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Abstract—This paper presents a method to generalize loca-
tional marginal prices (LMPs) to embed the impact of system
frequency dynamics into real-time electricity markets. The pro-
posed frequency dynamics-aware LMPs can help to mitigate costs
associated with setting aside ever more reserve capacity to offset
larger, faster, and more frequent transient excursions arising
from greater renewable integration. We formulate a dynamics-
aware economic dispatch (ED) by augmenting a traditional
static ED with constraints pertinent to system frequency dynam-
ics, including those from inertial response, primary frequency
control, and the automatic generation control. We show that,
similar to their traditional static counterparts, dynamics-aware
LMPs are composed of Lagrange multipliers associated with
the power balance and transmission line power flow constraints.
Furthermore, through analysis, we detail dynamic and steady-
state behaviours of dynamics-aware LMPs. Finally, numerical
simulations involving standard test systems validate our findings,
confirm added revenue opportunities for generators contributing
to frequency support, and demonstrate computational scalability.

Index Terms—Automatic generation control, economic dis-
patch, frequency dynamics, locational marginal pricing

I. INTRODUCTION

MODERN electric power systems are undergoing rev-
olutionary changes as conventional fossil fuel-based

generators are increasingly replaced by low-inertia renewable
energy sources (RESs) [1]. The benefits of integrating a
greater share of RESs in the generation mix are indisputable
for environmental sustainability. However, the variability and
intermittency of RESs, coupled with reduced total system
inertia, may jeopardize reliable and efficient real-time oper-
ation of the power system [2], [3]. A compelling strategy to
mitigate this is for (possibly a subset of) RESs to, alongside
conventional rotational-inertia sources, contribute to balancing
the net demand on a second-to-second basis. Such dispatchable
RESs can be realized by equipping their grid-interfacing
power-electronic inverters with virtual inertia-based frequency-
responsive controllers [4]. Critical to practical deployment of
this general strategy is a market-based framework that seam-
lessly reconciles services provided by inverter-based sources
and conventional turbine-based generation and offers suitable
compensation, which would then foster further investment
into RESs to support real-time operations [5]. Our work is
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indeed positioned along the energy transition marked by the
coexistence of renewable and conventional sources.

The overarching aim of electricity markets is to supply
the electric load with minimum cost. They typically follow
a hierarchical multi-stage structure spanning longer schedul-
ing horizons with coarser trading intervals (e.g., day-ahead
market) followed by shorter scheduling horizons with finer
trading intervals (e.g., real-time market) [6], [7]. In general,
each market stage collects trade terms (bids and offers) from
market participants, which are then used to obtain so-called
locational marginal prices (LMPs) [8]. The LMP associated
with a particular bus in a power system represents the optimal
marginal cost incurred to supply an additional unit of electric
load at that bus given cost of operation, supply-demand
balance, and transmission and generation capacity limits [9].

Real-time LMPs accompany the solution of an electricity
pricing problem commonly known as real-time economic
dispatch (ED) typically solved every 5 minutes [10]–[12]. The
traditional static ED is a single-interval optimization problem
formulated under the implicit assumption that the power
system operates in steady state over the entire scheduling
horizon. Thus, resulting LMPs do not capture the opera-
tion cost during frequency transients away from the syn-
chronous steady state. Such excursions are instead addressed
by frequency containment (or control) reserves, and reserve
requirements are expected to grow rapidly with increasing
integration of low-inertia RESs that cause larger, faster, and
more frequent frequency deviations [13]. However, providing
additional reserves by investing in more fast-acting generating
units or curtailing existing ones is not attractive economically.
In this paper, we propose real-time dynamics-aware LMPs
that are valid throughout frequency transients and into steady
state by extending the traditional ED into a multi-interval
multi-time scale optimization problem. The resulting LMPs
updated at shorter intervals represent the actual second-to-
second marginal cost of energy in regulating system frequency
and thereby in tracking net demand variations in real time.
While the proposed method departs significantly from today’s
regulation markets where generators are paid for reserve
capacity [6], [7], it offers a promising extension of real-time
markets to mitigate the greater total operation cost expected
from growing reserve requirements as mentioned earlier. Then,
having accounted for frequency regulation in the real-time
energy market, we envision reserve capacity would instead
be procured to offset the risk of constraint violation due to
uncertainty in, e.g., the net-load forecast.

Although the proposed dynamics-aware LMPs are solved
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alongside a companion ED, this paper is not centered on
algorithm design or control synthesis. Instead, we aim to
address challenges expected in maintaining cost-effective reli-
able operations under existing markets, which have motivated
recent work in pricing rotational and virtual inertia to mitigate
undesired frequency excursions. In [14], a Vickrey-Clarke-
Groves mechanism helps to procure sufficient system inertia to
withstand worst-case contingencies while minimizing the cost
under a performance metric that reflects efficient frequency
response. Further, [15], [16] tailor the traditional unit commit-
ment (UC) to jointly optimize the costs of procuring energy
and inertia, where the system inertia is informed by require-
ments for frequency nadir [15] and rate of change of frequency
[16]. While [15], [16] derive pertinent performance indices
from a mathematical model of system frequency dynamics,
[17] uses linear constraints fitted to simulation data. A chance-
constrained UC with inertia constraints in [18] co-optimizes
the costs of energy and inertia services while accounting for
load uncertainty. The aforementioned efforts all target the
procurement and pricing of adequate inertia by introducing
a new service. In contrast, our recent work [19] seeks to
extend existing real-time markets based in marginal pricing to
incorporate contributions made by generators toward restoring
the frequency to synchronous steady state after a disturbance.
Related work in (locational) marginal pricing address pricing
under uncertainty [20], [21], nonconvex pricing [22], [23], and
multi-interval pricing [24], [25]. A more detailed review of
recent literature on extensions of LMPs can be found in [26].
Also worth mentioning are efforts in optimal frequency-
aware scheduling of conventional and inverter-based sources
to mitigate undesired frequency excursions (see, e.g., [27]–
[29] and references therein). Distinct from these, our focus is
squarely on generalizing the concept of LMPs aimed at a more
granular-in-time extension of existing real-time markets.

This paper formulates a multi-interval multi-time scale ED
that embeds relatively fast frequency dynamics along with
slower decisions on generator/inverter set-points into one sin-
gle optimization problem. We augment the traditional ED with
constraints pertinent to frequency dynamics arising from syn-
chronous generators (the model for which straightforwardly
generalizes over that for a frequency-responsive inverter con-
troller furnished with virtual inertia and droop characteristics).
Distinct from [19] that enables secondary frequency control by
penalizing frequency deviations (from synchronous speed) in
the objective function, the dynamics-aware ED formulated in
this paper more accurately reflects actual system operations by
incorporating the dynamical model of the automatic generation
control (AGC). We further enforce transmission line power
flow limits and account for the effects of congestion on
marginal cost. The use of injection shift factors that map
nodal power injections to line power flows uncovers locational
marginal prices, unlike [19] where a single marginal price is
shared amongst all buses in the system. We show that the real-
time dynamics-aware LMPs comprise Lagrange multipliers
associated with the generation-load balance and line power
flow limits. In examining the dynamics of the LMPs, we derive
a state-space model for pertinent Lagrange multipliers of the
dynamics-aware ED. Finally, extensive numerical simulations

involving standard test cases (namely the Western System Co-
ordinating Council 9-bus, New England 39-bus, and IEEE 145-
bus test systems) validate our analysis, demonstrate dynamics
in the proposed LMPs, confirm added revenue opportunities
for generators, and showcase computational scalability.

