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Abstract—This paper presents a frequency dynamics-aware
marginal pricing method for real-time electricity markets. The
proposed method captures the impact of system frequency
dynamics on the marginal price of electricity in the presence
of aggressive net-load variations made more likely by greater
renewable integration. We formulate a dynamics-aware economic
dispatch (ED) by augmenting the traditional single-snapshot ED
with constraints pertaining to system frequency dynamics, and
frequency deviations from the synchronous speed are penalized
in the modified objective function. The resulting ED embeds
two distinct time steps to optimize over fast system dynamics
and slower decisions on generator set-points. We prove that the
dynamics-aware marginal price is the (suitably scaled) Lagrange
multiplier of the power balance constraint and that it converges
in steady state to the marginal price obtained from traditional
ED solved with comparable system load. Numerical case studies
involving the Western System Coordinating Council test system
validate our findings and confirm added revenue opportunities
for generators contributing to frequency regulation.

Index Terms—Economic dispatch, frequency dynamics, fre-
quency regulation, marginal electricity pricing

I. INTRODUCTION

Electricity markets generally embed a multi-stage struc-
ture spanning longer scheduling horizons with coarser trad-
ing intervals (e.g., day-ahead market) followed by shorter
scheduling horizons with finer trading intervals (e.g., real-time
market) [1], [2]. The overarching goal of these established
practices is to schedule available generation resources so that
system operators can maintain the supply-demand balance
in real time with lowest cost. Additional market outcomes
include prices for energy and ancillary services that provide
important incentives to its participants. Standard industry
practices were largely designed for a system dominated by
high-inertia dispatchable fossil fuel-based generators, which
are presently being displaced by low-inertia non-dispatchable
renewable energy sources [3]. Despite clear economic and
environmental benefits of such a shift, greater share of re-
newable energy sources in the generation mix poses significant
technical challenges for reliable and efficient operations as the
system must cope with larger and faster variations in the net-
load (system load minus non-dispatchable generation). Critical
to enable this shift is to improve existing market designs to
accurately compensate generation technologies for the energy
they actually produce and thereby foster investments into fast-
response inverter-based (dispatchable) sources [4], [5]. These

sources may serve to contribute virtual inertia that can be
relied upon to quickly offset net-load variations [6].

Fundamental to competitive electricity markets is the con-
cept of marginal pricing that reflects the incremental cost
incurred for the system to generate an additional unit of
energy. The pertinent pricing problem is commonly known as
economic dispatch (ED), which is solved for a single snapshot
with the underlying assumption that the system is in steady
state. However, establishing markets that accurately reflect the
cost of generation in the face of larger and faster variations
requires solving operation and pricing problems prior to
reaching steady state [7]. In this paper, we formulate a multi-
time-scale dynamics-aware ED constrained by synchronous
generator frequency dynamics, which can be straightforwardly
generalized to model inverter-based sources of virtual inertia.
The proposed method provides a way to compute dynamics-
aware marginal prices for the energy needed to regulate system
frequency. This is distinct from today’s frequency regulation
market where generators are paid for reserve capacity [1], [2],
which may incur greater total operation cost due to growing
reserve needs to cope with larger and faster net-load variations.

Prior art to enhance marginal pricing formulations in re-
sponse to emerging generation technologies include exploring
the impact of uncertainty arising from renewable sources [8],
[9], inter-temporal ramping constraints [10], and energy stor-
age [11], [12]. Another line of work focuses on pricing and
compensating faster dynamics of generation sources [13]–[15].
In [13], power system inertia to ensure frequency stability in
worst-case contingencies is procured by designing a Vickrey-
Clarke-Groves mechanism, and the cost to procure (real and
virtual) inertia is co-optimized with a performance metric that
reflects the efficient frequency response. In [14], an enhanced
unit commitment (UC) is formulated to jointly optimize the
cost of energy and inertia where the maximum permissible
rate of change of frequency and frequency nadir dictate the
inertia requirement, and the marginal price of providing inertia
is obtained from dual variables of pertinent constraints. By
proposing a chance-constrained UC with inertia constraints,
[15] co-optimizes the energy cost and inertia service while also
addressing uncertainty in load. The efforts in [13]–[15] mainly
target forward markets and provisionally procure adequate
inertia by introducing a new market service. With the review
of relevant work established, we next outline our contributions.
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Contributions. Unlike prior work in this domain, we di-
rectly modify the traditional dynamics-oblivious ED into a
dynamics-aware ED by incorporating generator dynamics as
constraints, which can be easily generalized to account for
providers of virtual inertia. The proposed multi-time-scale ED
embeds the relatively fast system dynamics along with slower
decisions on generator set-points in a single optimization
problem, while limiting the angular frequency deviations (from
synchronous speed) by penalizing them in the objective func-
tion. It is worth mentioning that [16] formulates a similar prob-
lem except with one time step shared across discretized system
dynamics and slower set-points decisions. Also, unlike [16],
we focus on marginal pricing and show that the (suitably
scaled) Lagrange multiplier of the power balance constraint
is the real-time dynamics-aware marginal price of electricity,
and it embodies the impact of generator dynamics in response
to load changes and converges to the marginal price obtained
from the traditional dynamics-oblivious ED for a comparable
constant load. A detailed state-space model for Lagrange
multipliers of the dynamics-aware ED is derived in order
to further illustrate the coupling between dynamics-aware
marginal price and the system frequency dynamics. Based
on the aforementioned analysis, we also provide design con-
siderations for the proposed dynamics-aware ED. Numerical
simulations of the proposed marginal pricing approach on the
Western System Coordinating Council test system demonstrate
broader revenue opportunities for generators to contribute to
frequency regulation prior to reaching steady state.

