a,t +Ldfc

a,t−Mtr
a Fa,t −Mtie

a Tt = 0, a ∈ A, t ∈ T , (13)

where Mg
a ∈ RGa×Na and Mes

a ∈ RKa×Na denote mappings
respectively from generators and energy storage devices to
buses, while Mtr

a ∈ R|La|×Na and Mtie
a ∈ R|Ltie|×Na project

respectively the transmission lines and tielines to buses. It
is worth noting that the nodal power balance above uses
line power flows directly (instead of relating them to nodal
voltages as is commonly done in power systems literature).
Particularly, flows collected in Fa,t and Tt will emerge as
decision variables in the problem formulated next.

B. Problem Formulation

Let Ca(Pa,t,L
e
a,t,L

dfc
a,t ) represent the net operation cost for

area a (as a quadratic function) including the power generation
and power deficit procurement costs, less the elastic load
surplus. For the sake of brevity, we use Xa,t to denote the
local decisions of area a ∈ A at time t ∈ T , i.e., Xa,t =
[P⊤

a,t,P
c⊤
a,t ,P

d⊤
a,t ,E

⊤
a,t,L

e⊤
a,t ,L

d⊤
a,t ,L

dfc⊤
a,t ,D⊤

a,t,F
⊤
a,t]

⊤.
Given that, the multi-area power scheduling problem is
formulated as follows:

min
Xa,t,Tt

E
[ ∑
a∈A

∑
t∈T

Ca(Pa,t,L
e
a,t,L

dfc
a,t )

]
(14a)

s.t. h(Xa,t,Tt) ≤ 0, a ∈ A, t ∈ T , (14b)
g(Xa,t,Xa,t+1) = 0, a ∈ A, t ∈ T \{T}, (14c)

f(Xa,t,Tt,L
i
a,t,L

f
a,t, ϵa,t)=0, a ∈ A, t ∈ T , (14d)

where E[ · ] denotes the expectation taken with respect to
the uncertainty ϵa,t, (14b) collects the inequality constraints
modeling the operational limits in (4)–(7) and (10)–(12), (14c)
consists of equality constraints including those related to the
dynamics in flexible loads in (1)–(3) and in energy storage
devices in (8)–(9), and (14d) serves to compactly express the
nodal power balance in (13).

C. Motivation for a MARL Solution Approach

The problem formulated in (14) is a convex quadratic
optimization problem. As such, the problem is amenable to a
centralized solution approach, assuming that the perturbations
encapsulated by ϵa,t are known for all a ∈ A and for all
t ∈ T . However, assuming perturbations ϵa,t are precisely
known a day ahead may be impractical in real-world scenarios
since most perturbations occur in real time. On the other
hand, if a forecast probability distribution of perturbations
were available, the problem in (14) can be tackled with popular
stochastic programming techniques such as stochastic dual de-
composition programming (SDDP) [4]. However, SDDP has a
worst-case complexity that scales exponentially in the number
of decision variables [5]. This severely limits applicability to
only low-dimensional problems and renders the computational
cost of solving the problem in (14) for large-scale systems
prohibitive for real-time decision making. Another relevant
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facet of the problem in (14) pertains to information and
privacy. As it is presented, the problem in (14) necessitates a
central decision maker to possess comprehensive information
from all buses in all areas. Such a structure falls short in
providing privacy for each area and flexibility as a whole.

To address the aforementioned shortcomings, we develop
a decentralized RL framework to optimally schedule the
independent areas under the more realistic assumption that
the perturbations are known only one hour ahead, which in
turn leads to adopting a dynamic decision-making scheme.
Particularly, RL approaches have been shown to scale grace-
fully in solving complex, high-dimensional stochastic dynamic
optimization problems [8].

IV. DECENTRALIZED MULTI-AGENT
ACTOR-CRITIC SOLUTION APPROACH

In this section, we design a decentralized MARL algorithm
to effectively and efficiently solve the problem in (14). The
RL approach is inherently well suited for problems that
involve sequential decision-making and real-time adjustment.
Consequently, the agent can make timely decisions in each
time period, responding to uncertain perturbations as they
occur real time.

