Distributed Measurement-based Optimal DER Dispatch with Estimated Sensitivity Models

Severin Nowak, Student Member, IEEE, Yu Christine Chen, Member, IEEE, and Liwei Wang, Member, IEEE

Abstract—This paper presents a distributed measurement-based method to determine distributed energy resource (DER) active- and reactive-power setpoints that minimize bus voltage deviations from prescribed references, bus active- and reactive-power deviations from desired values, as well as cost of DER outputs. The proposed method partitions the system into multiple areas and performs per-area computations in parallel, thus mitigating scalability concerns of centralized implementations. A linear sensitivity model for each area is first estimated from measurements via the recursive weighted partial least-squares algorithm. The estimated sensitivity models are then embedded in an optimization problem, the structure of which is amenable to decomposition into per-area subproblems. The subproblems are solved in parallel using consensus-based alternating direction method of multipliers to obtain optimal DER setpoints. Both the estimation and optimization tasks require only the exchange of information at boundary buses among adjacent areas. Numerical simulations involving the IEEE 33-bus distribution test system illustrate the ability of the proposed method to determine optimal DER setpoints that adapt to operating-point changes in a distributed fashion. Additional numerical simulations involving the IEEE 123-bus system demonstrate computational scalability and the application to multi-phase systems in a practical scenario.

Index Terms—Distributed energy resources, distributed model estimation, distributed optimization, optimal DER dispatch, partial least-squares estimation, phasor measurement units.

I. INTRODUCTION

MASSIVE deployment of distribution-level distributed energy resources (DERs), such as rooftop solar-photovoltaic, wind, and battery-storage systems, is crucial in the transition to a more sustainable energy future. These technologies have seen tremendous global growth in recent years. For example, today, the total installed capacity of small-scale solar-photovoltaic systems exceeds 20 GW in the United States and 7 GW in Australia [1]. Benefits for grid operations are undeniable when DERs can be suitably dispatched via online optimization routines [2]. However, optimal DER dispatch may be compromised by inaccurate offline network models due to incorrect topology information and fast-changing operating points, resulting in suboptimal or undesired system behaviours [3]. Recent research provides promising directions in measurement-based methods to infer up-to-date information about pertinent properties like voltage sensitivities [4], the power-flow Jacobian matrix [5], and network topology [6]. The ability to accurately estimate up-to-date system attributes motivates widespread installations of measurement equipment in distribution grids [7]. Particularly, distribution-level phasor measurement units are well-suited for online optimization, as they record so-called synchrophasors—time-synchronized measurements of voltage and current phasors—with phase angle accuracy of 0.01°; and they transmit the data at intervals in the sub-second range through a standardized communication interface (e.g., IEEE C37.118) [3]. In the future, synchrophasor technology is expected to be embedded in devices like inverter-interfaced DERs, transformers, and protection relays, leading to significantly expanded metering capability in distribution systems [7]. With the vast synchrophasor data volume and greater DER integration, however, estimation of relevant attributes and the ensuing optimal DER dispatch become large-scale problems with many decision variables, which poses challenges for effective and timely DER dispatch.

Aimed at practical implementation and scalability, we propose a measurement-based and distributed approach to determine DER active- and reactive-power setpoints that regulate bus voltages and power injections while minimizing cost of DER outputs. Figure 1 provides an illustration of the proposed framework, which consists of two successive and iterative stages: (i) estimating sensitivity models, and (ii)
optimizing DER setpoints. In the estimation stage, we partition the system into multiple areas and, instead of relying on an accurate offline model, we estimate a linear voltage-to-power sensitivity model for each area using synchrophasor measurements available at (possibly a subset of) buses therein. Then, in the second stage, we embed the estimated sensitivity models from all areas as equality constraints into a convex quadratic optimization problem. Per-area sensitivity models are crucial to enable decomposition of the optimization into per-area subproblems that can then be solved, in parallel fashion, via consensus-based alternating direction method of multipliers (ADMM) to reach an optimal operating point for the entire system. The per-area estimation and optimization tasks exchange pertinent information for only boundary buses among adjacent areas.

We focus our review of prior art in the domains of distributed estimation and measurement-based optimal DER dispatch. Distributed algorithms are of particular interest for large-scale distribution networks in order to improve scalability and data privacy. For example, the problem of distributed power system state estimation is addressed via consensus-based ADMM in [8], distributed semidefinite programming in [9], and more recently, a distributed gradient-based method in [10]. Shifting attention to measurement-based optimal DER dispatch, [11] uses rule- and optimization-based control strategies in conjunction with an estimated second-order power-flow sensitivity model. Furthermore, [12], [13] leverage estimated power-to-voltage sensitivities to determine DER setpoints that regulate voltages or substation injection with prior knowledge of feasible topological configurations. In contrast, model-free control via an extremum seeking approach is developed in [14]. It forgoes the use of a network model by actively probing the grid with sinusoidal perturbations of DER injections. Our previous work in [15] estimates a voltage-to-power sensitivity model and embeds it in an optimization problem to dispatch DERs toward multiple operational objectives. However, the measurement-based DER dispatch methods reviewed above all involve centralized optimization, which may be computationally expensive for large distribution networks with many DERs and measurements. To avoid potential scalability issues of centralized methods, distributed feedback-based optimization adjusts DER setpoints recursively to converge to the optimal operating point using measurements as the feedback signal. Optimal voltage control has been implemented in distributed fashion via feedback-based optimization [16]–[18]. Primal-dual gradient methods solving a saddle-point problem achieve combined regulation of substation power supply and system voltage levels in [2], [19]. These methods tend to be robust against variations in loads and renewable generation [20], and they can cope with inaccuracies in the network model. Nevertheless, in order to compute pertinent gradients in the feedback-based optimization methods, prior knowledge of the network topology and line parameters is required.

In this paper, we develop a distributed measurement-based approach to determine DER active- and reactive-power setpoints. We partition the network into multiple areas, and each area performs its own sensitivity model estimation and optimal DER dispatch in parallel. The estimation of per-area sensitivity models accommodates full or partial coverage of measurements available at all buses or a subset thereof, respectively. The key advantage of per-area estimation is that the number of estimated sensitivities is greatly reduced as compared with the full-network analogue. In the optimal DER dispatch stage, the distributed ADMM-based solution algorithm affords closed-form solutions in each subproblem. With respect to information related to the physical network, compared to [2], [16]–[19] that rely on some prior knowledge of the network topology and line parameters, each per-area subproblem in the proposed method requires only knowledge of which areas are adjacent to its boundary buses. Furthermore, we minimize the combined objective of regulating system voltages and power injections as well as minimizing cost of DER outputs, unlike [11]–[13], [16]–[18], which focus either on voltage regulation or active power provision. Also, compared with [14], the proposed method affords lower injection perturbations and temporal measurement resolution. Numerical simulations involving the IEEE 33-bus system demonstrate the effectiveness and adaptability of the proposed distributed measurement-based framework. Further simulations of the multi-phase IEEE 123-bus system with realistic load and renewable generation profiles demonstrate practical applicability and scalability. With the above in mind, this paper extends our previous work in [15] in two major directions: (i) estimation of per-area sensitivity models and (ii) distributed optimal DER dispatch, both of which are performed in parallel amongst different areas. We also demonstrate several nontrivial benefits of the proposed method via numerical simulations involving the IEEE 123-bus multi-phase test system. First, the proposed distributed approach accommodates larger and multi-phase systems with greater synchrophasor measurement coverage (the method in [15] suffers scalability limitations beyond 100 measured nodes) while reducing computation time and thus enhancing algorithmic scalability. Furthermore, it improves estimation accuracy since the per-area sensitivity model estimation avoids degradation of accuracy due to estimating zero entries. Finally, it does not compromise on optimality as the decomposed distributed optimization problem is equivalent to the original centralized one.