II. PRELIMINARIES

In this section, we introduce the traditional dynamics-
oblivious economic dispatch. We also outline pertinent syn-
chronous generator dynamics, from which we construct the
power system dynamical model.

A. Traditional Economic Dispatch and Marginal Pricing
Consider a transmission system with G online generators

in the set G = {1, . . . , G} supplying system load (inclusive
of losses) P load

◦ . Prevailing ED formulations assume that the
power system operates at synchronous steady state. Suppose
generator g produces steady-state electrical power P◦,g with
cost function Cg(P◦,g). Then the total cost of generation is
C(P◦) =

∑
g∈G Cg(P◦,g), where P◦ = [P◦,1, . . . , P◦,G]T. The

traditional ED for a single snapshot is formulated as

minimize
P◦

C(P◦) (1a)

subject to 1T
GP◦ = P load

◦ , (λ◦), (1b)

where 1G is a G-dimensional vector of 1s. The cost function
C(·) is assumed to be strictly convex and monotonically
increasing for the range of generator outputs we consider. With
respect to the problem in (1), the marginal price represents the
rate of change of the optimal cost due to variations in P load

◦ .
It is equal to the Lagrange multiplier of the power balance
constraint, and at the optimal solution,

λ?◦1G =
∂C(P ?◦ )

∂P ?◦
, (2)

where the superscript ? denotes the values of the correspond-
ing variables at the optimal solution. Since the ED in (1)
assumes steady-state operation, the dynamics-oblivious λ◦
does not offer any insights on the price of electricity during
transients. This is well aligned with power systems dominated
by high-inertia synchronous generators serving slow-varying
loads. However, the displacement of fossil fuel-based syn-
chronous generators by low-inertia energy sources is bringing
about larger, faster, and more frequent transient excursions
away from steady-state operating points. Thus, there is a
pressing need to update the ED so that the Lagrange multiplier
captures the cost of electricity generation over the transient
period. Next, we describe a model for frequency dynamics
pertinent to the time scales we consider in this paper.

B. Synchronous Generator Model

For each generator g ∈ G, let ωg , Pm
g , and Pg denote the

electrical angular frequency, turbine mechanical power, and
electrical-power output, respectively. Assume each generator
initially operates at the steady-state equilibrium point with
ωg(0) = ωs = 2π60 rad/s, the synchronous speed. Defining
∆ωg := ωg − ωs, pertinent dynamics of generator g ∈ G can
be described by

Mg∆ω̇g = Pm
g −Dg∆ωg − Pg, (3)

τgṖ
m
g = P r

g − Pm
g −R−1

g ∆ωg, (4)

where Mg and Dg denote, respectively, its inertia and damping
constants, and τg , P r

g , and Rg denote its governor time
constant, reference power set-point, and droop constant, re-
spectively [17]. The generator dynamical model in (3)–(4)
does not describe dynamics for the generator terminal voltage,
automatic voltage regulators, or power system stabilizers.
However, we find that the model in (3)–(4) is sufficiently
accurate to capture the impact of generator-frequency dy-
namics. Furthermore, although our model does not consider
nonlinear effects, e.g., saturation limits, we note that they can
be incorporated at the expense of additional notational and
computational burden.

Assume that the electrical distances between geograph-
ically different parts of the power system are negligible,
so that all generator frequencies follow the same transient
behaviour, i.e., ∆ωg = ∆ω in (3)–(4),∀ g ∈ G [18]. Also,
let P = [P1, . . . , PG]T, Pm = [Pm

1 , . . . , P
m
G ]T, and P r =

[P r
1 , . . . , P

r
G]T. Then system dynamics can be expressed as

M∆ω̇ = Pm −D∆ω − P, (5)

τṖm = P r − Pm −R−11G∆ω, (6)

where M = [M1, . . . ,MG]T, D = [D1, . . . , DG]T, τ =
diag([τ1, . . . , τG]), R−1 = diag([R−1

1 , . . . , R−1
G ]).

III. MARGINAL COST OF GENERATION

In this section, we formulate the dynamics-aware marginal
pricing problem. We then present its optimality conditions,
using which we prove that the Lagrange multiplier attributed
to power balance constraint is the marginal price of electricity.
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A. Problem Formulation

The dynamics-aware ED aims to optimize the generation
schedule generator g ∈ G over the scheduling horizon of
interest (shorter than 5 minutes), where the generator dynamics
are explicitly modelled. This calls for properly accommodating
the relatively fast system dynamics, along with the slower
decisions on generator reference set-points, into a single multi-
time-scale optimization problem.