A. Bi-level Formulation

To offer a solution to the multi-area power exchange prob-
lem, we leverage a MARL framework that consists of two
types of agents: operating agents and interconnection agents.
In each area a ∈ A, there exists a single operating agent re-
sponsible for making local decisions Xa,t that directly impact
the net operational cost in that area, but it does not directly
influence other areas. Further, for each tieline (i, j) ∈ Ltie,
there is an interconnection agent responsible for determining
the power flows T(i,j),t using information from only bus i and
bus j located in neighboring areas. As shown in Fig. 1, the
operating (interconnection) agent shares limited information
only with its neighboring interconnection (operating) agents,
rather than submitting all detailed information to a central de-
cision maker. Furthermore, a pair of neighboring operating and
interconnection agents can collaborate effectively to handle
perturbations without needing to solve a comprehensive multi-
stage stochastic programming problem for the entire system.
The decentralized multi-agent framework can be considered a
bi-level problem. The lower-level problem involves training
the operating agent in each area a to make optimal local
decisions. Meanwhile, the upper-level problem focuses on
training the interconnection agents to determine optimal tieline
flows. This setting is akin to a multi-leader-multi-follower
model within a cooperative context, where the interconnection
agent indeed acts in a leading capacity, with its actions
informing the subsequent decisions of the operating agents.

1) Lower-level Problem: The goal of the lower-level prob-
lem is to determine the optimal policy for local decisions.
The operating agent in area a ∈ A can communicate
with its neighboring interconnection agents, allowing it to

…

Operating Agent 𝑎

𝐗!,#
Operating Agent 𝑎$

𝐗!!,#

Lower-Level Problem

Upper-Level Problem Interconnection Agent (𝑖, 𝑗)

𝑇(&,'),#

𝑇(),*),#

Interconnection Agent (𝑘, 𝑙)

…

……

Fig. 1. Structure of bi-level multi-agent reinforcement learning. In the upper-
level problem, interconnection agents aim to determine optimal tieline flows,
while in the lower-level problem, operating agents intend to optimize the net
operational cost for each area given these tieline flows.

acquire information regarding the tieline flows. With a mi-
nor abuse of notation, we use Mtie

a Tt to denote the net
power leaving the buses of area a through tielines, even
when Tt is not fully available. This includes cases where
the operating agent of area a is unaware of the flows on
tielines connecting to areas other than a. To apply the RL
approach, we define the Markov decision process (MDP)
for each area a by a tuple Mlo

a = (S loa ,U lo
a , Rlo

a ,P lo
a , T ),

where S loa denotes the state space and the state sloa ∈ S loa
is defined as sloa,t = [Li⊤

a,t,L
f ⊤
a,t , ϵ

⊤
a,t,D

⊤
a,t,E

⊤
a,t, (M

tie
a Tt)

⊤]⊤.
Meanwhile, U lo

a represents the action space that con-
sists of all possible values of local action ulo

a,t =
[P⊤

a,t,P
c⊤
a,t ,P

d⊤
a,t ,L

e⊤
a,t ,L

d⊤
a,t ,L

dfc⊤
a,t ,F⊤

a,t]
⊤. The area a local

reward function is represented by Rlo
a , which consists of not

only the net operational cost Ca(Pa,t,L
e
a,t,L

dfc
a,t ) but also

penalties for actions that violate the constraints in (14). The
dynamics P lo

a specify how the state changes over time, i.e.,
sloa,t+1 ∼ P lo

a,t(· | sloa,t,ulo
a,t). Particularly, Li

a,t+1 and Lf
a,t+1

are determined by day-ahead predictions; ϵa,t+1 follows a
particular distribution which is unknown to the agent and may
depend on ϵa,t; Da,t+1 and Ea,t+1 are updated according
to (1) and (8), respectively; and Mtie

a Tt+1 depends on the
policies of neighboring interconnection agents. The final ele-
ment of Mlo

a signifies that this MDP spans T time periods.
It is worth emphasizing that the local decisions made in one
area affect the MDPs of other areas indirectly only through
the neighboring interconnection agents. This implies that the
lower-level problems can be solved independently for each
area in a decentralized manner (without direct communication
among areas). Graphical illustration of the MDP of the lower-
level problem is presented in Fig. 2.