The remainder of this paper is organized as follows. Section II outlines the distribution network model and motivates the need for a distributed measurement-based approach. Section III presents the estimation of per-area sensitivity models. In Section IV, we formulate the distributed optimal DER dispatch problem with the estimated sensitivity models and subsequently solve it via consensus-based ADMM. Numerical simulations in Section V demonstrate the effectiveness and scalability of the proposed distributed DER dispatch framework. Finally, we provide concluding remarks in Section VI.

II. Preliminaries

In this section, we establish the system model and formulate the standard optimal DER dispatch problem. We also motivate the need for a distributed measurement-based approach.
A. Network and Power-flow Models

Consider a multi-phase distribution system with buses collected in the set $\mathcal{N} = \{1, \ldots, |\mathcal{N}|\}$. Suppose pertinent system variables are sampled at time $t = k\Delta t$, $k = 0, 1, \ldots$, where Δt is the sampling interval. We collect phases found at bus $i \in \mathcal{N}$ in the set $\mathcal{P}_i \subseteq \{a, b, c\}$. Let $V_{i[k]}^\phi$ and $\theta_{i[k]}^\phi$ denote, respectively, the magnitude and phase-angle of the line-to-neutral voltage at bus $i \in \mathcal{N}$ in phase $\phi \in \mathcal{P}_i$, and at discrete time step k. Also let $P_{i[k]}^\phi$ and $Q_{i[k]}^\phi$ denote, respectively, the net active- and reactive-power injections at bus $i \in \mathcal{N}$ in phase $\phi \in \mathcal{P}_i$, and at time step k. Further collect multi-phase voltage phase-angles and magnitudes at all buses at time step k in vector $x[k] = \{\{V_{i[k]}^\phi\}_{\phi \in \mathcal{P}_i, i \in \mathcal{N}}, \{V_{i[k]}^\phi\}_{\phi \in \mathcal{P}_i, i \in \mathcal{N}}\}^T$. Analogously, collect multi-phase net active- and reactive-power injections at all buses at time step k in vector $y[k] = \{\{P_{i[k]}^\phi\}_{\phi \in \mathcal{P}_i, i \in \mathcal{N}}, \{Q_{i[k]}^\phi\}_{\phi \in \mathcal{P}_i, i \in \mathcal{N}}\}^T$. With the notation established above, the power-flow solution at time step k can be compactly expressed as $y[k] = g(x[k])$ where $g : \mathbb{R}^{2N^\phi \times 2N^\phi} \rightarrow \mathbb{R}^{2N^\phi \times 2N^\phi}$, with $N^\phi = \sum_{i \in \mathcal{N}} |\mathcal{P}_i|$. The dependence on network parameters (such as circuit breaker status and line impedances) is implicitly considered in the function $g(\cdot)$. In the neighbourhood sufficiently close to the operating point at time step k, the power-flow solution at the next time step $k+1$ can be approximated with the following linear sensitivity model:

$$y[k+1] \approx J[k]x[k+1] + c[k],$$

where $J[k]$ and $c[k]$ respectively given by

$$J[k] = \frac{dg}{dx} \bigg|_{x[k]}, \quad c[k] = y[k] - \frac{dg}{dx} \bigg|_{x[k]} x[k],$$

are the linear- and constant-term coefficients evaluated at the operating point at time step k. It is worth noting that $J[k]$ is a sparse matrix whose structure is intimately related to the network topology. This aspect is key to formulating distributed estimation and optimization problems in Sections III and IV, respectively.

B. Optimal DER Dispatch Problem

An optimal DER dispatch problem can be formulated to minimize a desired cost function (e.g., cost of DER outputs, deviations from reference values, etc.) subject to the linear sensitivity model in (1) and other operational constraints. To this end, let $\mathcal{D} \subseteq \mathcal{N}$ denote the set of buses connected to controllable DERs, and let $D^\phi = \sum_{i \in \mathcal{D}} |\mathcal{P}_i|$. Assume that the controllable DER at bus $i \in \mathcal{D}$ can inject nonzero active and reactive power in phase $\phi \in \mathcal{P}_i$. Denote by $P_{i[k]}^{\phi, gen}$ and $Q_{i[k]}^{\phi, gen}$, respectively, the controllable components of the active- and reactive-power injections in phase $\phi \in \mathcal{P}_i$ at bus $i \in \mathcal{D}$ and at time step k; and further collect these in vector $y_{\phi[k]}^{gen} = \{\{P_{i[k]}^{\phi, gen}\}_{\phi \in \mathcal{P}_i, i \in \mathcal{D}}, \{Q_{i[k]}^{\phi, gen}\}_{\phi \in \mathcal{P}_i, i \in \mathcal{D}}\}^T$. Also collect the uncontrollable active- and reactive-power injections (arising from, e.g., loads) at all buses in vector $y_{\phi[k]}^{load} = \{y_{i[k]}^{load}\}_{i \in \mathcal{N}, \phi \in \mathcal{P}_i}$ so that $y[k] = C[y_{\phi[k]}^{gen}, y_{\phi[k]}^{load}]$, where $C \in \mathbb{R}^{2N^\phi \times 2D^\phi \times 2D^\phi}$ is the matrix that maps the DER bus/phase indices to buses/phases collected in the entire distribution network. Particularly, the entry in the ith row and jth column of C is 1 if the jth element of $y_{\phi[k]}^{gen}$ represents the same phase and bus as the ith element of $y_{\phi[k]}^{gen}$, and it is 0 otherwise. Then we formulate the following optimization problem to dispatch controllable DERs in the distribution network at time step $k+1$:

$$\begin{align*}
\text{minimize} & \quad f(x[k+1]; y[k+1], y_{\phi[k]}^{gen}), \\
\text{subject to} & \quad y[k+1] = J[k]x[k+1] + c[k], \\
& \quad y[k+1] = y[k] + C(y_{\phi[k]}^{gen} - y_{\phi[k]}^{gen}), \\
& \quad x_{\min} \leq x[k+1] \leq x_{\max}, \\
& \quad y_{\phi[k]}^{gen} \in \mathcal{Y}_{\phi[k]}^{gen},
\end{align*}$$

where $f : \mathbb{R}^{2N^\phi \times 2N^\phi \times 2D^\phi} \rightarrow \mathbb{R}$ is the cost to be minimized, x_{\min} and x_{\max} represent, respectively, the minimum and maximum limits of voltage phase-angles and magnitudes, and $\mathcal{Y}_{\phi[k]}^{gen}$ represents the allowable space of DER outputs [15]. Under typical DER control schemes (including, e.g., active-power control, reactive-power control, and joint active- and reactive-power control), $\mathcal{Y}_{\phi[k]}^{gen}$ is a convex set [2]. The underlying assumption for (2b) to hold is that $J[k]$ and $c[k]$ computed or estimated at time step k model the relationship between $y[k+1]$ and $x[k+1]$ at time step $k+1$ with sufficient accuracy. The constraint in (2c) holds under the assumption that the uncontrollable active- and reactive-power injections do not change significantly between time steps k and $k+1$. Nevertheless, we emphasize that any such fluctuations would be captured by the sensitivity model updated at the next time step $k+1$.