The remainder of the paper is organized as follows. Sec-
tion II outlines pertinent models for the traditional ED,
the AGC, and generators. In Section III, we formulate the
dynamics-aware ED and present its optimality conditions. Sec-
tion IV derives the dynamics-aware LMPs and examines their
dynamic and steady-state behaviours. Section V comprises
numerical simulations to validate and illustrate dynamics in
LMPs and the system. Finally, Section VI concludes the paper.

II. PRELIMINARIES

In this section, we introduce the LMPs solved from a tradi-
tional single-snapshot dynamics-oblivious ED. We also outline
dynamical models pertinent to the AGC and generators. We
further discuss the motivation behind proposing the concept
of dynamics-aware LMPs via a numerical example.

A. Traditional Locational Marginal Prices
Consider a transmission system with N buses, L lines, and

G generators collected respectively in sets N = {1, . . . , N},
L = {1, . . . , L}, and G = {1, . . . , G}. Suppose generator g
produces steady-state electrical power Pg,◦ with cost function
Cg(Pg,◦), and denote the load forecast at bus n by P load

n,◦ . The
total cost of generation is C(P◦) =

∑
g∈G Cg(Pg,◦), where

P◦ = [P1,◦, . . . , PG,◦]
T. Collect the load forecasts at all buses

in vector P load
◦ = [P load

1,◦ , . . . , P load
N,◦ ]T. Further define steady-

state nodal net power injections P inj
◦ := KP◦ − P load

◦ , where
the N×G incidence matrix K maps generators to bus indices.
Then the traditional ED can be formulated as

minimize
P◦

C(P◦) (1a)

subject to 1T
GP◦ = 1T

NP
load
◦ , (λ◦), (1b)

P inj
◦ = KP◦ − P load

◦ , (ρ◦), (1c)

F ≤ ΨP inj
◦ ≤ F , (φ−◦ , φ

+
◦ ), (1d)

P ≤ P◦ ≤ P , (µ−◦ , µ
+
◦ ), (1e)

where 1G and 1N respectively represent the G- and N -
dimensional vectors of 1s, and Ψ is the L × N matrix of
injection shift factors. Above, the operation cost in (1a) is
minimized subject to system generation-load balance in (1b),
nodal power balance in (1c), line power flow limits in (1d),
and generator capacity limits in (1e). The cost function C(·)
is assumed to be strictly convex and monotonically increasing
for the range of generator outputs we consider. The LMP at a
particular bus represents the change in the optimal cost due to
incremental variations in load at that bus. With respect to the
problem in (1), the LMPs consist of the Lagrange multiplier
of system power balance in (1b) plus a term attributed to
transmission line congestion, as follows:

Λ◦ = 1Nλ
?
◦ + ΨT(φ−?◦ − φ+?

◦ ), (2)

where the superscript ? denotes the value taken by the corre-
sponding variable at the optimal solution. The ED formulation
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in (1) and subsequent LMP calculation in (2) are pieced
together from popular textbooks [8], [9] as well as references
authored by industry stakeholders [10]–[12].

B. Automatic Generation Control

Let P r
g and Pg denote respectively the reference set-point

and electrical output of generator g ∈ G; also let P r =
[P r

1 , . . . , P
r
G]T and P = [P1, . . . , PG]T. For a single-area

power system, generator reference set-points are obtained as

P r = P◦ + π(ξ − 1T
GP◦), (3)

where P◦ comprises the generator economic dispatch set-
points and π = [π1, . . . , πG]T collects the AGC participation
factors (chosen such that 1T

Gπ = 1 and πg ≥ 0, ∀ g ∈ G) [30].
In existing implementations, P◦ would assume the most re-
cent optimal set-point solved from the traditional ED in (1).
Furthermore, in (3), ξ is the AGC state variable modelled by
the following dynamics:

τAξ̇ = −ξ −ACE + 1T
GP, (4)

where τA is the AGC time constant and ACE = −kb∆ω is
the area control error (ACE) for a single-area power system.
Although we consider a single-area system for simplicity, we
can easily extend the AGC model for multiple areas (see,
e.g., [31]), at the expense of greater notational burden. The
state-space model in (3)–(4) is transcribed from the AGC
block diagram in [30, p. 494]. Particularly, (4) represents an
integrator for the AGC state ξ, and (3) assigns generator set-
points proportional to the AGC participation factors in π.
While there are significant variations in industry implemen-
tations of the AGC, [32], [33] suggest sampling the ACE
and actuating control action every two to four seconds, which
serves to inform the duration of the longer time interval
in the proposed dynamics-aware ED. Also of note is that
AGC dynamics are slower by design with τA ranging from
30 [sec] to minutes [33]. Within the ACE signal, k < 0 is
a predefined constant scaling factor and b the bias factor
for the area, and ∆ω = ω − ωs, where ω denotes the
prevailing frequency for the area and ωs = 2π60 [rad/s] is
the synchronous speed. While practical setups differ on how
∆ω is computed from measurements, for modelling purposes
in our paper, we assume that it follows dynamics outlined next.

C. Generator Frequency Dynamics

For each generator g ∈ G, let ωg and Pm
g denote the

electrical angular frequency and turbine mechanical power,
respectively. Each generator initially operates at the steady-
state equilibrium point with ωg(0) = ωs, P r

g(0) = Pm
g (0) =

Pg(0) = P r◦
g . Let ∆ωg := ωg − ωs and assume that the

electrical distances between geographically different parts of
the power system are negligible, then all generator frequen-
cies follow the same transient behaviour, i.e., ∆ωg = ∆ω,
∀ g ∈ G [34]. Also let Pm = [Pm

1 , . . . , P
m
G ]T. Then system

frequency dynamics can be modelled as

M∆ω̇ = Pm −D∆ω − P, (5)

τṖm = P r − Pm −R−11G∆ω, (6)

TABLE I: (Example 1). Dynamical model parameters of generators and
governors in the WSCC test system (boldface delineates values that differ
from the standard test case).