Consider the scheduling horizon of the economic dispatch
problem from time t0 to t0 + T . We introduce two pertinent
time steps. The time step corresponding to faster system
dynamics is denoted by ∆tD = T

ND , which is sufficiently
small to model generator dynamics (e.g., 0.05 [sec]). The
scheduling horizon then divides into ND intervals collected
in the set T D

t0 = {t0, t0 + ∆tD, . . . , t0 + T − ∆tD}. Next,
decisions on generator reference set-points are made over
a longer time interval ∆tS = T

NS (e.g., 5 [sec]), which
subdivides the scheduling horizon into NS intervals collected
in T S

t0 = {t0, t0 + ∆tS, . . . , t0 + T − ∆tS}. With the above
in mind, we formulate the following dynamics-aware ED with
fast decisions made every ∆tD seconds and slower generator
set-points determined every ∆tS seconds:

minimize
Pm

t ,Pt,P
r
t′

∆ωt,∆ω
+
t ,∆ω

−
t

∑
t∈T D

t0

(
C(Pm

t ) + κ(∆ω+
t + ∆ω−t )

)
∆tD, (7a)

subject to M
(∆ωt+∆tD −∆ωt

∆tD

)
=Pm

t −D∆ωt − Pt,

t ∈ T D
t0 , (αt), (7b)

τ
(Pm

t+∆tD − P
m
t

∆tD

)
=P r

t′ − Pm
t −R−11G∆ωt,

t ∈ T D
t0 , t

′ ∈ T S
t0 , (βt), (7c)

1T
GPt = P load

t , t ∈ T D
t0 , (λt), (7d)

∆ωt = ∆ω+
t −∆ω−t , t ∈ T D

t0 , (ζt), (7e)

∆ω+
t ,∆ω

−
t ≥ 0, t ∈ T D

t0 , (µω+
t , µω−t ). (7f)

The objective function in (7a) embeds two terms, one for
cost of energy and the other reflecting the cost of regulating
system frequency. The first term indicates the total operating
cost C(Pm

t ) =
∑
g∈G Cg(P

m
t,g), where Cg(·) is the cost

function for generator g ∈ G. The second term penalizes
frequency deviations by imposing a penalty factor of κ > 0
with ∆ω+

t and ∆ω−t respectively denoting the positive and
negative components thereof related through (7e) for t ∈ T D

t0 .
Frequency dynamics are captured by (7b) and (7c), and the
system power balance constraint with load P load

t is enforced
in (7d). Finally, αt, βt, λt, ζt, µω+

t , and µω−t denote the La-
grange multipliers associated with the corresponding equality
and inequality constraints in (7b)–(7f), respectively.

Before outlining the optimality conditions of (7), it is worth
mentioning that (7) can easily accommodate frequency support
from renewable sources by incorporating their operation cost
in the objective and virtual synchronous generator dynamics
in the constraints. Particularly, the operation cost of renewable
sources is typically modelled as zero or a linear function of

power output [19], [20], neither of which would change the
general structure of (7) when incorporated into the objective.
Also, a well-studied way to implement frequency regulation in
grid-tied inverters is to modulate the controller reference set-
points to mimic a synchronous generator with virtual inertia
and damping coefficients [21], [22]. Such a model can be
incorporated into (7b) in a straightforward manner.

B. Optimality Conditions

The optimality conditions of (7) are expressed through
Karush-Kuhn-Tucker (KKT) conditions. Below, we first for-
mulate the Lagrangian of the dynamics-aware ED in (7), from
which KKT conditions are then derived.

1) Lagrangian Function: The Lagrangian of (7) is ex-
pressed as follows:

L =
∑
t∈T D

t0

(
C(Pm

t ) + κ(∆ω+
t + ∆ω−t ) ∆tD

+ αT
t

(
Pm
t −D∆ωt − Pt −M

(∆ωt+∆tD −∆ωt
∆tD

))
+ βT

t

(
P r
t′ − Pm

t −R−11G∆ωt − τ
(Pm

t+∆tD − P
m
t

∆tD

))
+ λt(P

load
t − 1GPt) + ζt(∆ω

+
t −∆ω−t −∆ωt)

−µω+
t ∆ω+

t − µω−t ∆ω−t
)
. (8)

2) KKT Conditions: Denote the optimal Lagrangian and
the optimal decisions of the problem (7) by, respectively,
L? and {Pm?

t , P ?t , P
r?
t′ ,∆ω

?
t ,∆ω

+?
t ,∆ω−?t }t∈T D

t0
, t′∈T S

t0
. Also

let Lagrange multipliers evaluated at the optimal solution be
distinguished with superscript ?. As an example, the optimal
value of λt is represented by λ?t . The optimal solution respects
primal feasibility delineated by (7b)–(7f). It additionally sat-
isfies stationarity conditions, which are expressed as follows:

∂L?

∂∆ω?t
= −α?Tt D −

(α?t−∆tD − α
?
t

∆tD

)T

M−

β?Tt R−11G − ζ?t = 0, t ∈ T D
t0 , (9)

∂L?

∂Pm?
t

=
∂C(Pm?

t )

∂Pm?
t

∆tD + α?t − β?t

− τ
(β?t−∆tD − β

?
t

∆tD

)
= 0G, t ∈ T D

t0 , (10)

∂L?

∂P ?t
= −α?t − λ?t1G = 0G, t ∈ T D

t0 , (11)

∂L?

∂P r?
t′

=

t′+∆tS−∆tD∑
t=t′

β?t = 0G, t′ ∈ T S
t0 , (12)

∂L?

∂∆ω+?
t

= κ∆tD + ζ?t − µω+?
t = 0, t ∈ T D

t0 , (13)

∂L?