C. Problem Statement

In [15], we developed a measurement-based method that leverages synchrophasor measurements at a subset of buses to estimate a reduced version of the sensitivity model in (1); and both the model estimation and optimal DER dispatch steps are solved in centralized fashion. Numerical case studies demonstrate that execution times are feasible for real-time implementation with relatively few measurements and DERs in the network [15]. However, with the projected vast deployments of DERs and synchrophasor measurements in multi-phase distribution systems [1], [7], the centralized method involves large-scale estimation and optimization problems that are computationally burdensome for real-time field implementations. To avoid potential scalability issues, in this paper, we partition the distribution system into multiple areas, each consisting of a portion of the full network. We estimate a linear sensitivity model for each area and further solve the optimal DER dispatch problem in a distributed manner, enabled by consensus-based ADMM. The proposed distributed measurement-based method has several key advantages: (i) it reduces the computational burden in both the model estimation and optimal DER dispatch tasks, (ii) it readily adapts to operating-point changes by estimating per-area sensitivity models online, and (iii) it affords greater data privacy as measurements, cost function, and operational constraints are only shared within the area.
III. PER-AREA SENSITIVITY MODEL ESTIMATION

In this section, we estimate the linear sensitivity model relating measured bus voltages to power injections for each area in the distribution network.

A. Problem Formulation

We partition the distribution network into non-overlapping areas collected in the set \mathcal{A}. Within area $\alpha \in \mathcal{A}$, buses with synchrophasor measurements are collected in \mathcal{E}^{α}, and those connected to DERs, whose setpoints can be remotely updated, are collected in \mathcal{D}^{α}. The formulation is general in the sense that it accommodates synchrophasor measurements collected at a subset of buses or at all buses within an area. For distinct areas $\alpha, \gamma \in \mathcal{A}$, $\mathcal{E}^{\alpha} \cap \mathcal{E}^{\gamma} = \emptyset$. Furthermore, let $\mathcal{E}^{\alpha+}$ represent the extended set of buses in each area $\alpha \in \mathcal{A}$, which also collects the one-hop adjacent measured buses belonging to areas adjacent to area α. Denote the set of adjacent areas of area α by \mathcal{B}^{α}, and boundary buses for area α are collected in $\mathcal{B}^{\alpha} = \bigcup_{\alpha \in \mathcal{A}} (\mathcal{E}^{\alpha+} \cap \mathcal{E}^{\alpha+})$. Let $\mathcal{A}_i = \{\alpha, \ i \in \mathcal{E}^{\alpha+}\}$ comprise areas for which the extended set of buses contains bus i.

Denote the measured voltage phase-angle and magnitude at bus i in phase ϕ at time step k as $\hat{\theta}^i_{\phi,k}$ and $\hat{V}^i_{\phi,k}$, respectively. Similarly, let $\hat{P}^i_{\phi,k}$ and $\hat{Q}^i_{\phi,k}$ denote the measured net active- and reactive-power injections at bus i in phase ϕ at time step k. Collect measured quantities pertinent to area $\alpha \in \mathcal{A}$ in vectors $\hat{x}^\alpha_{\phi,k} = \{(\hat{\theta}^i_{\phi,k}) \in \mathcal{P}_{\phi,i} \in \mathcal{E}^{\alpha+}, (\hat{V}^i_{\phi,k}) \in \mathcal{P}_{\phi,i} \in \mathcal{E}^{\alpha+}\}^T$ and $\hat{y}^\alpha_{\phi,k} = \{(\hat{P}^i_{\phi,k}) \in \mathcal{P}_{\phi,i} \in \mathcal{E}^{\alpha}, (\hat{Q}^i_{\phi,k}) \in \mathcal{P}_{\phi,i} \in \mathcal{E}^{\alpha}\}^T$. Further hypothesizing that, for area $\alpha \in \mathcal{A}$, the active- and reactive-power injections are linearly related to bus-voltage phase-angles and magnitudes, we get

$$\hat{y}^\alpha_{\phi,k} = J^\alpha_{\phi,k} \hat{x}^\alpha_{\phi,k} + c^\alpha_{\phi,k}, \quad \alpha \in \mathcal{A},$$

(3)

where $J^\alpha_{\phi,k}$ and $c^\alpha_{\phi,k}$ form the sensitivity model relating measured voltages to power injections in area $\alpha \in \mathcal{A}$. Note that, in (3), while $\hat{x}^\alpha_{\phi,k}$ includes voltage magnitudes and angles at one-hop adjacent buses in adjacent areas, $\hat{y}^\alpha_{\phi,k}$ includes power injections at only buses within area α. This is because we are interested in the sensitivity of bus injections in a particular area to the voltages on adjacent buses, which includes the one-hop adjacent buses in adjacent areas. With the voltage measurements at the one-hop adjacent buses in adjacent areas included in (3), the structure of the distribution network admittance matrix enables the estimation of per-area sensitivities without compromising the accuracy. Then, there exists $H^\alpha_{[k]}$ that satisfies the relationship:

$$\begin{bmatrix} \hat{y}^\alpha_{\phi,k} \\ \hat{x}^\alpha_{\phi,k} \end{bmatrix}^T = \begin{bmatrix} \hat{x}^\alpha_{\phi,k}^T \\ \hat{y}^\alpha_{\phi,k} \end{bmatrix}^T H^\alpha_{[k]}, \quad \alpha \in \mathcal{A},$$

(4)

where $H^\alpha_{[k]} = [J^\alpha_{[k]} \ c^\alpha_{[k]}]^T$. In the per-area estimation, our goal is to evaluate the entries of $H^\alpha_{[k]}$ for each area $\alpha \in \mathcal{A}$ based on measurements pertinent to the area.

B. Solution Algorithm

In order to improve adaptability to operating-point changes and to reduce computational burden, we estimate the entries of $H^\alpha_{[k]}$ using only online synchrophasor measurements pertinent to area α and one-hop adjacent buses belonging to adjacent areas of area α. To this end, suppose that M samples of voltage phase-angles and magnitudes, \hat{x}^{α}_{k-M+1}, \ldots, \hat{x}^{α}_{k}, and active- and reactive-power injections, \hat{y}^{α}_{k-M+1}, \ldots, \hat{y}^{α}_{k}, are available. Also, assume that the operating point remains approximately constant over the M measurement samples (we will remove this assumption later). Then, with $M > 2|\mathcal{E}^{\alpha}|$, we collect M instances of (4) to form the subsequent over-determined system of linear equations:

$$Y^\alpha_{[k]} = X^\alpha_{[k]} H^\alpha_{[k]}, \quad \alpha \in \mathcal{A},$$