In each area a, the policy πlo
a of the operating agent

actor consists of the choice probability πlo
a,t(· | sloa,t) =

N (µlo
a,t(s

lo
a,t), σ

lo
a,t

2
) for t ∈ T , sloa,t ∈ S loa , where the mean

function µlo
a,t(·) is parameterized by the weight ϕlo

a,t and the
variance σlo

a,t
2 is considered as a hyperparameter. This strategy

has the potential to decrease the training burden. Furthermore,
as the variance governs the exploration-exploitation trade-off
of the policy, it is advisable to start with a large value and
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Area 𝑎

~ Bus 𝑖 Bus 𝑗

𝑇 !,# ,$ 𝑇 %,& ,$

𝐬',$() , 𝑅'()

Actor: Policy 𝜋!,#$%

Critic: Value Function 𝑉%!,#$%
Operating Agent 𝑎

𝐮',$()

Fig. 2. Illustration of MDP for lower-level problem. Operating agent for
area a ∈ A is responsible for making local decisions given the information
about area a and neighboring tieline flows.

gradually decrease it during the learning process intentionally.
The value function is approximated by the critic as V̂ lo

a,t with
parameter ωlo

a,t. This approximation represents the expected
sum of future rewards realized by employing πlo

a . For area
a ∈ A, the actor-critic algorithm updates the parameters of the
operating agent, given the transition tuple (sloa,t,u

lo
a,t, s

lo
a,t+1),

as follows:

TDlo
a,t ← Rlo

a (s
lo
a,t,u

lo
a,t) + V̂ lo

a,t+1(s
lo
a,t+1)

− V̂ lo
a,t(s

lo
a,t), (15a)

ϕlo
a,t ← ϕlo

a,t + βlo,ac · TDlo
a,t

· ∇ϕlo
a,t

log πlo
a,t(u

lo
a,t | sloa,t), (15b)

ωlo
a,t ← ωlo

a,t + βlo,cr · TDlo
a,t ·∇ωlo

a,t
V̂ lo
a,t(s

lo
a,t), (15c)

where βlo,ac and βlo,cr respectively represent the learning rates
of the actor and critic associated with the operating agent. Note
that V̂ lo

a,T+1(s) = 0,∀s ∈ S loa by convention.
To ensure the feasibility of the actions, we apply pro-

jection and clipping steps. For instance, for the decision
Pc

a,t, we initially project the raw value from the actor into
the range [0,P

c

a] to obtain Pc
a,t,proj. Then, if the energy

Ea,t+ηc
aP

c
a,t,proj exceeds the capacity Ea, we clip the value.

The final adjusted value, Pc
a,t, is the element-wise minimum

between Pc
a,t,proj and ηc

a
−1(Ea −Ea,t).

The inequality h(Xa,t,Tt)) ≤ 0 is handled by a primal-
dual approach wherein a penalty term is defined as

−y⊤
a,t max(0, h(Xa,t,proj,Tt))

with ya,t ≥ 0 representing the vector of Lagrange multipliers
updated in every iteration and Xa,t,proj indicating the action
before the clipping step.

2) Upper-level Problem: Given the presence of perturbed
loads, fixed tieline flows may not be optimal for all scenarios.
To effectively address this uncertainty, interconnection agents
need to learn policies that adapt the flows on tielines to handle
the perturbations. Therefore, we formulate the interconnection
agent problem (upper level) under the MDP framework and

Bus 𝑗 ~ Bus 𝑖

Area 𝑎 Area 𝑎′

Actor: Policy 𝜋 !,# ,$
%&

Critic: Value Function 𝑉# !,# ,$
%&

𝑇 !,# ,$ 𝐬 !,# ,$
%& , 𝑅(!,#)

%&

Interconnection Agent (𝑖, 𝑗)

Fig. 3. Illustration of MDP for upper-level problem. Interconnection agent
for tieline (i, j) ∈ Ltie determines the power flows on the tieline (i, j) given
the information from buses i ∈ Na and j ∈ Na′ , a, a′ ∈ A.

solve it using the actor-critic algorithm. For each tieline
(i, j) ∈ Ltie connecting buses i ∈ Na and j ∈ Na′ , a, a′ ∈ A,
we define an MDP Mup

(i,j) = (Sup(i,j),U
up
(i,j), R

up
(i,j),P

up
(i,j), T ),

where Sup(i,j) is the state space that comprises all possible val-
ues of the inflexible loads, flexible loads, perturbations, queued
flexible loads, and stored energy at tieline end buses i and j.
Thereby, the state sup(i,j),t is formed as sup(i,j),t = [̂slo⊤

i,t , ŝlo⊤
j,t ]⊤,

where ŝloi,t = [Li
i,a,t, L

f
i,a,t, ϵi,a,t, Di,a,t,M

es
i,aEa,t]

⊤ is the
partial state for the bus i and Mes

i,a is the i-th row of Mes
a .