Generator Case(s) Mg [sec] Dg τg [sec] R−1
g

g = 1 1, 2, 3 23.64 20 2 100
g = 2 1, 2, 3 6.4 20 2 100

g = 3
1 3.01 20 2 0
2 3.01 20 2 100
3 13.01 50 2 125

where M = [M1, . . . ,MG]T and D = [D1, . . . , DG]T re-
spectively collect the generator inertia and damping constants,
and τ = diag([τ1, . . . , τG]) and R−1 = diag([R−1

1 , . . . , R−1
G ])

collect the generator governor time constants and inverse-
droop constants, respectively [35]. The model in (5)–(6) does
not describe dynamics for the generator terminal voltage,
automatic voltage regulators, or power system stabilizers.
However, we find this model to be sufficiently accurate to
capture system frequency dynamics for the time scales of our
interest [34], [36]. Although, as defined above, each entry
in (5)–(6) is constructed for a single generator, it can also serve
as an aggregate power plant model fashioned with aggregate
values for inertia, damping, and droop constants. Furthermore,
this model generalizes over the active-power loop of the so-
called virtual synchronous generator controller that is com-
monly adopted in the literature to enable frequency support
by inverter-based sources (see, e.g., [37], [38]). Inverter inner-
loop voltage and current controller dynamics are neglected as
they would be executed at much faster time scales [39].

D. Motivation for Proposed Dynamics-aware LMPs

The traditional ED in (1) implicitly assumes that the power
system operates at synchronous steady state, so resulting LMPs
in (2) do not offer any insights on the price of electricity during
frequency transients. Thus, traditional LMPs do not incentivize
or compensate generators to contribute to dynamic frequency
response, a shortcoming that we exemplify next.

Example 1 (3-Generator 9-Bus System). Consider the West-
ern System Coordinating Council (WSCC) test system [40]
with two relatively cheap units and a third more expensive unit.
The optimal dispatch from the traditional ED in (1) yields zero
output from generator 3, as shown by the initial steady-state
operating point in Fig. 1a. Traditionally, the LMPs at which
units are compensated are fixed assuming the system operates
in steady state. We now examine dynamics in generator power
and system frequency in response to a 20% increase in all
loads imposed at time t = 10 [sec], under three different sets
of values taken by generator parameters, as reported in Table I.
In cases 1 and 2, we use the parameter values from the standard
test case, except generator 3 sets R−1

3 to be identically zero
in case 1 but to take a positive value in case 2. We plot the
realized mechanical power output of generator 3 in Fig. 1a
and system frequency response in Fig. 1b. Since generator 3
does not participate in primary frequency response in case 1,
its output remains at zero throughout the simulation period, as
shown by the solid trace in Fig. 1a.

Although case 1 is consistent with the steady-state assump-
tion under which optimal dispatch from the traditional ED is
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Fig. 1: (Example 1). Dynamic trajectories realized with three different sets of
generator parameter values in response to a load increase: (a) mechanical
power outputs of the most expensive unit Pm

3 (t), (b) system frequency
deviations. In case 1, the most expensive unit does not participate in primary
frequency response; in case 2, this unit contributes to primary frequency
control, resulting in more desirable frequency response; in case 3, parameter
values are chosen to achieve even better system frequency response with
respect to nadir, settling time, and steady-state deviation.

solved, in examining Fig. 1b, we observe that case 2 depicted
by the dashed trace represents more desirable behaviour with
i) higher frequency nadir, ii) shorter settling time, and iii) less
steady-state deviation from synchronous speed. Following this
train of thought, case 3 is engineered with a set of values
for inertia, damping, and droop constants for generator 3 that
leads to even better system frequency response, as shown by
the dash-dot traces in Fig. 1b. �

In the above example, we observe that different values taken
by tuneable controller parameters of conventional generators
(and inverter-based sources) can lead to significantly improved
dynamic performance. Indeed, due to the expected integration
of intermittent renewable generation and reduction in system
inertia, generation-load imbalances in the future may lead
to larger, faster, and more frequent frequency variations.
However, conventional generators participating in frequency
response services are largely compensated for setting aside re-
serve capacity only, not for response speed [29]. Furthermore,
at present, inverter-based sources that can potentially provide
faster response to generation-load imbalances do not contribute
to system inertial or primary frequency response [41]. To
address this issue, we generalize traditional static LMPs to
incorporate effects of frequency dynamics toward incentivizing
conventional generators and inverter-based sources to con-
tribute to frequency response. The proposed method provides
a systematic pricing approach rooted in present industry stan-
dard practices to compensate generating units over time scales
pertinent to inertial response, primary frequency response, and
secondary frequency control.

III. DYNAMICS-AWARE ECONOMIC DISPATCH

The dynamics-aware ED aims to optimize the generation
schedule of generator g ∈ G over the scheduling horizon

of interest, with the system frequency dynamics explicitly
modelled. This calls for combining slower decisions on gen-
erator reference set-points and comparatively faster frequency
dynamics into a single multi-time scale optimization problem.

A. Problem Formulation

Consider the scheduling horizon of the ED problem from
time t0 to t0 + T , with T being, e.g., 5 [min] for real-time
markets. Within the ED scheduling horizon, we introduce
two pertinent time steps to capture frequency dynamics aris-
ing from the AGC and generators. First, AGC decisions on
generator reference set-points are made over a longer time
interval ∆tS (e.g., 5 [sec]), which subdivides the scheduling
horizon into equal intervals with the interval endpoints col-
lected in T S

t0 = {t0, t0 + ∆tS, . . . , t0 + T}. Next, the time
step corresponding to faster frequency dynamics is denoted
by ∆tD (e.g., 0.05 [sec]), which is sufficiently small to capture
the dynamic behaviour of generators. The scheduling horizon
then divides into equal intervals with the interval endpoints
collected in the set T D

t0 = {t0, t0 + ∆tD, . . . , t0 + T}.
We formulate a dynamics-aware ED with fast decisions

made every ∆tD seconds, slower generator set-points deter-
mined every ∆tS seconds, and one set of ED set-points applied
across the entire scheduling horizon. Considering the fore-
casted nodal loads collected in P load

t = [P load
1,t , . . . , P load

N,t ]T,
t ∈ T D

t0 , over the scheduling horizon from t0 to t0 + T , the
dynamics-aware ED is formulated as follows:1

minimize
P◦,ξt′ ,P

r
t′ ,P

m
t ,

∆ωt,Pt,P
inj
t

∑
t∈T D

t0

C(Pm
t )∆tD (7a)

subject to M
(∆ωt+∆tD −∆ωt

∆tD

)
= Pm

t −D∆ωt − Pt,

(αt), t ∈ T D
t0 \ {t0 + T}, (7b)

τ
(Pm

t+∆tD − P
m
t

∆tD

)
= P r

t′ − Pm
t −R−11G∆ωt,

(βt), t
′ ∈ T S

t0 \ {t0 + T},
t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (7c)

τA

(ξt′+∆tS − ξt′
∆tS

)
= −ξt′ + kb∆ωt′ + 1T

GPt′ ,

(γt′), t
′ ∈ T S

t0 \ {t0 + T}, (7d)

P r
t′=P◦ + π(ξt′ − 1T

GP◦), (κt′), t
′ ∈ T S

t0 , (7e)

1T
GPt = 1T

NP
load
t , (λt), t ∈ T D

t0 , (7f)

P inj
t = KPt − P load

t , (ρt), t ∈ T D
t0 , (7g)

1T
GP◦ =

1

|T D
t0 |

∑
t∈T D

t0

1T
NP

load
t , (ζ), (7h)

F ≤ 1

|T D
t0 |

∑
t∈T D

t0

ΨP inj
t ≤ F , (φ−, φ+), (7i)