(5)

where $X^\alpha_{[k]}$ and $Y^\alpha_{[k]}$ are given by

$$X^\alpha_{[k]} = \begin{bmatrix} \hat{x}^{\alpha}_{k-M+1} \\ \vdots \\ \hat{x}^{\alpha}_{k} \end{bmatrix}, \quad Y^\alpha_{[k]} = \begin{bmatrix} \hat{y}^{\alpha}_{k-M+1} \\ \vdots \\ \hat{y}^{\alpha}_{k} \end{bmatrix}.$$

(6)

Since (5) is over-determined, we can obtain the ordinary least-squares (OLS) estimate for $H^\alpha_{[k]}$ as

$$\hat{H}^\alpha_{[k]} \approx (X^\alpha_{[k]}^T X^\alpha_{[k]})^{-1} X^\alpha_{[k]}^T Y^\alpha_{[k]},$$

(7)

In practice, however, similar patterns in voltage phase-angle and magnitude measurements at different buses due to changing operating points may challenge the OLS estimation [21], which results in an ill-conditioned regressor matrix in (7). Also, recursive updates of $\hat{H}^\alpha_{[k]}$ are desirable to capture changing operating points while reducing computational burden, and greater emphasis ought to be placed on more recent measurements than past ones that become outdated. Considering these circumstances, we use the recursive weighted partial least-squares (RWPLS) algorithm to compute $\hat{H}^\alpha_{[k]}$ as it enhances OLS estimation for ill-posed regression problems.

Assuming that the per-area sensitivity models are updated every R samples, the RWPLS method employs the partial least-squares (PLS) decomposition recursively to project key components in $X^\alpha_{[k-R]}$ and $Y^\alpha_{[k-R]}$ onto lower-dimensional latent matrices $\Gamma^\alpha_{[k-R]}$, $G^\alpha_{[k-R]}$, $L^\alpha_{[k-R]}$. New design and response matrices $X^\alpha_{[k]}$ and $Y^\alpha_{[k]}$ at time step k can equivalently be represented by combining the PLS model of the previous estimation step at time step $k - R$ with newly collected measurements between time steps $k - R + 1$ and k such that:

$$X^\alpha_{[k]} = \begin{bmatrix} \sigma \Gamma^\alpha_{[k-R]} \hat{x}^{\alpha}_{k-R+1} \\ \vdots \\ \hat{x}^{\alpha}_{k} \end{bmatrix}, \quad Y^\alpha_{[k]} = \begin{bmatrix} \sigma \Gamma^\alpha_{[k-R]} \hat{y}^{\alpha}_{k-R+1} \\ \vdots \\ \hat{y}^{\alpha}_{k} \end{bmatrix},$$

(8)

where the forgetting factor $\sigma \in (0, 1]$ prioritizes recent measurements over earlier ones. Finally, the estimated per-area sensitivity model $\hat{H}^\alpha_{[k]}$ at time step k is obtained after decomposing $X^\alpha_{[k]}$ and $Y^\alpha_{[k]}$ into $\Gamma^\alpha_{[k]}$, $G^\alpha_{[k]}$, $L^\alpha_{[k]}$ via PLS by

$$\hat{H}^\alpha_{[k]} = (G^\alpha_{[k]} \ c^\alpha_{[k]})^T \Gamma^\alpha_{[k]} L^\alpha_{[k]}.$$

(9)

Details on the RWPLS method can be found in [22].

Example 1 (Sensitivity Model Estimation). To illustrate ideas introduced above, consider the IEEE 33-bus test system (see, e.g., [23]) with the one-line diagram shown in Fig. 2. As a
IV. DISTRIBUTED OPTIMAL DER Dispatch

In this section, we formulate the optimal DER dispatch problem that embeds each per-area estimated sensitivity model as an equality constraint within the corresponding optimization subproblem. We also outline a tractable distributed solution approach using consensus-based ADMM algorithm.

A. Problem Formulation

We aim to determine the controllable DER active- and reactive-power setpoints in area $\alpha \in A$ at time step $k + 1$. Namely, we optimize over variables collected in vector $\mathbf{y}_{[k+1]} = \{\mathbf{P}_{i,[k+1]}^0 \phi \mathbf{P}_{i,[k+1]}^0, \{\mathbf{Q}_{i,[k+1]}^0 \phi \mathbf{Q}_{i,[k+1]}^0 \}_{i \in E}^{T}\}$, where D^α denotes the set of buses with controllable DERs in area α. In turn, decision variables also include net injections and voltage phase-angles and magnitudes respectively collected in $\mathbf{v}_{[k+1]} = \{\mathbf{P}_{i,[k+1]}^0 \phi \mathbf{P}_{i,[k+1]}^0, \{\mathbf{Q}_{i,[k+1]}^0 \phi \mathbf{Q}_{i,[k+1]}^0 \}_{i \in E}^{T}\}$ and $\mathbf{v}_{[k+1]}^\alpha = \{\mathbf{P}_{i,[k+1]}^0 \phi \mathbf{P}_{i,[k+1]}^0, \{\mathbf{Q}_{i,[k+1]}^0 \phi \mathbf{Q}_{i,[k+1]}^0 \}_{i \in E}^{T}\}$. Constraints imposed on $\mathbf{v}_{[k+1]}$, $\mathbf{v}_{[k+1]}^\alpha$ and $\mathbf{v}_{[k+1]}^\alpha$ account for various operating ranges such as minimum and maximum allowable voltage limits and DER operating regions. Then, we pose the following separable optimization problem:

minimize $\mathbf{\pi}^\alpha, \mathbf{\pi}^\alpha_\alpha, \mathbf{\pi}^\alpha_\alpha_\alpha_\alpha$
subject to $\mathbf{\pi}^\alpha = J^\alpha_\theta (\mathbf{\pi}^\alpha, \mathbf{\pi}^\alpha_\alpha, \mathbf{\pi}^\alpha_\alpha_\alpha_\alpha)$, $\forall \alpha \in A$,

$x_{i_{\text{min}}}^\alpha \leq \mathbf{x}_i^\alpha \leq x_{i_{\text{max}}}^\alpha$, $\forall \alpha \in A$,

$\mathbf{\pi}^\alpha_\alpha_\alpha_\alpha \in \mathbf{\pi}^\alpha_\alpha_\alpha_\alpha$, $\forall \alpha \in A$,

$\mathbf{\pi}^\alpha_\alpha = \mathbf{\pi}^\alpha_\alpha + C^\alpha (\mathbf{\pi}^\alpha_\alpha_\alpha_\alpha - \mathbf{\pi}^\alpha_\alpha_\alpha_\alpha)$, $\forall \alpha \in A$,