The action space Uup
(i,j) consists of all possible values of tieline

power flows T(i,j),t between buses i and j at time t. Since the
flow is only constrained by (12b), we can ensure the feasibility
of the action T(i,j),t by projecting it onto the feasible range.
A reward function of Rup

(i,j) governs the decisions of the agent
associated with tieline (i, j) ∈ T tie. Under the assumption that
each tieline end bus accommodates at least one generator or
elastic load, we define the marginal price at the boundary bus
i ∈ Na as

αi

(
ulo
a,t

)
=



∂Ca(u
lo
a,t)/∂(M

g
i,aPa,t), if Mg

i,a ̸= 0

and Ldfc
i,a,t = 0,

∂Ca(u
lo
a,t)/∂L

e
i,a,t, if Mg

i,a = 0

and Ldfc
i,a,t = 0,

∂Ca(u
lo
a,t)/∂L

dfc
i,a,t, otherwise,

(16)
where ulo

a,t and ulo
a′,t are the actions made by operating agents

at lower level, and Mg
i,a is the i-th row of Mg

a. The marginal
price in electricity markets indicates the cost of producing
one more unit of electricity, the revenue from supplying that
additional unit of elastic load, or the expense of obtaining one
unit from an emergency source during a power deficit. The
optimal flows can be determined by minimizing the discrep-
ancy between the marginal prices of the two interconnected
boundary buses. Therefore, the reward is formulated as

Rup
(i,j)(s

up
(i,j),t, T(i,j),t) = −

(
αi

(
ulo
a,t

)
− αj

(
ulo
a′,t

))2
,

∀(i, j) ∈ Ltie, t ∈ T .
(17)
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For interconnection agents, the policies adopted by the operat-
ing agents are viewed as integral parts of the environment. This
is because they can influence both the reward and the dynamics
Pup
(i,j). Graphical illustration of the MDP of the upper-level

problem is presented in Fig. 3.
Similar to the actor-critic algorithm in the lower-level

problem, the approximated value function attributed to tieline
(i, j) ∈ Ltie, denoted by V̂ up

(i,j),t, is parameterized via ωup
(i,j),t

while the mean function µup
(i,j),t of the corresponding actor’s

policy is parameterized by ϕup
(i,j),t. Given the transition tuple

(sup(i,j),t, T(i,j),t, s
up
(i,j),t+1) for tieline (i, j), the parameters for

the actor and critic are updated as follows:

TDup
(i,j),t ← Rup

(i,j)(s
up
(i,j),t, T(i,j),t)

+ V̂ up
(i,j),t+1(s

up
(i,j),t+1)− V̂ up

(i,j),t(s
up
(i,j),t), (18a)

ϕup
(i,j),t ← ϕup

(i,j),t + βup,ac · TDup
(i,j),t

· ∇ϕup
(i,j),t

log πup
(i,j),t(T(i,j),t | sup(i,j),t), (18b)

ωup
(i,j),t ← ωup

(i,j),t + βup,cr · TDup
(i,j),t

· ∇ωup
(i,j),t

V̂ up
(i,j),t(s

up
(i,j),t), (18c)

where βup,ac and βup,cr are the learning rates for the inter-
connection actor and critic, respectively.

B. Proposed Algorithm

Our proposed bi-level decentralized multi-agent actor-critic
algorithm is outlined in Algorithm 1. The operating agents
undergo training phases that are interspersed with those of
the interconnection agents, ensuring that both types of agents
receive alternating periods of refinement. All Gaussian policies
in the algorithm, associated with the operating and inter-
connection agents, have the same variance values, σlo2 and
σup2, across all areas/tielines and time periods. Initially, these
variances are set to be larger and are later manually decreased.
This choice is driven by the intuition that we would like the
policies to exhibit significant exploration during the initial
phase and gradually converge to optimality.