P ≤ Pm
t ≤ P , (µ−t , µ

+
t ), t ∈ T D

t0 , (7j)

1Subscripts t and t′ respectively denote variables evaluated at the faster
and slower time scales; superscripts D and S respectively represent variables
pertinent to the shorter and the longer time intervals; variables related to
generator power include electrical output Pt, turbine mechanical power Pm

t ,
reference power set-point P r

t′ , and economic dispatch set-point P◦; and
variables related to nodal power include the load P load

t and net injection P inj
t .
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where | · | is the cardinality operator. The objective in (7a)
comprises operation cost C(Pm

t ) =
∑
g∈G Cg(P

m
g,t), where

Cg(·) is the cost function for generator g ∈ G. Approx-
imate discrete-time system dynamics are enforced in (7b)–
(7e), where the generator and AGC dynamics are respectively
discretized at shorter intervals of ∆tD and longer intervals of
∆tS. The system generation-load balance is imposed in (7f) for
each time step, and the nodal power injections are defined in
(7g). The sum of ED set-points balances the average system
load forecast over the scheduling horizon in (7h). Average
transmission line flows are confined to their lower and upper
limits in (7i). Note that the use of average flows permits short-
term violations of line-flow limits during frequency transients.
Generator mechanical powers are subject to box limits in (7j).

We note that the problem in (7) is similar to [27], except
the problem formulated in [27] shares the same larger dis-
cretization time step as that used for slower generator set-
points decisions, thus potentially overlooking faster generator
and frequency dynamics. Also, constraints placed on generator
ramping rates in [27] (and other similar multi-intervals EDs)
to mimic physical limitations of generators are not needed
in (7) as it explicitly models faster generator and controller dy-
namics. Moreover, unlike the emphasis on optimal dynamics-
aware dispatch in [27], we focus squarely on generalizing the
concept of LMPs to incorporate the effects of generator inertial
response along with primary and secondary frequency control,
which are traditionally decoupled from marginal pricing.

Remark 1 (Discretization Methods). The multi-time scale
discrete-time dynamical model in (7b)–(7d) is synthesized
from a first-order approximation of the continuous-time dy-
namics in (4)–(6). The proposed dynamics-aware ED is gen-
eral in the sense that (7) can easily embed discrete-time
dynamical models resulting from other (and potentially more
accurate) discretization methods, such as the zero-order hold
or Tustin approximation. The main benefit of using the first-
order approximation is that we can retain the physical system
parameters in closed form throughout the analysis of the dual
problem leading to the dynamics-aware LMPs in Section IV.
Also, via dynamic simulations of standard test cases, we find
that the discretization time steps that we consider in numerical
case studies presented in Section V yield sufficiently accurate
discrete-time dynamical models. In practice, other discretiza-
tion methods may be preferable depending on requirements for
model accuracy and limitations in computational resources. �

Remark 2 (Inverter-based Sources). The dynamics-aware ED
in (7) can accommodate frequency support from inverter-based
sources by incorporating their operation cost in the objective
and virtual synchronous generator dynamics in the constraints.
Particularly, the operation cost of renewable sources is typ-
ically modelled as zero or a linear function of power out-
put [42], neither of which would change the general structure
of (7) if implemented into the objective. Also, as mentioned
in Section II-C, a well-studied way to perform frequency
regulation in grid-tied inverters is to modulate the controller
reference set-points to mimic a synchronous generator with
virtual inertia and damping coefficients [38]. This model can
be incorporated into (7b)–(7c) in a straightforward manner. �

Remark 3 (Transmission Losses). In (7), transmission losses
are implicitly embedded within the load forecast P load

t . How-
ever, straightforward modification of (7) can accommodate
loss models typically used in the traditional ED. For example,
a common model expresses transmission losses as a quadratic
function of generator outputs [8], thereby modifying the sys-
tem generation-load balance constraint in (7f) as

1T
GPt = 1T

NP
load
t + PT

t BPt, (8)

where B contains so-called loss coefficients, with other parts
of (7) remaining unchanged. Other related loss models can be
employed in a similar fashion by modifying (7f). �

B. Optimal Lagrangian and Optimality Conditions

The optimality conditions are expressed through Karush-
Kuhn-Tucker (KKT) conditions derived from the Lagrangian
of the dynamics-aware ED in (7), as follows:

L =
∑
t∈T D

t0

(
C(Pm

t )∆tD + µ−T
t (P − Pm

t ) + µ+T
t (Pm

t − P )

+ λt(1
T
NP

load
t − 1T

GPt) + ρT
t (P inj

t −KtPt + P load
t )

)
+
∑
t′∈T S

t0

κT
t′(P

r
t′ − P◦ − π(ξt′ − 1T

GP◦))

+
∑

t∈T D
t0
\{t0+T}

(
αT
t

(
M
(∆ωt+∆tD −∆ωt

∆tD

)
− Pm

t +D∆ωt + Pt

)
+ βT

t

(
τ
(Pm

t+∆tD − P
m
t

∆tD

)
− P r

t′ + Pm
t +R−11G∆ωt

))
+

∑
t′∈T S

t0
\{t0+T}

γt′
(
τA

(ξt′+∆tS − ξt′
∆tS

)
+ ξt′ − kb∆ωt′ − 1T

GPt′
)

+ φ−T
(
F− 1

|T D
t0 |

∑
t∈T D

t0

ΨP inj
t

)
+ φ+T

( 1

|T D
t0 |

∑
t∈T D

t0

ΨP inj
t −F

)
+ ζ
( 1

|T D
t0 |

∑
t∈T D

t0

1T
NP

load
t − 1T

GP◦

)
. (9)

Denote the optimal Lagrangian and the optimal deci-
sions of the problem in (7) by, respectively, L? and
{P ?◦ , ξ?t′ , P r?

t′ , P
m?
t ,∆ω?t , P

?
t , P

inj?
t }t∈T D

t0
, t′∈T S

t0
. Also let La-

grange multipliers evaluated at the optimal solution be dis-
tinguished with superscript ?. As an example, λ?t represents
the optimal value of λt. The optimal solution respects primal
feasibility delineated by (7b)–(7j), stationarity conditions, and
complementary slackness conditions. Here, we provide two
stationarity conditions

0G =
∂L?

∂P ?◦
=
∑
t′∈T S

t0

(1Gπ
Tκ?t′ − κ?t′)− 1Gζ

?, (10)

0N =
∂L?

∂P inj?
t

=
1

|T D
t0 |

ΨT(φ+? − φ−?) + ρ?t , t ∈ T D
t0 , (11)

which will be useful in the next section. Remaining optimality
conditions are reported in Appendix A for completeness.



6

IV. DYNAMICS-AWARE LOCATIONAL MARGINAL PRICES

This section presents the main results of the paper pertaining
to the proposed dynamics-aware LMPs, which represent the
system marginal operation cost due to an incremental change
in nodal load while satisfying static and dynamic constraints.
Based on this definition, we find that the dynamics-aware
LMPs consist of similar constituent components as their
dynamics-oblivious counterparts in (2).