$z_i^\alpha = F_i^\alpha \mathbf{x}_i^\alpha = z_i$, $\forall i \in B^\alpha, \alpha \in A$,

where the parameterization of decision variables with respect to $k + 1$ is dropped to contain notational burden. In (10c), C^α is the matrix that maps the DER bus/phase indices to buses/phases from which measurements are obtained in area α. Furthermore, (10f) represent consensus constraints that enforce voltage phase-angles and magnitudes at boundary buses shared among adjacent areas to be equal. To this end, we use matrix F_i^α, $\alpha \in A$, to map voltage phase-angles and magnitudes in all phases of bus $i \in B^\alpha$ in $\mathbf{\pi}^\alpha$ to auxiliary variable z_i, which is common for all areas with bus i as a boundary bus. The quadratic cost function in (10) is fully separable among different areas. It comprises a weighted sum of: (i) voltage phase-angle and magnitude deviations from respective references, (ii) nodal active- and reactive-power injection deviations from desired values, and (iii) cost of DER active- and reactive-power outputs, i.e.,

$$f^\alpha (\mathbf{\pi}^\alpha, \mathbf{\pi}^\alpha_\alpha, \mathbf{\pi}^\alpha_\alpha_\alpha_\alpha) = (\mathbf{\pi}^\alpha - x^\alpha_\alpha)^T \Psi^\alpha (\mathbf{\pi}^\alpha - x^\alpha_\alpha) + (\mathbf{\pi}^\alpha_\alpha - y^\alpha_\alpha)^T \Phi^\alpha (\mathbf{\pi}^\alpha_\alpha - y^\alpha_\alpha) + (\mathbf{\pi}^\alpha_\alpha_\alpha_\alpha)^T \Upsilon^\alpha (\mathbf{\pi}^\alpha_\alpha_\alpha_\alpha),$$

where $\mathbf{\pi}^\alpha$ and $\mathbf{\pi}^\alpha_\alpha$, respectively, denote the voltage references, and desired values for power injections at measured buses in area $\alpha \in A$. In (11), $\Psi^\alpha = \text{diag}(\psi_1^\alpha, \ldots, \psi_2^\alpha)$, $\Phi^\alpha = \text{diag}(\varphi_1^\alpha, \ldots, \varphi_2^\alpha)$, and $\Upsilon^\alpha = \text{diag}(\psi_1^\alpha, \ldots, \psi_2^\alpha)$ are diagonal matrices with non-negative entries, i.e.,

![Fig. 2: IEEE 33-bus test system with DERs connected at arbitrarily chosen buses collected in $D = \{6, 12, 18, 22, 25, 33\}$. The network is partitioned into five areas collected in the set $A = \{1, 2, \ldots, 5\}$. Assume, without loss of generality, synchrophasor measurements are available at all buses. This test system is single phase, so $P_i = \{\alpha\}, \forall i \in N$. As an example of the notation used throughout this paper, consider area 1. Within area 1, measured buses are collected in $E_1^{\alpha} = \{1, 2, 3, 4, 5, 6, 23, 24, 25\}$ and buses connected to DERs are collected in $D_1^{\alpha} = \{6, 25\}$. The extended set of buses is $E_1^{\alpha} = E_1^{\alpha} \cup \{7, 19, 26\}$. Adjacent areas are collected in $A_1^{\alpha} = \{2, 3, 4\}$. Boundary buses are collected in $B_1^{\alpha} = \{(E_1^{\alpha} + E_2^{\alpha})^{\cup} (E_1^{\alpha} + E_3^{\alpha})^{\cup} (E_1^{\alpha} + E_4^{\alpha}) \} = \{2, 6, 7, 19, 26\}$. Finally, the boundary bus 6 belongs to the extended set of buses in areas collected in $A_6 = \{1, 3, 4\}$.
ψ\textsubscript{i}, \varphi\textsubscript{i}, v\textsubscript{i} \geq 0. Without loss of generalization, we assume that area 1 contains the substation bus 1. Note that \(\vec{y}_{[k+1]}\) includes the substation power injections so that we can achieve feeder-level active- and reactive-power regulation. Before delving into the solution approach, we emphasize that the separable problem in (10) is equivalent to the problem in (2). Furthermore, as demonstrated in Example 1, the per-area estimated sensitivities \(J^\alpha\), \(\alpha \in \mathcal{A}\), are in fact more accurate than the full-network counterpart. Thus, the solution of the separable problem does not compromise on optimality as compared to the centralized problem in (2).

We collect decision variables pertinent to area \(\alpha\) in \(\chi^\alpha = [(\pi^\alpha)^T, (\psi^\alpha)^T, (\chi^\alpha)^T] \text{T}\) and further we define entries in and structures of \(\Pi^\alpha\), \(\pi^\alpha\), \(\kappa^\alpha\), \(A_{[k]}\), \(b_{[k]}\), and \(X^\alpha\) in Appendix A so that (10) is expressed by:

\[
\begin{align*}
\text{minimize} & \sum_{\alpha \in \mathcal{A}} \frac{1}{2} (\chi^\alpha)^T \Pi^\alpha \chi^\alpha + (\pi^\alpha)^T \chi^\alpha + \kappa^\alpha \\
\text{subject to} & A_{[k]}^\alpha \chi^\alpha = b_{[k]}^\alpha, \forall \alpha \in \mathcal{A}, \quad \chi^\alpha \in X^\alpha, \forall \alpha \in \mathcal{A}, \\
& z_i^\alpha = K_i^\alpha \chi^\alpha = z_i, \forall i \in B^\alpha, \alpha \in \mathcal{A},
\end{align*}
\]

where \(\Pi^\alpha\) and \(\pi^\alpha\) appropriately collect the quadratic and linear weights of the cost function in (11), and \(\kappa^\alpha\) is a constant term that does not affect the problem solution. For area \(\alpha \in \mathcal{A}\), the equality constraints in (10b) and (10e) collectively form (12b) with matrix \(A_{[k]}\) and vector \(b_{[k]}\) appropriately defined. Similarly, the set constraints in (10c) and (10d) are collectively rewritten as (12c), where \(X^\alpha, \chi^\alpha\), \(\alpha \in \mathcal{A}\), denotes the typically convex set of allowable DER operating regions as well as bus voltage bounds in area \(\alpha\). Finally, (12d) corresponds to consensus constraints in (10f), where \(K_i^\alpha\), \(\alpha \in \mathcal{A}\), is a matrix containing 0s and 1s that maps voltage phase-angles and magnitudes of bus \(i\) in \(\chi^\alpha\) to \(z_i^\alpha\). Also, voltage phase-angle and magnitude of each boundary bus \(i \in B^\alpha\) are associated with auxiliary consensus variable \(z_i\), coupled across areas that share bus \(i\) as a boundary bus, i.e., areas in the set \(\mathcal{A}_i\).

With positive semidefinite weights in \(\Pi^\alpha\), (12) can be decomposed into \(|\mathcal{A}|\) per-area convex quadratic subproblems coupled with consensus constraints pertinent to adjacent areas. Due to the consensus constraints among adjacent areas in (12d), standard solvers for the subproblems are not immediately applicable. In the next section, we present a tractable consensus-based ADMM algorithm to solve the DER dispatch problem in (12) in a distributed fashion, where only voltage phase-angles and magnitudes of boundary buses need to be exchanged among adjacent areas.