Unlike typical RL implementations, the operating agents at
lower level are learning to optimize a non-stationary environ-
ment. This is because the interconnection policies are changing
every iteration. Similarly, the interconnection agents (upper
level) are learning to maximize inter-temporal gains from trade
between adjacent operating areas with nodal pricing policies
that change every iteration. An intuitive explanation of why
learning can take place in such non-stationary environment
centers on the fact that all agents are implicitly pursuing
the same learning goal, that is, to optimize the combined
operation of all areas. To achieve stability, the algorithm uses
a two-timescale update framework in which the policies of
the interconnection agents are updated more slowly than those
of the operating agents. This slower update rate allows the
operating agents to approximately maximize surplus within
their respective areas while the scheduled intertie flows change
slightly. As a result, operating agents are able to learn the
local operation that maximizes local surplus (lower level) and

interconnection agents learn to maximize gains from trade
between areas (upper level). We reserve the theoretical analysis
of the convergence of the proposed scheme for future work.

In our implementation, the dynamics P lo
a of area a ∈ A

are not directly accessible. This is due to the fact that they
are influenced by the policies of the interconnection agents.
As a result, we employ an alternative method to sample the
subsequent state sloa,t+1. We begin by defining the partial state
of area a ∈ A at t ∈ T as ŝloa,t = [Li⊤

a,t,L
f ⊤
a,t , ϵ

⊤
a,t,D

⊤
a,t,E

⊤
a,t]

⊤.
Given this, the partial state ŝloi,t,∀i ∈ Na can be derived from
ŝloa,t. The subsequent partial state ŝloa,t+1 is drawn from the
distribution P̂ lo

a,t(· | sloa,t,ulo
a,t). This distribution represents the

transition probability P lo
a,t marginalized over the tieline flows

Mtie
a Tt+1 and is available. Therefore, in Algorithm 1, Step 12

is actually executed as detailed below:

ŝloa,t+1 ∼ P̂ lo
a,t(· | sloa,t,ulo

a,t), ∀a ∈ A, (19a)

sup(i,j),t+1 =
[
ŝlo⊤
i,t+1, ŝ

lo⊤
j,t+1

]⊤
, ∀(i, j) ∈ Ltie, (19b)

T(i,j),t+1 = µup
(i,j),t+1(s

up
(i,j),t+1), ∀(i, j) ∈ L

tie, (19c)

sloa,t+1 =
[
ŝlo⊤
a,t+1, (M

tie
a Tt+1)

⊤]⊤ , ∀a ∈ A. (19d)

We use the mean of the interconnection agent’s policy as
the action in (19c). Adopting deterministic actions from the
interconnection agents results in a less stochastic environment
for the operating agents, thereby aiding in stabilizing the
training process.

Similarly, for tieline (i, j) ∈ Ltie, we adopt an alternative
method to replace the traditional process of sampling the
subsequent state sup(i,j),t+1 from the dynamics Pup

(i,j) with a
more practical approach. In Algorithm 1, the procedure for
Step 23 is elaborated as follows:

sloa,t =
[
ŝlo T
a,t , (M

tie
a Tt)

⊤]⊤ , ∀a ∈ A, (20a)

ulo
a,t = µlo

a,t(s
lo
a,t), ∀a ∈ A, (20b)

ŝloa,t+1 ∼ P̂ lo
a,t(· | sloa,t,ulo

a,t), ∀a ∈ A, (20c)

sup(i,j),t+1 =
[
ŝlo T
i,t+1, ŝ

lo T
j,t+1

]⊤
, ∀(i, j) ∈ Ltie. (20d)

V. NUMERICAL SIMULATIONS

In this section, we present simulation results involving a
three-area test system shown in Fig. 4. Results demonstrate the
efficacy and efficiency of the proposed bi-level decentralized
multi-agent actor-critic algorithm.

A. Simulation Setup

Here, we describe the simulation setup with respect to the
test system, loads and perturbations, and parameters in the
proposed algorithm.

1) Test System: We assess the performance of our proposed
algorithm using a synthesized network comprising three in-
terconnected areas, contained in set A = {1, 2, 3}, with each
area a ∈ A consisting of three buses Na = {1, 2, 3}, as shown
in Fig. 4. Each of the three areas embeds three transmission
lines (dashed traces) and each pair of areas are connected
through two tielines (solid traces). The tielines form the set
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Algorithm 1 Bi-Level Decentralized Multi-Agent Actor-Critic
Algorithm
Require: Learning rates βlo,ac, βlo,cr, βup,ac, βup,cr; Initial

variances of Gaussian policies σlo2, σup2; Variance re-
duction factors γlo, γup; Maximum numbers of iterations
κmax, κlo,max, κup,max.