∂∆ω−?t
= κ∆tD − ζ?t − µω−?t = 0, t ∈ T D

t0 . (14)

Finally, the optimal solution also satisfies complementary
slackness conditions, given by the following:

µω−?t ∆ω−?t = 0, µω+?
t ∆ω+?

t = 0, t ∈ T D
t0 , (15)

µω−?t , µω+?
t ≥ 0, t ∈ T D

t0 . (16)

22nd Power Systems Computation Conference

PSCC 2022

Porto, Portugal — June 27 – July 1, 2022



4

The dynamics-aware marginal price represents the rate of
change of the system operation cost due to an incremental
change in electrical load, while satisfying generator and system
static and dynamic constraints. In mathematics terms, the
marginal price is expressed as the first derivative of optimal
Lagrangian with respect to load. Next we present the first main
result of this paper on the dynamics-aware marginal price.

Proposition 1. Given the optimal solution of the problem
in (7), {Pm?

t , P ?t , P
r?
t′ ,∆ω

?
t ,∆ω

+?
t ,∆ω−?t }t∈T D

t0
, t′∈T S

t0
, and

the optimal Lagrangian L?, the dynamics-aware marginal price
at time t ∈ T D

t0 is calculated as

λ′?t :=
λ?t

∆tD
=

1

∆tD
dL?

dP load
t

. (17)

Proof. Using the chain rule in calculus, we have

dL?

dP load
t

=

(
∂L?

∂Pm?
t

)T
dPm?

t

dP load
t

+

(
∂L?

∂P ?t

)T
dP ?t
dP load

t

+

(
∂L?

∂P r?
t′

)T
dP r?

t′

dP load
t

+
∂L?

∂∆ω?t

d∆ω?t
dP load

t

+
∂L?

∂∆ω+?
t

d∆ω+?
t

dP load
t

+
∂L?

∂∆ω−?t

d∆ω−?t
dP load

t

+
∂L?

∂P load
t

. (18)

Applying the stationarity conditions (9)–(14), the above sim-
plifies as

dL?

dP load
t

=
∂L?

∂P load
t

= λ?t . (19)

Finally, division of λ?t by ∆tD ensures that the marginal price
applies for arbitrary ∆tD and results in consistent units aligned
with the cost function. Particularly, for the cost function with
units of [$/hr], division by ∆tD yields marginal price in units
of [$/MWh] regardless of the length of ∆tD.

IV. MARGINAL PRICE DYNAMICS

In this section, we explore the properties of the dynamics-
aware marginal price by deriving a state-space dynamical
system model for the Lagrange multipliers of the equality
constraints corresponding to power system dynamics in (7).
We further establish the connection between the dynamics-
aware marginal price and its dynamics-oblivious counterpart
from the traditional ED through steady-state analysis.

A. Dynamical System for Dynamics-aware Marginal Price

The result in Proposition 1 arises from applying the KKT
conditions of the optimization problem in (7). Here we use
the same set of conditions to derive a dynamical system for
the dynamics-aware marginal price.

Proposition 2. Define scaled Lagrange multipliers α′?t :=
α?t /∆t

D, β′?t := β?t /∆t
D, and ζ ′?t := ζ?t /∆t

D. Also let

x?t =

[
λ′?t
β′?t

]
, u?t =

[
ζ ′?t

∂C(Pm?
t )

∂Pm?
t

]
. (20)

Further define Meff := 1T
GM and Deff := 1T

GD. Then the
optimal trajectory of the dynamics-aware marginal price λ′?t
is governed by the following discrete-time state-space model:

x?t =
1

∆tD
Adx

?
t−∆tD +Bdu

?
t , (21)

where

Ad =

[
Meff

k`
1
k`1

T
G(RK)−1τ

−Meff

k L−1K−11G −L−1K−1τ

]
, (22)

Bd =

[
− 1
k` − 1

k`1
T
G(RK)−1

1
kL
−1K−11G L−1K−1

]
, (23)

with

K = IG −
1

∆tD
τ, L = IG −

1

k
K−11G1T

GR
−1, (24)

k =
Meff

∆tD
−Deff , ` = 1− 1

k
1T
G(RK)−11G. (25)

We refer interested readers to Appendix A for a proof of
Proposition 2. The system inputs are ζ ′?t and ∂C(Pm?

t )
∂Pm?

t
, and

they drive dynamics in state variables λ′?t and β′?t . The value
of ζ ′?t in (20) is calculated from scaling (13)–(14) by 1/∆tD

and considering three cases: i) ∆ωt > 0, ii) ∆ωt < 0, and
iii) ∆ωt = 0. Specifically, given the complementary slackness
conditions in (15)–(16), we have

ζ ′?t =


κ, if ∆ωt < 0,

−κ, if ∆ωt > 0,
µ′ω+?
t −µ′ω−?

t

2 , if ∆ωt = 0,

(26)

In addition, since the cost of generators is typically approxi-
mated as a quadratic function of turbine mechanical powers,
the entries in ∂C(Pm?

t )
∂Pm?

t
would be linear functions of optimal

turbine mechanical power at time t ∈ T D
t0 .

B. Connection to Dynamics-oblivious Marginal Price

Here, we demonstrate that the dynamics-aware marginal
price converges, in steady state, to its dynamics-oblivious
counterpart obtained by solving the traditional ED in (1).
In order to uncover this, we solve the dynamics-aware ED
in (7) with a load profile P load

t so that its steady-state value
is P load

ss = P load
◦ , equal to the system load in the dynamics-

oblivious ED. We then perform steady-state analysis on (21)
by assuming that x?t = x?t−∆tD = x?ss, i.e., λ′?t = λ′?t−∆tD =
λ′?ss and β′?t = β′?t−∆tD = β′?ss .