B. ADMM-based Solution Approach

The general idea of the distributed ADMM-based approach is to treat each per-area subproblem as a convex quadratic program. In addition, using the auxiliary variables defined for the voltage phase-angle and magnitude for each boundary bus, consensus among adjacent areas can be achieved. We decompose the problem in (12) for each area \(\alpha \in \mathcal{A}\):

\[
\begin{align*}
\text{minimize} & \frac{1}{2} (\chi^\alpha)^T \Pi^\alpha \chi^\alpha + (\pi^\alpha)^T \chi^\alpha \\
\text{subject to} & A_{[k]}^\alpha \chi^\alpha = b_{[k]}^\alpha, \quad \omega^\alpha \in X^\alpha, \\
& \omega^\alpha = \chi^\alpha, \\
& z_i^\gamma - z_i = 0, \forall i \in B^\alpha, \gamma \in \mathcal{A}_i, \\
& z_i^\alpha = K_i^\alpha \chi^\alpha, \forall i \in B^\alpha,
\end{align*}
\]

where we define auxiliary variables \(\omega^\alpha\) and tie it to decision variables \(\chi^\alpha\) with the equality constraint in (13d), and \(\gamma \in \mathcal{A}_i\) is a dummy index variable. Notably, in (13), the per-area equality constraints on \(\chi^\alpha\), per-area bound constraints on \(\chi^\alpha\), and consensus constraints among adjacent areas are each associated with a different decision variable.
For the per-area subproblem, the ADMM algorithm alternates between solving an equality-constrained quadratic program with a projection onto feasible bound constraints, while achieving consensus among areas via (13e). The augmented Lagrangian associated with (13) is given by

\[
L^\rho_p(\chi^\alpha, \omega^\alpha, \mu^\alpha, \{z_i^\gamma, z_i, s_i^\gamma\}) = \left(\frac{1}{2}(\chi^\alpha)^T \Xi^\alpha \chi^\alpha + (\pi^\alpha)^T \chi^\alpha \right)
+ \frac{\rho}{2} \left(\|\chi^\alpha - (\omega^\alpha)^\ell\|^2 + \|\mu^\alpha\|^2\right) + \frac{\rho}{2} \sum_{i \in B^\alpha} \sum_{\gamma \in A_i} \left(\|z_i^\gamma - z_i + s_i^\gamma\|^2 - \|s_i^\gamma\|^2\right),
\]

(14)

where \(\rho\) is a positive scalar ADMM parameter, \(\mu^\alpha\), and \(s_i^\gamma\) are scaled dual variables for the coupling constraints (13d) and (13e). Note that we do not include constraints (13b), (13c) and (13f) in the augmented Lagrangian as they will be considered in the respective subproblems. Below, we provide a brief summary of the iterative algorithm, which is later used in numerical case studies presented in Section V. The ADMM algorithm uses a sequence of iterations indexed by \(\ell\) to search for the optimizer of (13).

The primal variable update for area \(\alpha \in A\) solves for \((\chi^\alpha)^{\ell+1}\) and \((z_i^\gamma)^{\ell+1}\) from the following standard equality-constrained convex quadratic program:

\[
\text{minimize} \quad \frac{1}{2}(\chi^\alpha)^T \Xi^\alpha \chi^\alpha + (\pi^\alpha)^T \chi^\alpha
\]

\[
+ \frac{\rho}{2} \left(\|\chi^\alpha - (\omega^\alpha)^\ell\|^2 + \|\mu^\alpha\|^2\right)
\]

\[
+ \frac{\rho}{2} \sum_{i \in B^\alpha} \sum_{\gamma \in A_i} \left(\|z_i^\gamma - z_i + s_i^\gamma\|^2 - \|s_i^\gamma\|^2\right),
\]

subject to

\[
A_{[\alpha]}^\ell \chi^\alpha = b_{[\alpha]}^\ell,
\]

\[
z_i^\gamma = K_i^\gamma \chi^\alpha, \quad \forall i \in B^\alpha.
\]

The solution to (15) can be readily obtained via a closed-form solution [24]. Next, armed with the primal updates for iteration \(\ell + 1\), the updates for auxiliary variables \(\omega^\alpha\) and \(z_i, i \in B^\alpha\), are respectively given by

\[
(\omega^\alpha)^{\ell+1} = \arg \min_{\omega^\alpha \in \mathbb{C}^n} \frac{\rho}{2} \left(\|\chi^\alpha\|^2 - \omega^\alpha + \|\mu^\alpha\|^2\right),
\]

(16a)

\[
(z_i)^{\ell+1} = \arg \min_{z_i} \frac{\rho}{2} \sum_{\gamma \in A_i} \left\|z_i^\gamma - z_i + s_i^\gamma\right\|^2 .
\]

(16b)

The projection problem in (16) admits closed-form solutions for voltage bounds and typical constraints on DER outputs [24]. Specifically, for the projection onto independent active- and reactive-power box limits, the solution to (16) is

\[
(\omega^\alpha)^{\ell+1} = \min(\chi^\alpha_{\text{min}}, \max(\chi^\alpha_{\text{max}}, (\chi^\alpha)^{\ell+1} - (\mu^\alpha)^{\ell+1})),
\]

(18)

where \(\chi^\alpha_{\text{min}}\) and \(\chi^\alpha_{\text{max}}\) comprise, respectively, the entry-wise lower and upper bounds of \(\chi^\alpha\). Closed-form projections onto other typical DER operational regions are provided in [2] and can be readily integrated in the proposed ADMM solution approach. For the auxiliary variable \(z_i, i \in B^\alpha\), the problem in (17) solves as the average of \((z_i^\gamma)^{\ell+1}, \gamma \in A_i\), i.e., [25]

\[
(z_i)^{\ell+1} = \frac{1}{|A_i|} \sum_{\gamma \in A_i} (z_i^\gamma)^{\ell+1}.
\]

Finally, the scaled dual variables admit straightforward recursive updates given by

\[
(\mu^\alpha)^{\ell+1} = (\mu^\alpha)^{\ell} + (\omega^\alpha)^{\ell+1} - (\chi^\alpha)^{\ell+1},
\]

(20)

\[
(s_i^\gamma)^{\ell+1} = (s_i^\gamma)^{\ell} + (z_i)^{\ell+1} - (s_i^\gamma)^{\ell+1}.
\]

(21)

The ADMM algorithm outlined above repeatedly updates primal variables via (15), followed by the auxiliary variables via (16) and (17) and dual variables via (20) and (21) until:

\[
||z_i^\gamma - (\omega^\alpha)^{\ell+1}||_2 < \epsilon \quad \text{and} \quad ||\rho(\omega^\alpha)^{\ell+1} - (\chi^\alpha)^{\ell+1}||_2 < \epsilon,
\]

for some predefined tolerance \(\epsilon > 0\). We initialize auxiliary variables \((\omega^\alpha)^0\) and \((z_i)^0\) with values corresponding to the operating point at time step \(k\) just before optimization, and set initial conditions for primal and scaled dual variables to 0.

The ADMM iterations continue until the stopping criteria are satisfied with optimizer given by \(\chi^\alpha^*\) from which optimal DER dispatch \(p^{\alpha,\text{gen}}_i\) (i.e., \(P_i^{\alpha,\text{gen}}\) and \(Q_i^{\alpha,\text{gen}}\), \(i \in D^\alpha\)) can be extracted. We highlight that all the updates of primal and dual variables can be computed in parallel via closed-form solutions for each area \(\alpha \in A\). The only step that requires exchange among the areas is the auxiliary variable update in (19), in which updated voltage phase-angles and magnitudes at boundary buses are shared among adjacent areas.