Theorem 1. Given the optimal Lagrangian L? of the
dynamics-aware ED in (7) and its optimal solution
{P ?◦ , ξ?t′ , P r?

t′ , P
m?
t ,∆ω?t , P

?
t , P

inj?
t }t∈T D

t0
, t′∈T S

t0
, we calculate

the dynamics-aware LMPs as

Λt=
1

∆tD

(
1Nλ

?
t +

1

|T D
t0 |

ΨT(φ−? − φ+?)
)
, t ∈ T D

t0 . (12)

Proof. By definition, LMPs are calculated as

Λt :=
1

∆tD
∂L?

∂P load
t

, (13)

where scaling by ∆tD removes their dependence on ∆tD and
results in units consistent with the cost function. From the
optimal Lagrangian in (9), (13) evaluates as

Λt =
1

∆tD

(
1Nλ

?
t + ρ?t +

1

|T D
t0 |

1Nζ
?
)
, t ∈ T D

t0 . (14)

To simplify (14), we shift our attention to (10), the structural
properties of which lead to∑

t′∈T S
t0

κ?t′ = 1Gκ
?, (15)

where κ? ∈ R is a scalar quantity. Next substitute (15)
into (10) to get

0G = (1Gπ
T1G − 1G)κ? − 1Gζ

?. (16)

Further recognizing that πT1G = 1, we get ζ? = 0. Finally,
substitution of ζ? = 0 and ρ?t = − 1

|T D
t0
|Ψ

T(φ+? − φ−?)

(from (11)) into (14) yields (12), as desired.

The solution of (7) yields LMPs in (12) at each time step
t ∈ T D

t0 . However, such high-resolution LMPs may challenge
present-day granularity of financial settlements to generators.
In practice, one way to bridge this gap is to sample the LMPs
from (12) at and to hold them constant over a longer time
interval that satisfies potential limitations in market settlements
or measurement technologies while striking a balance with fair
compensation for generator dynamic performance.

A. Steady State for LMPs

Under normal operation, the combination of governor con-
trol and the AGC ensures that the system converges to
synchronous steady state after a change in load or genera-
tion [31]. Correspondingly, to promote pricing transparency,
the marginal cost reflected by the dynamics-aware LMPs ought
to also settle to steady state [43]. However, the multi-time scale
dynamics-aware ED may, in fact, render steady-state Lagrange
multipliers (and thereby steady-state LMPs) mathematically

infeasible. Next, for the specific setting of nonbinding inequal-
ity constraints at steady state and adequate AGC participation
from all generators, we provide a necessary condition for there
to exist steady-state Lagrange multipliers from the dynamics-
aware ED. For notational consistency, we denote steady-state
values of corresponding variables by subscript ss.

Proposition 1. Suppose there exists tDss ∈ T D
t0 such that for all

t ∈ {tDss+∆tD, . . . , t0+T}, Lagrange multipliers reach steady
state with λ?t = λ?t−∆tD = λ?ss, α

?
t = α?t−∆tD = α?ss, β

?
t =

β?t−∆tD = β?ss, µ
+?
t = µ+?

t−∆tD
= µ+?

ss , µ−?t = µ−?
t−∆tD

=

µ−?ss . Similarly, suppose there exists tSss ∈ T S
t0 such that for

all t′ ∈ {tSss + ∆tS, . . . , t0 + T}, γ?t′ = γ?t′−∆tS = γ?ss and
κ?t′ = κ?t′−∆tS = κ?ss. Also assume that neither line-flow nor
steady-state generator-capacity constraints are binding, so that
φ+? = φ−? = 0L and µ+?

ss − µ−?ss = 0G. Further, if

π >
1

Deff +R−1
eff

R−11G, (17)

where Deff = 1T
GD and R−1

eff = 1T
GR
−11G, then ∆tS = ∆tD

and T S
t0 = T D

t0 must hold.

We refer interested readers to Appendix B for a proof of
Proposition 1. The condition in (17) essentially represents the
scenario in which all generators contribute sufficiently to AGC,
with πg > R−1

g /(Deff + R−1
eff ) > 0, ∀ g ∈ G. Proposition 1

implies that if ∆tS 6= ∆tD, then under fairly benign oper-
ating conditions (i.e., nonbinding inequality constraints and
adequate AGC participation from all generators), dynamics-
aware LMPs solved from (7) would not reach steady state
even if the physical system were to do so.

B. Dynamical System for LMPs
Considering only dynamics-aware LMPs that can reach

steady state, we set ∆tS = ∆tD and use the KKT conditions to
derive a dynamical system for the Lagrange multipliers solved
from the problem in (7).

Proposition 2. Let ∆tS = ∆tD and T S
t0 = T D

t0 . Define
scaled Lagrange multipliers λ′?t = λ?t /∆t

D, α′?t = α?t /∆t
D,

β′?t = β?t /∆t
D, γ′?t = γ?t /∆t

D, µ′+?t = µ+?
t /∆tD, µ′−?t =

µ−?t /∆tD, φ′+? = φ+?/∆tD, and φ′−? = φ−?/∆tD, t ∈ T D
t0 .

Also let x?t = [λ′?t , (β
′?
t )T, γ′?t ]T and

uµ?t =
∂C(Pm?

t )

∂Pm?
t

+ µ′+?t − µ′−?t , uφ? = φ′+? − φ′−?. (18)

Then, with final condition

x?t0+T−∆tD =


− 1
|T D

t0
|1GK

TΨTuφ?

−τ−1 ∂C(Pm?
t0+T )

∂Pm?
t0+T

∆tD

0

 , (19)

the optimal trajectory of the scaled Lagrange multipliers is
governed by the following discrete-time state-space model:

x?t−∆tD = Ax?t +Bµuµ?t +Bφuφ?, (20)

where matrices A, Bµ, and Bφ are given by

A = ∆tD

 h
Meff

−
(

1
Meff

R−11G+ 1
τA
π
)T m

Meff
− r
τA

τ−11G τ−1H τ−11G
0 1

τA
πT r

τA

 ,
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Bµ = −∆tD

 0T
G

τ−1

0T
G

 , Bφ =
∆tD

|T D
t0 |

 1
Meff

DTKTΨT

−τ−1KTΨT

0T
L

 , (21)

with Meff = 1T
GM , h = Meff

∆tD −Deff , m = h+kb, r = τA
∆tD−1,

and H = 1
∆tD τ − IG. Also, IG denotes the G-dimensional

identity matrix.