We first note that for (12) to hold, the steady-state value
of β?t must be β?ss = 0. As a result, and by examining (9) and
(11) at steady state, we have that ζ?ss = λ?ss1

T
GD. Accordingly,

the steady-state value of λ′?t satisfies

ζ ′?ss = λ′?ss1
T
GD = λ′?ssDeff . (27)

Given β?ss = 0, (21) taken at steady state simplifies as

λ′?ss =
1

∆tD
Meff

k`
λ′?ss −

1

k`
ζ ′?ss −

1

k`
1T
G(RK)−1 ∂C(Pm?

ss )

∂Pm?
ss

.

(28)
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By substituting (27) into the above and rearranging the resul-
tant, we get

λ′?ss =
1

k`

(Meff

∆tD
−Deff

)
λ′?ss −

1

k`
1T
G(RK)−1 ∂C(Pm?

ss )

∂Pm?
ss

,

λ′?ss =
1

`
λ′?ss −

1

k`
1T
G(RK)−1 ∂C(Pm?

ss )

∂Pm?
ss

,

`λ′?ss = λ′?ss −
1

k
1T
G(RK)−1 ∂C(Pm?

ss )

∂Pm?
ss

, (29)

where the second equality above is obtained by recognizing
that k = Meff

∆tD − Deff (as defined in (25)). Further rearrang-
ing (29) while considering that `− 1 = − 1

k1T
G(RK)−11G (as

defined in (25)), the resultant simplifies as

λ′?ss1G =
∂C(Pm?

ss )

∂Pm?
ss

. (30)

Next we show that Pm?
ss = P ?◦ , from which λ′?ss = λ?◦

follows. Let the optimal trajectory of the physical system
reach the steady state, with ∆ω?t+∆tD = ∆ω?t = ∆ω?ss and
Pm?
t+∆tD = Pm?

t = Pm?
ss in (7b) and (7c) so they become

0G = Pm?
ss −D∆ω?ss − P ?ss. (31)

0G = P r?
ss − Pm?

ss −R−11G∆ω?ss. (32)

Now, for a setting comparable to that of (1) solved at
synchronous steady state, we set ∆ω?ss = 0.1 Then we
get from (31) that the generator output power converges to
P ?ss = Pm?

ss in steady state. We can then rewrite (30) and
solve the following system of equations to obtain the optimal
solution at steady state:

λ′?ss1G =
∂C(P ?ss)

∂P ?ss
, (33)

1T
GP

?
ss = P load

ss = P load
◦ , (34)

where (34) is the power balance in (7d) evaluated at steady
state. Note that (33)–(34) represent the same set of algebraic
equations as the combination of (2) and (1b), which can be
solved to yield the exact same solution, i.e., λ?◦ = λ′?ss and
P ?◦ = P ?ss. We conclude that the dynamics-aware price and
generator outputs indeed converge to their counterparts solved
from the dynamics-oblivious ED.

C. Design Considerations in Dynamics-aware ED

Via the proposition below, we outline suitable choice of κ
in (7a) to ensure steady-state frequency deviation ∆ω?ss = 0.

Proposition 3. Suppose the system load undergoes an increase
from an initial value of P load

t0 to reach a new steady-state load
of P load

ss at the end of the scheduling horizon. Then the steady-
state frequency deviation ∆ω?ss = 0 if and only if

κ ≥ λ?◦Deff , (35)

where λ?◦ is the marginal price solved from the traditional
dynamics-oblivious ED for the load P load

◦ = P load
ss .

1In Section IV-C, we show that ∆ω?
ss = 0 indeed holds if κ in the objective

function of (7) satisfies a particular condition.

Proof. Consider the post-disturbance steady state, and let the
subscript ss denote the value the corresponding variable takes
at steady state. We first sum (31) over all g ∈ G to get

1T
GP

m?
ss −Deff∆ω?ss = P load

◦ . (36)

Next, rearranging (27) and scaling the resultant by 1G, we get

λ′?ss1G =
ζ ′?ss
Deff

1G =

(
κ− µ′ω−?ss

Deff

)
1G, (37)

where the second equality is obtained by substituting (14)
scaled by 1/∆tD and defining µ′ω−?ss := µω−?ss /∆tD.

Suppose (35) holds, we examine (36)–(37) for two cases.
(i) κ = λ?◦Deff : Substitution of κ into (37) yields

λ′?ss1G =

(
λ?◦ −

µ′ω−?ss

Deff

)
1G. (38)

Further substitute (2) and (30) into the above to get

∂C(Pm?
ss )

∂Pm?
ss

=
∂C(P ?◦ )

∂P ?◦
− µ′ω−?ss

Deff
1G. (39)

Suppose µ′ω−?ss > 0 implying ∂C(Pm?
ss )

∂Pm?
ss

<
∂C(P?

◦ )
∂P?
◦

. Since
C(·) is strictly convex, its partial derivative is an increasing
function, and so Pm?

ss < P ?◦ and 1T
GP

m?
ss < 1T

GP
?
◦ . With

this in mind, a comparison of (1b) and (36) yields the con-
clusion that ∆ω?ss < 0, and from complementary slackness
condition (15) we get µ′ω−?ss = 0, a contradiction to the
assumption that µ′ω−?ss > 0. Thus, it must be the case that
µ′ω−?ss = 0, which implies that ∂C(P?