1: For a ∈ A, t ∈ T , initialize the parameters of the mean
function µlo

a,t of the operating actor and the value function
V̂ lo
a,t of the operating critic: ϕlo

a,t = 0, ωlo
a,t = 0.

2: For (i, j) ∈ Ltie, t ∈ T , initialize the parameters of the
mean function µup

(i,j),t of the interconnection actor and
the value function V̂ up

(i,j),t of the interconnection critic:
ϕup
(i,j),t = 0, ωup

(i,j),t = 0.
3: for κ = 1, 2, . . . , κmax do
4: #Operating Agents Training
5: for κlo = 1, 2, . . . , κlo,max do
6: Initialize the partial states ŝloa,0, ∀a ∈ A.
7: sup(i,j),0 =

[
ŝlo⊤
i,0 , ŝlo⊤

j,0

]⊤
, ∀(i, j) ∈ Ltie.

8: T(i,j),0 = µup
(i,j),0(s

up
(i,j),0), ∀(i, j) ∈ L

tie.

9: sloa,0 =
[
ŝlo T
a,0 , (M

tie
a T0)

⊤]⊤ , ∀a ∈ A.
10: for t ∈ T do
11: ulo

a,t ∼ πlo
a,t(· | sloa,t), ∀a ∈ A.

12: sloa,t+1 ∼ P lo
a,t(· | sloa,t,ulo

a,t), ∀a ∈ A.
13: Perform (15) for area a, ∀a ∈ A.
14: end for
15: σlo2 = γlo · σlo2.
16: end for
17: # Interconnection Agents Training
18: for κup = 1, 2, . . . , κup,max do
19: Initialize the partial states ŝloa,0, ∀a ∈ A.
20: sup(i,j),0 = [̂slo⊤

i,0 , ŝlo⊤
j,0 ]⊤, ∀(i, j) ∈ Ltie.

21: for t ∈ T do.
22: T(i,j),t ∼ πup

(i,j),t(· | s
up
(i,j),t), ∀(i, j) ∈ L

tie.
23: sup(i,j),t+1 ∼ P

up
(i,j),t(· | s

up
(i,j),t, T(i,j),t),

∀(i, j) ∈ Ltie.
24: Perform (18) for tieline (i, j), ∀(i, j) ∈ Ltie.
25: end for
26: σup2 = γup · σup2.
27: end for
28: end for

Ltie = {(2, 1), (3, 1), (3, 2)} and (2, 1) ∈ N1 × N2, (3, 1) ∈
N1 × N3, and (3, 2) ∈ N2 × N3. All tieline capacity limits
are uniformly set to 150 [MW] while for transmission lines
(1, 2), (1, 3) and (2, 3), in each area a ∈ A, the capacity limits
are 35 [MW], 100 [MW] and 100 [MW], respectively. Capacity
limits and cost/utility function coefficients of generators/elastic
loads are presented in Tables III and IV, and operational
limits of energy storage devices are presented in Table V,
all in the Appendix. The multi-area scheduling is performed
through hourly decision-making over a daily horizon, i.e., with
T = 24 [hr].

~ =

~ =

~ =

~ =

~ =

~ =

Energy Storage

Inflexible Load without Uncertainty Transmission Line Tie Line

Generator~ Inflexible Load with Uncertainty Flexible Load=

Elastic Load

Area 1

Area 2 Area 3

Bus 1

Bus 2 Bus 3

Bus 2 Bus 3 Bus 2 Bus 3

Bus 1 Bus 1

Fig. 4. Three-area test network.

2) Loads and Perturbations: The combined total of flexible
and inflexible loads of buses 1 and 2 in each area are provided
in Fig. 5, with 80% of the load designated as inflexible and
the remaining 20% as flexible. Without loss of generality, we
assume that the load at bus 2 in each area is deducted the day-
ahead solar power forecast. Thereby, net-load perturbations are
introduced to bus 2 of each area a ∈ A to model the combined
uncertainty originating from load and solar power generation,
which adheres to the following distribution:

ϵ2,a,t ∼

{
N (0, 102), if t ≤ 9 or t ≥ 18,

N (0, 52) + ϵ2,a,t−1, otherwise.
(21)

The perturbations shown in Fig. 6 are drawn from W = 10,000
randomly generated scenarios, where each scenario consists
of perturbations for each of the 24 hours. We evaluate the
policies derived from Algorithm 1 using these scenarios where
for each scenario, indexed by w = 1, 2, . . . ,W , we represent
the realizations of the perturbations as {ϵ(w)

a,t }a∈A,t∈T .