Proposition 2 represents the outcome of straightforward
(although admittedly algebraically intensive) manipulations of
the stationarity conditions (25)–(31) and (34) in Appendix A.
Thus, for brevity, we refrain from including a proof. Instead,
we offer a few observations on the system in (20), in which
inputs uµ?t and uφ? drive dynamics in state variables λ′?t ,
β′?t , and γ′?t . It is a backward difference equation, implying
the recursion on the Lagrange multipliers runs backward in
time from the final condition in (19), in contrast to the
recursion for the power system dynamics that run forward
in time. Furthermore, entries of µ′+?t (µ′−?t ) are nonzero
only if the upper (lower) mechanical power limits of the
corresponding generators are binding, otherwise they are zero.
Similarly, entries of φ′+? (φ′−?) are nonzero only if the upper
(lower) active-power flow limits of the corresponding lines
are binding, otherwise they are zero. Consider the special
case where the aforementioned inequality constraints are not
binding. Then (20) simplifies as

x?t−∆tD = Ax?t +Bµ
∂C(Pm?

t )

∂Pm?
t

, (22)

so the dynamics in Lagrange multipliers are (unsurprisingly)
driven by the marginal cost of generation in the power system.
Since the cost of generation is typically approximated as a
quadratic function, the entries in ∂C(Pm?

t )
∂Pm?

t
would be linear

functions of optimal mechanical power at time t ∈ T D
t0 .

Example 2 (3-Generator 9-Bus System). In this example, we
consider the same system and simulation setup as Example 1
and validate findings in Section IV. Particularly, using the three
sets of generator dynamic parameters reported in Table I, we
compare LMPs accompanying the optimal solutions of the
dynamics-aware and traditional EDs in (7) and (1), respec-
tively. Both versions of the ED are solved in the YALMIP
toolbox in MATLAB using GUROBI as the solver [44]. To
establish the benchmark, we solve the traditional ED twice,
the first with the initial loads and the second with the post-
disturbance steady-state loads, thus leading to two sets of
LMPs (and two sets of generator set-points). In the dynamics-
aware ED, the scheduling horizon is T = 300 [sec] (or
5 [min]) starting from t0 = 0 [sec], the time step capturing
faster frequency dynamics is set as ∆tD = 0.05 [sec], and
following Proposition 1, we set ∆tS = ∆tD. Here, it is worth
mentioning that ∆tD can be a smaller value if needed to
improve the accuracy of the discrete-time dynamical model,
at the expense of greater computational burden to solve (7). In
Fig. 2, we plot dynamics-aware LMPs in (12) and superimpose
them onto the traditional LMPs in (2). Spatially, all buses
have the same LMPs as none of the inequality constraints
are binding. Temporally, the dynamics-aware LMPs reflect
pricing under different dynamic frequency response scenarios

0 5 10 15 20

10

20

30

40

50

Fig. 2: (Example 2). Comparing LMPs at bus 5 solved from the traditional and
dynamics-aware EDs with three different sets of generator parameter values in
response to a load increase. Traditional LMPs remain at the same values in all
three cases, whereas the dynamics-aware LMPs reflect pricing for differences
in dynamic performance observed in Fig. 1.

0 10 20 30 40 50 60
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3.6

3.8

4

Fig. 3: Total system net-load forecast profile.

shown in Fig. 1b. For more desirable frequency response in
case 2 and even more so in case 3, the larger post-disturbance
LMPs lead to greater compensation for generators to provide
dynamic frequency support. In steady state, the dynamics-
aware LMPs converge to the LMPs solved from the traditional
ED. However, the traditional LMPs remain constant across the
entire post-disturbance transient period and offer the same rate
of compensation to generators regardless of their contributions
to dynamic performance.

V. CASE STUDIES

In this section, we present numerical simulations involving
the WSCC test system and evaluate the proposed method with
respect to system dynamic performance as well as generator
costs and profits in comparison to LMPs resulting from
the solution of the traditional ED. Furthermore, simulations
involving the New England 10-generator 39-bus and the IEEE
50-generator 145-bus test systems [45], [46] demonstrate
computational scalability of the proposed dynamics-aware
locational marginal pricing approach.

A. Dynamic Performance

We present additional numerical results involving the
WSCC test system using a simulation setup similar to Ex-
ample 2, but with several notable differences. First, as the
benchmark for comparison, we solve the traditional ED only
once with initial loads. This represents the business-as-usual
real-time electricity markets, in which the traditional ED is
typically run every 5 [min] for a single-snapshot load forecast,
and the generator set-points are not updated during the look-
ahead interval [10]–[12]. The dynamics-aware ED uses a more
granular load forecast involving multiple changes over the
scheduling horizon of T = 300 [sec] (or 5 [min]). Specifically,
as shown in Fig. 3, at t = 10 and 25 [sec], respectively, all
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TABLE II: Generator quadratic cost function coefficients in the WSCC test
system.

Generator ag [$/(MW2h)] bg [$/MWh] cg [$/h]

g = 1 0.1100 5 0
g = 2 0.0850 1.2 0
g = 3 0.1225 1 0

0 10 20 30 40 50 60

18

20

22

24

26

Fig. 4: Dynamics-aware locational marginal prices at (a) bus 3, (b) bus 5, and
(c) bus 8, evaluated at the optimal solution of the dynamics-aware ED in (7).

loads are forecasted to increase by 5% and 8%. They then
decrease by 3% at t = 40 [sec], followed by an increase of
10% at t = 55 [sec]. The maximum power flow limit for
the line connecting buses 8 and 9 is set to be 0.4 [p.u.],
and this constraint becomes binding during the scheduling
horizon given the prescribed load forecast. Also, simulations
are run with the default dynamical model parameter values
from the standard test case, i.e., case 2 in Table I, and with
generator cost function coefficients reported in Table II. To
extract system dynamic trajectories resulting from the optimal
set-points from the traditional ED solution, we apply them as
the generator references in a dynamic simulation performed in
PSAT [46], where the system frequency is regulated with the
AGC described in Section II-B.

1) Locational Marginal Prices: We use (12) to evaluate
dynamics-aware LMPs at the optimal solution of the ED in (7).
The binding line-flow constraint leads to distinct LMPs at
different buses, as shown in Fig. 4, with the LMPs at bus 8
being the highest. The constraint applied to the average line
flow permits short-term violations of the limit but ensures that
it is satisfied in the long term, as shown by the solid trace in
Fig. 5 after t = 55 [sec]. In contrast, the set-points obtained
from the traditional ED violates the line-flow limit for a longer
period of time, as shown by the dashed trace in Fig. 5. We also
observe in Fig. 4 that within 5 [sec] after each load change, the
LMPs converge to steady state, as suggested by Proposition 1.
We further validate Proposition 2 by verifying that the LMP
trajectories obtained from simulating the discrete-time dynam-
ical system in (20) with the optimal decisions Pm?

t , φ+?, φ−?,
µ+?
t , and µ−?t exactly match the traces in Fig. 4.

2) Frequency Deviations: As shown in Fig. 6, due to the
increase in loads at time t = 10 [sec], the system frequency
decreases (negative deviation), and updating the generator set-
points based on the solution of the dynamics-aware ED leads
to lower transient frequency deviations and faster recovery
compared to the traditional ED. We observe similar behaviour
after all the other load changes as well. The dynamics-aware
ED consistently outperforms the traditional ED in terms of
dynamic frequency response.

Fig. 5: Time-domain trajectories of active-power flows in the line connecting
buses 8 and 9, for which the upper flow limit is 0.4 [p.u.], realized with the
dynamics-aware and traditional ED set-points.