◦ )
∂P?
◦

=
∂C(Pm?

ss )
∂Pm?

ss
by (39).

Since C(·) is a monotonically increasing function in the
region of interest, the above implies that 1T

GP
m?
ss = 1T

GP
?
◦ ,

requiring ∆ω?ss = 0 for both (1b) and (36) to hold.
(ii) κ > λ?◦Deff : Substituting κ into (37) while considering (2)

and (30) yields

∂C(Pm?
ss )

∂Pm?
ss

>
∂C(P ?◦ )

∂P ?◦
− µ′ω−?ss

Deff
1G. (40)

Suppose µ′ω−?ss = 0 implying ∂C(Pm?
ss )

∂Pm?
ss

>
∂C(P?

◦ )
∂P?
◦

. Since
C(·) is strictly convex, we have that 1T

GP
m?
ss > 1T

GP
?
◦ ,

which then implies that ∆ω?ss > 0 for both (1b) and (36) to
hold. However, for any ∆ω?ss > 0, there exists ε > 0 such
that ∆ω̃?ss := ∆ω?ss − ε leads to lower cost. Specifically,
in (7a), the penalty term pertinent to frequency deviation
is reduced, and the term pertinent to generation is reduced
because less turbine mechanical power is needed to meet
the load according to (36). Thus ∆ω?ss > 0 would, in fact,
not be the optimal solution, a contradiction. Thus, µ′ω−?ss >
0, from which ∆ω?ss = 0 follows by the complementary
slackness condition in (15).

Combining the above, we see that setting κ ≥ λ?◦Deff indeed
ensures ∆ω?ss = 0.

Next, consider the other direction, which is equivalent to
showing κ < λ?◦Deff implies ∆ω?ss 6= 0. Substitution of κ <
λ?◦Deff into (37) yields

λ′?ss1G <

(
λ?◦ −

µ′ω−?ss

Deff

)
1G. (41)
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With (2) and (30) in mind, the above leads to

∂C(Pm?
ss )

∂Pm?
ss

<
∂C(P ?◦ )

∂P ?◦
− µ′ω−?ss

Deff
1G ≤

∂C(P ?◦ )

∂P ?◦
, (42)

where we have used the complementary slackness condition
that µ′ω−?ss ≥ 0. Since C(Pm?

ss ) is convex, its partial derivative
is an increasing function, and so 1T

GP
m?
ss < 1T

GP
?
◦ . Finally,

comparison between (1b) and (36) shows that ∆ω?ss < 0. Thus,
∆ω?ss 6= 0, which concludes the proof.

Beyond the rigorous proof for Proposition 3 above, we next
offer an intuitive yet insightful argument to support it.

Remark 1 (Intuition Behind Proposition 3). We observe
from (36) that the new load is balanced through a combination
of generation and frequency deviation scaled by the sum of
damping constants. If the frequency deviation were not penal-
ized, the term −Deff∆ω?ss =: Pω?ss would essentially represent
a virtual and indeed “free” source of energy. In this case,
the optimization problem would leverage the virtual source
through suitable adjustment of P r?

ss in (32) rendering ∆ω?ss
nonzero. In our problem formulation, the frequency deviation
penalization term in (7a) may be interpreted as a “virtual”
market participant bidding the amount Pω?ss with cost

Cω(Pω?ss ) =
κ

Deff
Pω?ss , (43)

at the optimal steady-state solution. Based on the argument
above, for sufficiently large κ, the use of Pω?ss would no longer
be economically justifiable, leading to ∆ω?ss = 0.

Remark 2 (Consistency with Traditional ED). Consistency
with the traditional ED requires the system frequency and
marginal price trajectories from the solution of the dynamics-
aware ED converge to their dynamics-oblivious counterparts
solved with a comparable constant load. To this end, the
dynamics-aware marginal pricing problem ought to: i) regulate
system frequency via a penalty term in the objective function
(as in our problem formulation in (7)) or a controller (e.g.,
automatic generation control) embedded in the constraints,
and ii) designate generator set-points as decision variables
rather than predetermined inputs. The necessity of condition i)
is established through Proposition 3 as lack of frequency
regulation implies κ = 0 in the objective function, thus violat-
ing (35). The optimizer then gives rise to nonzero steady-state
frequency deviation, which is inconsistent with traditional ED.
To demonstrate the necessity of condition ii), let us suppose
that P r?

t′ , t′ ∈ T S
t0 , are preset generator set-points obtained

from the solution of the dynamics-oblivious ED in (1), so that
they are no longer decision variables in the dynamics-aware
ED. Although the optimal solution of such a hypothetical
pricing problem leads to zero steady-state frequency deviation
with P r?

t′ obtained from the traditional ED, the resulting
marginal price trajectory is substantially different from the
optimal solution of (7). Examining the optimality conditions
of the hypothetical problem in steady state reveals that the
absence of (12) (as generator set-points are no longer decision
variables) would allow β′?ss to take a positive value. Then,