Example 2 (Distributed Optimal DER Dispatch). We present simulation results of the distributed optimal DER dispatch method outlined above as compared to the centralized version in [15]. We assume that DERs are connected to buses in the set \(D = \{6, 12, 18, 22, 25, 33\}\), as depicted in Fig. 2. The DER active- and reactive-power setpoints are dispatched to simultaneously (i) minimize voltage-magnitude deviations from reference level of 1 p.u., (ii) regulate active-power injections at buses 1 and 33 to desired values of 0.3 p.u. and
0.1 p.u., respectively, and (iii) minimize cost of DER active- and reactive-power outputs.

In Fig. 4, we plot time evolution of voltage magnitudes and active-power injections at DER buses, as well as DER and substation reactive-power outputs. The system initially operates without DER participation. The DERs are activated at time $t_{start} = 5$ s. Subsequently, at time $t_{\Delta} = 10$ s, the system operating point changes as active- and reactive-power loads at all buses in the system increase by 25%. Simulations run until time $t_{end} = 15$ s. Once DERs are activated at time $t_{start} = 5$ s, we observe that the proposed measurement-based dispatch effectively achieves the weighted objectives of minimizing voltage-magnitude deviations from 1 p.u. and regulating the active-power injections at buses 1 and 33 to their respective setpoints. After the operating-point change at time $t_{\Delta} = 10$ s, the proposed method updates the linear sensitivity models and adapts the DER dispatch to achieve the same objectives.

We benchmark the proposed distributed measurement-based optimal DER dispatch method against centralized model- and measurement-based analogues, where all buses in the network are assumed to belong to one area. The nonlinear model-based optimal dispatch problem is solved with the MATPOWER Interior Point Solver [26]. We record voltage profiles and bus active- and reactive-power injections, at $t_{end} = 15$ s for (i) the centralized model-based nonlinear DER dispatch, (ii) the centralized measurement-based DER dispatch, and (iii) the proposed distributed measurement-based DER dispatch. Table I summarizes errors in (ii) and (iii) as compared to the model-based benchmark (i). The converged solution from the proposed method indeed matches very closely to those from model-based optimal dispatch with accurate system model and the centralized measurement-based dispatch, with respect to the cost function value, voltage magnitudes, and active- and reactive-power injections.

V. APPLICATION TO MULTI-PHASE SYSTEM

In this section, we demonstrate the scalability of the proposed distributed measurement-based optimal DER dispatch framework via numerical case studies involving the IEEE 123-bus test system shown in Fig. 5. We refer interested readers to [27] for details on system parameters.

A. Simulation Setup

We use residential customer load profiles for a 24-hour period with 1-min resolution from [6], that we interpolate to obtain 1-second resolution load data. A random number of customers (integer between 5 and 10) is connected to load buses, resulting in non-uniform distribution of loads across different phases. We assume a constant power factor of 95% for each load. We also connect uncontrolled three-phase solar photovoltaic (PV) systems at buses 13, 18, 35, 52, 60, 67, 72, single-phase solar at buses 32e, 94a, and 99b, and two-phase solar at bus 36 between phases a and b. The solar PV output is normalized from actual measurements with 1-second resolution [28], and each solar PV system uses a different profile from the data set, as shown in Fig. 6. We use solar PV profiles from a day with rapid fluctuations and high ramp rates in generation before noon, which challenge the model estimation and optimal dispatch.

We partition the test system into 6 areas, with each containing several single- and three-phase DERs, as indicated in Fig. 5. The DERs operate with independent active- and reactive-power limits within $P_{gen}^{lim} \in [-0.05, 0.05]$ p.u. and $Q_{gen}^{lim} \in [-0.05, 0.05]$ p.u. Three-phase DERs operate in balanced manner, where active- and reactive-power outputs are equal across all phases. In the simulations, we deactivate existing voltage regulators as DERs are used to regulate voltages and we limit our studies to the default switch configurations.

In three different scenarios, we assume that measurements of voltage phasors and active- and reactive-power injections sampled at 1-second intervals are available from (i) all area boundary buses as well as locations with controllable DERs...
while keeping voltages within acceptable bounds of

(ii) minimize cost of DER active- and reactive-power outputs

(i) regulate the active- and reactive-power injections at the

substation bus

10

samples via RWPLS in (9). Optimal DER dispatch is similarly

solved every 10 seconds to allow ample time for the ADMM-

based solution to converge to the new setpoints. We dispatch

DER active- and reactive-power setpoints to simultaneously

(i) regulate the active- and reactive-power injections at the

substation bus 1 to 0.15 and 0.03 p.u., respectively, and

(ii) minimize cost of DER active- and reactive-power outputs

while keeping voltages within acceptable bounds of 0.95 and

1.05 p.u. We set entries in the diagonal weight matrices \(\Psi, \Phi, \)

and \(\Upsilon \) accordingly to achieve the objective above.

resulting in a synchrophasor measurement coverage of 40%,

(ii) buses labelled with \(\star \) in Fig. 5 resulting in a synchrophasor

measurement coverage of 60%, and (iii) from all buses in the

system corresponding to 100% synchrophasor measurement

coverage.

The sensitivity model for each area is updated every \(R = 10 \)

samples via RWPLS in (9). Optimal DER dispatch is similarly

solved every 10 seconds to allow ample time for the ADMM-

based solution to converge to the new setpoints. We dispatch

DER active- and reactive-power setpoints to simultaneously

(i) regulate the active- and reactive-power injections at the

substation bus 1 to 0.15 and 0.03 p.u., respectively, and

(ii) minimize cost of DER active- and reactive-power outputs

while keeping voltages within acceptable bounds of 0.95 and

1.05 p.u. We set entries in the diagonal weight matrices \(\Psi, \Phi, \)

and \(\Upsilon \) accordingly to achieve the objective above.

B. Discussion of Simulation Results

In this subsection, we evaluate the performance of the

proposed method and discuss the simulation results. In par-

ticular, we evaluate (i) time-domain evolution of bus voltage

magnitudes as well as active- and reactive-power injections,

(ii) performance of different levels of synchrophasor measure-

ment coverage, and (iii) execution times.

1) Time-domain Evolution: In Figs. 7 and 8, respectively,

for the cases without and with DER control via the distributed

measurement-based framework, we plot time evolution of bus

voltage magnitudes at all buses with load and/or generation,

as well as active- and reactive-power injections at the sub-

station and at buses with DERs for the scenario with 60% synchrophasor measurement coverage. In Fig. 8, we observe

that the substation active- and reactive-power injections are

indeed regulated to their respective references and voltages are

regulated within the acceptable bounds of 0.95 and 1.05 p.u.

The proposed framework is very effective during times with

relatively smooth solar PV output, but it is challenged under

highly intermittent conditions, where the operational objectives

are not met with the 10-second DER setpoint updates. This

issue may be addressed by pairing the proposed method

with local DER controllers or by reducing the time between

consecutive DER setpoint updates. We emphasize that the

60% synchrophasor coverage is by no means a requirement

for the proposed method to be effective. It simply reflects a

future scenario with widespread measurement coverage due,

in part, to greater DER integration. Such a scenario calls for

distributed algorithms, like the one proposed in this paper, that

can be implemented at scale.