10 20 30 40 50 60

-0.2

-0.1

0

0.1

Fig. 6: Time-domain trajectories for system frequency deviations realized with
the dynamics-aware and traditional ED set-points.

B. Revenues, Costs, and Profits

We now compare the costs and profits for generators real-
ized by using the LMPs resulting from the proposed dynamics-
aware ED and the traditional ED. We use the same simulation
setup as in Section V-A, except with different levels of load
variations. Starting with the same initial loads, we consider
90%, 100%, 110%, and 120% of the changes forecasted at
time t = 10, 25, 40, and 55 [sec] in Section V-A. The total
revenue is calculated as∑

t∈T D
t0

Λ?Tt KP ?t ∆tD, (23)

and the total generation cost is calculated as∑
t∈T D

t0

C (Pm?
t ) ∆tD. (24)

Total profit is then obtained by subtracting cost from rev-
enue, where the dynamics-aware LMPs in Λ?t , the generator
electrical output P ?t , and the generator mechanical power
Pm?
t are readily available from the optimal solution of the

dynamics-aware ED in (7). For comparison, we solve the
traditional ED with the initial loads to obtain the optimal
generator set-points and the corresponding dynamics-oblivious
LMPs in Λ?◦, and ensuing mechanical power trajectories are
obtained from a PSAT simulation with the AGC regulating
system frequency. Revenue in the dynamics-oblivious case is
calculated using (23) with Λ?t = Λ?◦,∀ t ∈ T D

t0 . In Fig. 7,
for each load forecast scenario, we plot the total cost and
profit, which sum to the total revenue. We observe that the
dynamics-aware LMPs yield greater revenues and profits for
generators compared to their traditional static counterparts,
while the two methods lead to nearly identical costs. Although
the total revenue in (23) is calculated as a sum over each
∆tD interval, practical considerations in market settlement
periods may impose summation over longer time intervals
using sampled values of LMPs over the scheduling horizon.
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Fig. 7: Total costs and profits of generators resulting from traditional and
dynamics-aware EDs for different levels of changes in forecasted loads.
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Fig. 8: Impact of setting generator inertia constants to (case 1) M2 = 6.4 [sec]
and M3 = 3.01 [sec] and (case 2) M2 = 1 [sec] and M3 = 8.41 [sec] on
dynamic trajectories of the dynamics-aware LMP at the bus connected to
generator 2 and of the turbine mechanical power of generator 2.

C. Inverter-based Sources

We examine the impact of inverter-based sources governed
by virtual synchronous generator controllers on dynamics-
aware LMPs. Exploiting the ability for such controllers to set
their inertia constants, we ascribe two sets of inertia constants
that add up to the same total system inertia of 33.05 [sec].
Case 1 uses the default setting of M1 = 23.64 [sec], M2 =
6.4 [sec], and M3 = 3.01 [sec], while case 2 uses M1 =
23.64 [sec], M2 = 1 [sec], and M3 = 8.41 [sec]. We solve
the dynamics-aware ED and, in Fig. 8, plot the dynamic
trajectories of the turbine mechanical powers (right-hand y-
axis) and the dynamics-aware LMPs (left-hand y-axis). Going
from case 1 to case 2, the inertia constant of generator 2
decreases, leading to faster dynamics in response to net-load
disturbances. Accordingly, the LMP at the bus connected to
generator 2 is greater in case 2 than in case 1. The same trend
is observed for generator 3 with greater LMPs associated with
smaller inertia constant.

D. Computational Scalability

The proposed dynamics-aware ED problem is modelled in
the YALMIP toolbox in MATLAB and solved using GUROBI
on a desktop computer with a 3.6 [GHz] i7 processor and
32 [GB] RAM. We solve the proposed dynamics-aware ED
for the WSCC, New England, and IEEE 145-bus test systems
and report the computation times for scheduling horizons of
100, 200, and 300, and 600 [sec] in Table III. The reported
times include that incurred by the YALMIP compilation
and for solving the optimization using GUROBI. Loads are

TABLE III: Computation times [sec] to solve dynamics-aware ED for three
standard dynamic test systems over various scheduling horizons.

Scheduling Horizon [sec] 100 200 300 600

WSCC (3 generators) 1.052 2.636 5.491 11.810
New England (10 generators) 2.189 4.203 8.427 19.974
IEEE 145-bus (50 generators) 8.906 18.169 38.035 61.721

forecasted to change every 15 [sec] with a randomly selected
value between −5% and +5%. Although the computation
time increases for a larger test system, it remains acceptable
compared to the scheduling horizons considered. A possible
way to improve computational performance is to synthesize
discrete-time dynamics in (7b)–(7d) via a method that may
afford larger discretization intervals without sacrificing model
accuracy, as discussed in Remark 1. Another possibility is
to apply dimensionality reduction techniques, i.e., treating
decision variables as continuous-time trajectories that cover
the entire scheduling horizon and projecting them onto suitable
function spaces of desired degrees, such as the function space
spanned by Bernstein polynomials [28]. Finally, further reduc-
tions in computational burden may be possible via the use of
advanced optimization solvers and distributed algorithms.

VI. CONCLUDING REMARKS

In this paper, we presented a dynamics-aware locational
marginal pricing scheme that incorporates power system fre-
quency dynamics, including those arising from generators
and an industry-standard AGC, as constraints. The dynamics-
aware LMPs reflect the effects of system frequency tran-
sients after disturbances in load or generation. We provide
analysis to describe the dynamic and steady-state behaviours
of the dynamics-aware LMPs. Numerical results validate the
analytical findings and confirm the benefits of the proposed
dynamics-aware LMPs in providing broader revenue oppor-
tunities for generators prior to reaching steady state. Future
work will address forecast uncertainties through coordinated
dynamics- and risk-aware LMPs of energy and reserve capac-
ity, where performance may be guaranteed in a probabilistic
manner via chance constraints. Further compelling directions
for future work include incorporating frequency dynamics into
security-constrained economic dispatch and the optimal power
flow problem with nonlinear power flow constraints. Also of
interest, especially in these problems of greater complexity, are
improvements in computation time by exploring contemporary
optimization solution algorithms.

APPENDIX

A. Optimality Conditions of (7)

In addition to (10)–(11), the optimal solution of the problem
in (7) also satisfies the following stationarity conditions:

0 =
∂L?

∂∆ω?t
= DTα?t −MT

(α?t − α?t−∆tD

∆tD

)
+ 1T

GR
−1β?t

−Otkbγ?t′ , t′ ∈ T S
t0 \ {t0, t0 + T},

t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (25)

0G =
∂L?

∂Pm?
t

=
∂C(Pm?

t )

∂Pm?
t

∆tD − α?t + β?t + µ+?
t − µ−?t
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− τ
(β?t − β?t−∆tD

∆tD

)
, t ∈ T D

t0 \ {t0, t0 + T}, (26)

0G =
∂L?

∂P ?t
= −1Gλ

?
t + α?t −KTρ?t − 1GOtγ?t′ ,

t′ ∈ T S
t0 \ {t0 + T}, t ∈ {t′, . . . , t′ + ∆tS −∆tD}, (27)

0G =
∂L?