TABLE I: Dynamic Model Parameters of Generators and Governors

Generator Mg [sec] Dg τg [sec] 1
Rg

g = 1 23.64 20 2 100
g = 2 6.4 20 2 100
g = 3 3.01 20 2 100

TABLE II: Generator Quadratic Cost Function Parameters

Generator ag [$/(MW2h)] bg [$/MWh] cg [$/h]

g = 1 0.1100 5 0
g = 2 0.0850 1.2 0
g = 3 0.1225 1 0

0 2 4 6 8 10 12 14 16 18 20
20

23

26

29

Dynamics-aware ED
Traditional ED

Fig. 1: Marginal prices from dynamics-aware and traditional EDs.

from (10), we get λ′?ss =
∂C(Pm?

ss )
∂Pm?

ss
− β′?ss . Since the optimal

solution of the hypothetical problem in steady state coincides
with that of traditional ED, then ∂C(Pm?

ss )
∂Pm?

ss
=

∂C(P?
◦ )

∂P?
◦

= λ?◦
leading to λ′?ss = λ?◦ − β′?ss < λ?◦, a patent inconsistency.

V. NUMERICAL RESULTS

Three generators are used for the simulations, and their
dynamic model and cost function parameters are respec-
tively provided in Tables I and II. The generator param-
eters are adopted from the Western System Coordinat-
ing Council (WSCC) with the system power base being
100 [MVA] [23]. The scheduling horizon covers 20 [sec] from
t0 = 0 [sec] to t0+T = 20 [sec]. The faster time step capturing
system dynamics is ∆tD = 0.05 [sec], while the generator set-
point decisions are made every ∆tS = 2.5 [sec]. The system
load takes a constant value of 300 [MW] for t ∈ [0, 7.5] [sec],
followed by a 20% increase for t ∈ (7.5, 20] [sec]. Also, the
penalty factor κ is set to be slightly greater than the value on
the right-hand side of (35).

A. Benchmark Dynamic and Steady-state Comparisons

Here we present the simulation results for the optimal
solution of the dynamics-aware ED in (7), and comparisons
are made with respect to the solution of the traditional ED
in (1). Both versions of the ED are implemented in GAMS
and solved using the CPLEX 12.6.2 package [24]. Note that
we solve the traditional ED twice, the first with the initial load
and the second with the post-disturbance steady-state load,
thus leading to two different marginal prices.
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Fig. 2: Traditional and dynamics-aware ED power schedule for
(a) generator 1, (b) generator 2, (c) generator 3.

1) Marginal Price: The marginal prices resulting from the
traditional and dynamics-aware EDs are plotted in Fig. 1. In-
deed, as shown in Section IV-B, the dynamics-aware marginal
price converges in steady state to the same value of the
dynamics-oblivious counterpart corresponding to the new load.
We also verify that the marginal price trajectory obtained from
simulating the discrete-time dynamical system in (21) with the
optimal decisions Pm?

t and ζ
′?
t as the input vector u?t exactly

matches that from CPLEX depicted as the solid trace in Fig. 1.
2) Generator Power: The power dispatch of generators for

traditional ED, as well as the generator set-points and the asso-
ciated mechanical power for dynamics-aware ED, are plotted
in Fig. 2 for g ∈ {1, 2, 3}. As expected, trajectories from the
dynamics-aware ED converge in steady state to the set-points
obtained from solving the traditional ED with the new load.
Unlike the traditional ED that approximates mechanical power
of generators by step-wise functions, the dynamics-aware ED
more accurately models the mechanical power, governed by
updated set-points, and delineates its sub-interval variations.
Thus, the aggregated mechanical power from generators follow
the system load closely while co-optimizing the operation
cost and frequency deviations. In addition, since the decisions
on generator set-points are made based on load changes
throughout the entire scheduling horizon, the dynamic-aware
ED solution preemptively adjusts the generator set-points even
before the load changes at time t = 10 [sec], alleviating the
ensuing frequency deviations.

3) Frequency Deviation: As shown in Fig. 3a, due to
the increase in load, the system frequency decreases (nega-
tive ∆ωt) starting at time t = 7.5 [sec]. Proper choice of the
penalty factor κ leads to recovery of the system frequency
within 5 [sec]. Also, by preemptively adjusting the generator

0 5 10 15 20
-0.32

-0.24

-0.16

-0.08

0

0.08
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Dynamics-aware ED
Traditional ED
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e 
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(b)

Fig. 3: Time-domain trajectories for (a) system frequency deviations
and (b) scaled Lagrange multipliers.

set-points, the solution of the dynamics-aware ED leads to
lower transient frequency deviations compared to that of the
dynamics-oblivious ED. In Fig 3b, we plot the scaled Lagrange
multipliers of equality and inequality constraints pertaining to
frequency (i.e., ζ ′?t , µ′ω+?

t , and µ′ω−?t ). We also verify through
Fig. 3 that ζ ′?t = κ for ∆ωt < 0 and ζ ′?t =

µ′ω+?
t −µ′ω−?

t

2 for
∆ωt = 0, consistent with (26).

B. Revenues, Costs, and Profits

In this case study, we compare the revenues and profits
for generators realized by using the marginal prices resulting
from the traditional ED and the proposed dynamics-aware
ED. In industry-standard real-time electricity markets [1], the
traditional ED is typically run every 5 [min], so the corre-
sponding dynamics-oblivious marginal price does not reflect
the impact of load variations within the look-ahead interval.
As an example, consider the load profile used in Section V-A.
Despite the 20% load increase at t = 7.5 [sec], the generators
would in fact be compensated at a constant marginal price
for the entire 5-minute scheduling horizon based on the initial
load of 300 [MW]. The dynamics-aware ED, however, discerns
the load change and captures its impact on the marginal price
as shown in Fig. 1. Thus, the dynamics-aware marginal price
recovers profits that might have been otherwise missed using
dynamics-oblivious marginal price.