2) Comparison of Different Synchrophasor Coverage: We

compare the probability of various bus voltage values for the

three scenarios with different levels of synchrophasor mea-

surement coverage. Particularly, in Fig. 9, we plot histograms

of all bus voltages during the 24-hour simulation period for

the three scenarios of 40%, 60%, and 100% synchrophasor

measurement coverage, compared to the case without active

DER control. For the three scenarios of 40%, 60%, and

100%, respectively, 99.20%, 99.83%, and 99.95% of the bus

voltages are within voltage limits of 0.95 p.u. and 1.05 p.u.

Without DER support, voltage violations occur more fre-

quently, 94.52% of the bus voltages are within limits over the

simulation time. Further, we evaluate the probability of voltage

violations at the bus with the lowest voltage in the system

(bus 114) in Fig. 10. We observe that the probability of voltage

violations is reduced, when synchrophasor measurements are

available at a higher share of the buses. For the case with

partial synchrophasor coverage of 40% and 60%, we obtain a

probability of voltage violations below 0.95 p.u. of 88.75% and

59.7% as compared to 9.05% for the case with full coverage.

This is because with partial synchrophasor coverage, voltage

violations at unobserved buses are not accounted for in the

optimal DER dispatch. Nevertheless, in all three scenarios

with active DER control, the voltage violations are only of

small magnitudes up to 0.005 p.u. In contrast, without active

DER control, there are significant voltage violations up to

0.025 p.u. during the majority of the day. These results suggest

that even partial synchrophasor coverage significantly benefits

the operational performance, and the case with full coverage

improves the performance even more.

3) Execution Time: In Table II, we highlight the com-

putational benefits of the distributed method by reporting

execution times required for model estimation via RWPLS

and DER dispatch via distributed ADMM-based optimiza-

tion for 3 scenarios with different levels of synchrophasor

measurement coverage. We compare these to the centralized

implementation from [15]. We implement pertinent algorithms

in MATLAB R2018b on a personal computer with Intel Core

i7-10610U processor at 1.80 GHz, and 16 GB RAM. For the

Fig. 7: Time-domain simulation of the scenario without active

DER control. (a) bus voltages \(V_i \) at all buses; (b) substation

active-power injections \(P_i \); (c) bus active-power injections \(P_i \)

at buses with loads/injections; (d) substation reactive-power

injections \(Q_1 \); (e) bus reactive-power injections \(Q_i \) at buses

with loads/injections.
In this paper, we present a distributed measurement-based method to dispatch optimal DER active- and reactive-power outputs that adapt to system operating point. Optimal DER setpoints are obtained by embedding recursively estimated per-area sensitivity models as equality constraints in an optimization framework. (a) bus voltages V_i at all buses; (b) substation active-power injections P_i; (c) bus active-power injections P_i at buses with loads/injections; (d) substation reactive-power injections Q_i; (e) bus reactive-power injections Q_i at buses with loads/injections.

TABLE II: Comparison of execution times.

<table>
<thead>
<tr>
<th>Synchrophasor Coverage</th>
<th>Model Estimation (s)</th>
<th>Optimal DER Dispatch Per iteration (s)</th>
<th># iterations</th>
<th>Total (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Centralized 0.499</td>
<td>3.906 x 10^{-5} 2245</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed 0.0062</td>
<td>1.567 x 10^{-5} 1120</td>
<td>0.0176</td>
<td></td>
</tr>
<tr>
<td>60%</td>
<td>Centralized 1.216</td>
<td>4.783 x 10^{-6} 2739</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed 0.0098</td>
<td>2.023 x 10^{-5} 1246</td>
<td>0.0252</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>Centralized 1.924</td>
<td>1.586 x 10^{-4} 3122</td>
<td>0.495</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed 0.021</td>
<td>2.608 x 10^{-8} 1484</td>
<td>0.0387</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8: Time-domain simulation via proposed estimation and optimization framework. (a) bus voltages V_i at all buses; (b) substation active-power injections P_i; (c) bus active-power injections P_i at buses with loads/injections; (d) substation reactive-power injections Q_i; (e) bus reactive-power injections Q_i at buses with loads/injections.

In both the estimation and optimization stages, the only information that needs to be communicated between two adjacent areas are variables associated with the boundary buses that are connected across the two areas, not those associated with internal buses. Also, since information is only required of neighbouring buses in adjacent areas, the physical distance over which data is transferred is relatively small. Moreover, while ADMM requires many iterations when the stopping criterion imposes a tight tolerance, it can lead to good performance in a fraction of the number of iterations [25]. For example, we set $\epsilon = 10^{-6}$ for the execution times reported in Table II. On the other hand, if we set $\epsilon = 10^{-3}$, in the 100% coverage case, it takes merely 68 iterations (instead of 1484) for the ADMM to converge to DER setpoints that achieve an objective function value only 1.6429×10^{-5}% higher than that achieved by setting $\epsilon = 10^{-6}$. With modern communication channels like 5G offering round-trip communication times in the range of 1 ms [29], the communication delay would incur approximately an additional 0.07 s on the execution time.

VI. CONCLUDING REMARKS

In this paper, we present a distributed measurement-based method to dispatch optimal DER active- and reactive-power outputs that adapt to system operating point. Optimal DER setpoints are obtained by embedding recursively estimated per-area sensitivity models as equality constraints in an optimiza-
tion problem, which is solved in distributed fashion via the consensus-based ADMM method. The distributed estimation and optimization require little information exchange among adjacent areas (only voltages at boundary buses) and yield closed-form solutions. As demonstrated by numerical case studies, the main advantages of the proposed method include (i) adaptability to operating-point changes, (ii) computational savings over centralized implementations in both the model estimation and optimal DER dispatch, and (iii) requiring only information about which areas are adjacent to its boundary buses from an offline network topology model. Finally, important avenues for future research include application of ADMM-based algorithms that mitigate against communication noise or failure (see e.g., [30], [31]) and consideration of DERs with nonconvex operating regions.

APPENDIX

A. Reformulating (10) and (11) as Quadratic Program in (12)

In (12), \(\Pi^\alpha \), \(\pi^\alpha \), and \(\kappa^\alpha \) are obtained by suitable algebraic manipulations of (11) and they are given by

\[
\Pi^\alpha = \begin{bmatrix} \Psi^\alpha & 0 & 0 \\ 0 & \Phi^\alpha & 0 \\ 0 & 0 & \Gamma^\alpha \end{bmatrix}, \quad \pi^\alpha = -2 \left[\Phi^\alpha \Psi^\alpha \right],
\]

\[
\kappa^\alpha = (x^{\alpha})^T \Psi x^{\alpha} + (y^{\alpha})^T \Phi y^{\alpha},
\]

where 0s are matrices or vectors of all zeros with appropriate dimension. The linear constraints in (12b) is constructed by combining (10b) and (10e) with

\[
A^\alpha_{[k]} = \begin{bmatrix} -J^\alpha_{[k]} & I_2 [c^{\alpha}]^T & 0 \\ 0 & I_2 [c^{\alpha}]^T & -C^\alpha \end{bmatrix}, \quad b^\alpha_{[k]} = \begin{bmatrix} T^\alpha_{[k]} - C^\alpha y_{[k]}^{\text{gen}} \end{bmatrix},
\]

where \(I_2 [c^{\alpha}] \) denotes the \(2 \times 2 \) identity matrix and 0s represent matrices of all zeros with appropriate dimensions. Finally, \(A^\alpha \) represents the composition of set constraints in (10c) and (10d).

REFERENCES