∂P r?
t′

= κ?t′ −
t′+∆tS−∆tD∑

t=t′

β?t , t
′ ∈ T S

t0 \ {t0 + T}, (28)

0 =
∂L?

∂ξ?t′
= −πTκ?t′ − τA

(γ?t′ − γ?t′−∆tS

∆tS

)
+ γ?t′ ,

t′ ∈ T S
t0 \ {t0, t0 + T}, (29)

0 =
∂L?

∂∆ω?t0+T

=
1

∆tD
MTα?t0+T−∆tD , (30)

0G =
∂L?

∂Pm?
t0+T

=
∂C(Pm?

t0+T )

∂Pm?
t0+T

∆tD+
1

∆tD
τβ?t0+T−∆tD , (31)

0G =
∂L?

∂P ?t0+T

= −1Gλ
?
t0+T −KTρ?t0+T , (32)

0G =
∂L?

∂P r?
t0+T

= κ?t0+T , (33)

0 =
∂L?

∂ξ?t0+T

=
τA

∆tS
γ?t0+T−∆tS − π

Tκ?t0+T , (34)

where Ot = 1 if t ∈ T S
t0 and Ot = 0 otherwise. We can further

substitute (33) into (34) to get

0 =
∂L?

∂ξ?t0+T

=
τA

∆tS
γ?t0+T−∆tS . (35)

The optimal solution of the problem in (7) further satisfies
complementary slackness conditions, given by the following:

µ−?g,t (P g − Pm?
g,t ) = 0, µ−?g,t ≥ 0, g ∈ G, t ∈ T D

t0 , (36)

µ+?
g,t (P

m?
g,t − P g) = 0, µ+?

g,t ≥ 0, g ∈ G, t ∈ T D
t0 , (37)

φ−?`

(
F ` −

1

|T D
t0 |

∑
t∈T D

t0

Ψ`P
inj?
t

)
= 0, φ−?` ≥ 0, ` ∈ L, (38)

φ+?
`

( 1

|T D
t0 |

∑
t∈T D

t0

Ψ`P
inj?
t − F `

)
= 0, φ+?

` ≥ 0, ` ∈ L, (39)

where Ψ` represents row ` of the matrix Ψ.

B. Proof of Proposition 1

We first recognize from (11) that

ρ?t = − 1

|T D
t0 |

ΨT(φ+? − φ−?) =: ρ?ss, ∀ t ∈ T D
t0 . (40)

We now proceed via proof by contradiction and suppose that
∆tS 6= ∆tD (so T S

t0 6= T
D
t0 ). In steady state, the optimality

condition in (27) becomes

0G = −1Gλ
?
ss + α?ss −KTρ?ss − 1GOtγ?ss, t ∈ T D

t0 . (41)

By writing (41) separately for t /∈ T S
t0 and t ∈ T S

t0 , we get

0G = −1Gλ
?
ss + α?ss −KTρ?ss, if t /∈ T S

t0 , (42)

0G = −1Gλ
?
ss + α?ss −KTρ?ss − 1Gγ

?
ss, if t ∈ T S

t0 , (43)

implying that γ?ss = 0 for both statements to hold in steady
state. Thus, (41) simplifies as α?ss = 1Gλ?ss +KTρ?ss, and we
will find the following scaling of this expression useful:

1T
GR
−1α?ss = R−1

eff λ
?
ss + 1T

GR
−1KTρ?ss, (44)

DTα?ss = Deffλ
?
ss +DTKTρ?ss, (45)

πTα?ss = λ?ss + πTKTρ?ss, (46)

where we have made use of the fact that πT1G = 1T
Gπ = 1

in (46). Next we evaluate (26) in steady state as follows:

α?ss =
∂C(Pm?

ss )

∂Pm?
ss

∆tD + β?ss + µ+?
ss − µ−?ss . (47)

We will find the following scaling of (47) useful:

1T
GR
−1α?ss = 1T

GR
−1
(∂C(Pm?

ss )

∂Pm?
ss

∆tD + µ+?
ss − µ−?ss

)
+ 1T

GR
−1β?ss, (48)

πTα?ss = πT
(∂C(Pm?

ss )

∂Pm?
ss

∆tD + µ+?
ss − µ−?ss

)
+ πTβ?ss. (49)

Equating (44) and (48) and rearranging the resultant, we get

1T
GR
−1β?ss = R−1

eff λ
?
ss + 1T

GR
−1KTρ?ss

− 1T
GR
−1
(∂C(Pm?

ss )

∂Pm?
ss

∆tD + µ+?
ss − µ−?ss

)
. (50)

Shift focus now to express (25) in steady state, while recog-
nizing that γ?ss = 0, as follows:

0 = DTα?ss + 1T
GR
−1β?ss. (51)

Further substitute (45) and (50) into (51) and rearrange the
resultant to get

λ?ss =
1

Deff +R−1
eff

(
− (1T

GR
−1 +DT)KTρ?ss

+ 1T
GR
−1
(∂C(Pm?

ss )

∂Pm?
ss

∆tD + µ+?
ss − µ−?ss

))
. (52)

Next, we examine the optimality condition in (29) in steady
state, as follows:

0 = −πTκ?ss + γ?ss = −πTκ?ss, (53)

where the second equality holds by recognizing that γ?ss = 0.
Now we express the optimality condition in (28) in steady
state and pre-multiply the resultant by πT to get

0 = πTκ?ss−
t′+∆tS−∆tD∑

t=t′

πTβ?ss = πTκ?ss−
|T D
t0 | − 1

|T S
t0 | − 1

πTβ?ss. (54)

Substitution of (53) into (54) yields πTβ?ss = 0. With this in
mind, we equate (46) and (49) to get

λ?ss = −πTKTρ?ss +πT
(∂C(Pm?

ss )

∂Pm?
ss

∆tD +µ+?
ss −µ−?ss

)
. (55)

Bearing in mind (40), we take the difference between (55) and
(52) to get

0 =
1

|T D
t0 |

(
π − 1

Deff +R−1
eff

(R−11G +D)
)T

·KTΨT(φ+? − φ−?) +
(
π − 1

Deff +R−1
eff

R−11G
)T
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·
(∂C(Pm?

ss )

∂Pm?
ss

∆tD + µ+?
ss − µ−?ss

)
. (56)

Under the additional assumptions that φ+? = φ−? = 0L and
µ+?

ss = µ−?ss = 0G, (56) simplifies as

0 =
(
π − 1

Deff +R−1
eff

R−11G
)T ∂C(Pm?

ss )

∂Pm?
ss

∆tD. (57)

Now, if the entries in the first vector of the inner product above
are all positive valued as implied by the condition in (17),
the second vector therein must contain a mix of positive- and
negative-valued entries or all entries must be identically zero.
Having some negative-valued entries contradicts the convexity
of cost functions, and having all zero-valued entries implies
that cost functions are independent of generated power which
is not reasonable. Thus, the assumption at the beginning of the
proof is invalid, and indeed, ∆tS = ∆tD must hold if there
exist steady-state Lagrange multipliers.
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