To examine the proposed pricing practice against the tra-
ditional counterpart, we consider load increases of 5%, 10%,
15%, and 20%, each imposed at time t = 7.5 [sec]. The total
generation cost is calculated as∑

t∈T D
t0

C(Pm?
t )∆tD, (44)

and the revenue is calculated as∑
t∈T D

t0

λ′?t 1T
GP

m?
t ∆tD, (45)

for both versions of ED. Total profit is then obtained by sub-
tracting cost from revenue. In the proposed dynamics-aware
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Fig. 4: Aggregate costs and profits of generators from traditional and
dynamics-aware ED for different percentage increases in load.

ED, the generator mechanical power Pm?
t and dynamics-aware

marginal price λ′?t are readily available from the solution of
optimization problem (7). For comparison, we solve the tradi-
tional ED for the initial load to obtain the optimal generator
set-points and the corresponding dynamics-oblivious marginal
price λ?◦. To extract the mechanical power trajectories, we
apply the optimal set-points from the traditional ED solution
as the generator references in a dynamic simulation performed
in PSAT [25], where the system frequency is regulated with
an industry-standard AGC (see, e.g., [26] for model details).
Also, to calculate the revenue in the dynamics-oblivious case,
we set λ′?t = λ?◦, ∀ t ∈ T D

t0 , in (45). In Fig. 4, for each load
change scenario, we plot the total cost and profit, which sum to
the total revenue. Visual examination of Fig. 4 reveals that the
dynamics-aware marginal pricing yields greater revenues and
profits for generators compared to the traditional dynamics-
oblivious counterpart, while the two methods lead to nearly
identical generation costs.

C. Computation Time

The proposed dynamics-aware ED is modelled in GAMS
and solved using the CPLEX solver, on a desktop computer
with a 2.7 [GHz] i7 processor and 16 [GB] of RAM. The
simulation time for the 3-generator WSCC test system is
0.39 [sec]. Furthermore, in order to examine the scalability
of the proposed dynamics-aware ED, we also simulate the
10-generator New England test system [27], resulting in a
computation time of 2.47 [sec].

VI. CONCLUDING REMARKS AND
DIRECTIONS FOR FUTURE WORK

In this paper, we presented a dynamics-aware marginal
pricing scheme that incorporates power system dynamics
as constraints and penalizes frequency deviations from the
synchronous speed in the objective function. The dynamics-
aware marginal price, that is proven to be the (suitably scaled)
Lagrange multiplier of dynamics-aware ED, reflects the system
dynamics after load disturbances and converges to the solution
of the traditional ED in steady state. Our analysis is supported

rigorous mathematical proofs, from which conclusive argu-
ments are made toward design considerations in the dynamics-
aware ED. Numerical results validate the analytical derivations
and confirm the benefits of the proposed dynamics-aware
marginal price in providing broader revenue opportunities for
generators prior to reaching steady state. Future work includes
investigating the impact of other frequency regulation schemes
on the dynamics-aware marginal price, extension to dynamics-
aware locational marginal pricing of electricity, and addressing
forecast uncertainties through coordinated dynamics- and risk-
aware marginal pricing of energy and reserve capacity. Also
of importance are improvements in computation time by
increasing the discretization time step and exploring other
optimization solver algorithms.

APPENDIX

A. Proof of Proposition 2

Stationarity conditions in (9)–(11) can be equivalently ex-
pressed using the scaled Lagrange multipliers

0 = −α′?Tt D −
(α′?t−∆tD − α

′?
t

∆tD

)T

M

− β′?Tt R−11G − ζ ′?t , t ∈ T D
t0 , (46)

0G =
∂C(Pm?

t )

∂Pm?
t

+ α′?t − β′?t

− τ
(β′?t−∆tD − β

′?
t

∆tD

)
, t ∈ T D

t0 , (47)

0G = −α′?t − λ′?t 1G, t ∈ T D
t0 , (48)

Then rearrange (48) and substitute the resultant into (46)
and (47) to get, respectively,

0 = λ′?t Deff +
λ′?t−∆tD − λ

′?
t

∆tD
Meff − β′?Tt R−11G − ζ ′?t ,

(49)

0G =
∂C(Pm?

t )

∂Pm?
t

− λ′?t 1G − β′?t − τ
(β′?t−∆tD − β

′?
t

∆tD

)
, (50)

for all t ∈ T D
t0 . Further rearrange (49)–(50) to get

λ′?t =
1

k

(
Meff

∆tD
λ′?t−∆tD − 1T

GR
−1β′?t − ζ ′?t

)
, (51)

β′?t = K−1

(
∂C(Pm?

t )

∂Pm?
t

− 1Gλ
′?
t −

1

∆tD
τβ′?t−∆tD

)
. (52)

The system of G + 1 difference equations above describes
the discrete-time dynamics of the scaled Lagrange multipliers.
Substitution of (52) into (51) (and vice-versa) followed by
straightforward algebraic manipulation yields the state-space
model in (21).
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