3) Function Approximation and Parameter Selection: In
our experiments, all policies and approximated value func-
tions employ the linear function approximation technique
with second-order polynomial features. The Gaussian policies’
variances, σlo2 and σup2, are initialized at 0.3 and 0.1,
respectively. Both the lower and upper variance reduction
factors are set at γlo = γup = 0.999999. We select a
maximum iteration count of κmax = 30,000 for the outer
loop, and the numbers of iterations for inner loops are set
to κlo,max = κup,max = 20. The learning rates for operating
agents are selected as βlo,ac = 0.001 and βlo,cr = 0.01. In
contrast, the interconnection agents adopt learning rates of
βup,ac = 0.0001 and βup,cr = 0.001. The hyperparameters
were selected using grid search and established practices
within the domain of actor-critic algorithms. For example,
the learning rates of actors are significantly smaller (10 times
smaller) than those of the corresponding critics.
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Fig. 5. Combined total of flexible and inflexible loads at buses 1 and 2 for
the three areas (buses 1 and 2 in each area share identical loads.).
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Fig. 6. Box-and-whisker plot for the distribution of perturbations. The line
inside the box represents the median value of the perturbations. The bottom
and top edges of the box represent the first (25th percentile) and third (75th
percentile) quartiles, respectively. The whiskers extend to the minimum and
maximum values within 1.5 times the interquartile range. Outliers, represented
by circles, are individual perturbations that fall beyond the whiskers.

B. Benchmark Solutions

To provide a basis for comparison, we solve the multi-area
power scheduling problem in (14) for each scenario using
MPC. By defining τ ∈ T as the start time of the MPC receding
horizon, the solution to (14) with a specified perturbation is
denoted by [(X̂

(w,τ)
a,t )a∈A, T̂

(w,τ)
t ]⊤t∈T while the perturbation

takes the following form:

ϵa,t =

{
ϵwa,t, if t ≤ τ,

E
[
ϵa,t | ϵa,τ = ϵwa,τ

]
, otherwise,

, ∀a ∈ A, t ∈ T ,

implying a definite realization for t ≤ τ and uncertain values
conditioned on perturbation at τ for t > τ . Additionally, the
problem is subject to constraints:

Xa,t = X̂
(w,τ−1)
a,t , ∀a ∈ A,∀t ≤ τ,

Tt = T̂
(w,τ−1)
t , ∀t ≤ τ,

to ensure each receding horizon problem is initialized at the
optimal solution of the preceding problem. Consequently, we
adopt [(X̂(w,24)

a,t )a∈A, T̂
(w,24)
t ]⊤t∈T as the solution from MPC.

The choice for this comparison stems from the particu-
lar constraints of the setting, where the perturbation ϵa,t is
accessible only up to time t. It is worth highlighting that
the solution from our proposed learning-based algorithm is
produced under a more restrictive setting compared to MPC,

TABLE I
AVERAGE NET OPERATION COSTS ± STANDARD DEVIATION [$]

ρ Algorithm 1 MPC Centralized RL Gap
0.95 85,617± 145 83,084 84,471± 100 3.0%± 0.2%
1 96,171± 333 92,587 94,252± 145 3.9%± 0.4%

1.05 107,357± 408 102,330 104,305± 136 4.9%± 0.3%

that is, operating in a decentralized fashion and lacking com-
prehensive knowledge about the distribution of perturbations.
As a consequence, the operating agents do not have access to
either the perturbations occurring in other areas or anticipated
future values.

Additionally, we compare our proposed algorithm with a
centralized RL approach. This centralized approach treats
the entire system as a unified area addressed by a single
operating agent. However, the statistical characteristics of the
perturbation remain unknown to the agent.

C. Simulation Results

The average net operation costs over 10,000 scenarios
derived from Algorithm 1, as well as MPC and centralized
RL solutions, are provided in Table I where, aside from the
original load provided in Fig. 5, two additional cases are
also examined with nodal loads scaled by factors ρ = 0.95
and ρ = 1.05 to enable assessing the algorithm’s sensitivity
to overall loading. The means and standard deviations are
calculated from 10 random seeds. For the original load, we
observe an average of 3.9% gap in the difference in average
net operation costs between the solution obtained from the
proposed algorithm and that from MPC. As MPC benefits from
full knowledge of the perturbations’ distribution and operates
in a centralized fashion, we consider the solution from MPC to
be the best achievable one and consequently, being 3.9% away
from it is a desirable outcome. Additionally, the disparity in
average costs between centralized RL and MPC highlights the
advantage of having complete knowledge of the perturbation
distribution. Similarly, the difference in average costs between
MARL and centralized RL underscores the benefits of the
centralized approach. In addition, the gap becomes more
significant as the load increases (ρ = 1.05) possibly due
to greater likelihood of a power shortage when only local
information is accessible. This conjecture is supported by the
observation that the gap in average costs between MPC and
centralized RL remains stable, staying within a 2% range.
Figure 7 indicates that the average net operation cost converges
to a value near that of the solution derived from MPC for
the case of ρ = 1. Furthermore, it is observed that MARL
converges faster than centralized RL.

It is important to emphasize the fact that the computational
overhead of the MPC solution renders it an impractical al-
ternative for real-time operation of power-exchange between
many areas with multiple nodes. In contrast, once trained, the
decentralized RL policies can be readily used in the real-
time operation of such settings. In Table II, we present a
comparison of computation times between the two methods,
i.e., the application of trained RL policies and the solution of
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Fig. 7. Convergence of the average net operation cost over training iterations.
The x-axis represents the number of iterations for updating the operating
agents.

TABLE II
COMPUTATION TIMES [SEC] FOR 10,000 SCENARIOS

Trained MARL Policies MPC
138.1 3,066.7

the MPC. Both methods were executed on a machine pow-
ered by an Apple M2 CPU, for 10,000 individual scenarios,
where the MPC model is solved using Gurobi solver. The
trained RL policies process approximately 22.2 times faster,
taking 138.1 [sec], compared to MPC via Gurobi, which takes
3,066.7 [sec].

VI. CONCLUDING REMARKS

In this paper, we developed a decentralized MARL al-
gorithm to address multi-area power exchange problems. In
the decentralized scheme, two types of agents—operating and
interconnection agents—cooperate to minimize the overall net
operation cost of the system, with only limited information
being shared among them. The proposed algorithm adopts
a bi-level structure. In the upper-level problems, the inter-
connection agents determine the flow on tielines. Meanwhile,
in the lower-level problems, the operating agents make local
decisions for each area. The policies from our proposed
algorithm demonstrate excellent performance in the test case,
deviating by less than 5% from the centralized MPC solu-
tion. Additionally, our algorithm exhibits scalability, attributed
to the limited information exchange among agents and the
rapid implementation once the policies are trained. In future
research, we plan to develop a MARL algorithm where agents
predict the responses of their neighbors to actions, facilitating
a more autonomous and practical training process.

APPENDIX

A. Generator Data

Generator cost functions are deemed quadratic with cq, cl

and co respectively referring to quadratic, linear, and constant
term coefficients. Capacity limits and cost function coefficients
for individual generators of all areas are presented in Table III.

TABLE III
PARAMETERS OF GENERATORS

Area Bus P [MW] cq [$/(MWh)2] cl [$/MWh] co [$/h]

1 1 200 0.02 2 20
1 2 250 0.025 1.5 15
2 1 200 0.02 2 20
2 2 250 0.025 1.5 15
3 1 200 0.02 2 20
3 2 250 0.025 1.5 15

B. Elastic Load Data

Elastic load utility functions are deemed quadratic with
hq, hl, and ho respectively referring to quadratic, linear, and
constant term coefficients. Capacity limits and utility function
coefficients for individual generators of all areas are presented
in Table IV.

TABLE IV
PARAMETERS OF ELASTIC LOADS

Area Bus L
e
[MW] hq [$/(MWh)2] hl [$/MWh] ho [$/h]

1 3 250 −0.02 12 5
2 3 250 −0.02 12 5
3 3 250 −0.02 12 5

C. Energy Storage Data

Power and energy capacity limits and charge/discharge
efficiency of energy storage devices of all areas are presented
in Table V.

TABLE V
PARAMETERS OF ENERGY STORAGE DEVICES

Area Bus E [MWh] P
c
[MW] P

d
[MW] ηc ηd

1 2 160 80 80 0.9 0.95
1 3 120 60 60 0.9 0.95
2 2 160 80 80 0.9 0.95
2 3 120 60 60 0.9 0.95
3 2 160 80 80 0.9 0.95
3 3 120 60 60 0.9 0.95
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