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Distributed Measurement-based Optimal DER
Dispatch with Estimated Sensitivity Models

Severin Nowak, Student Member, IEEE, Yu Christine Chen, Member, IEEE, and Liwei Wang, Member, IEEE

Abstract—This paper presents a distributed measurement-
based method to determine distributed energy resource (DER)
active- and reactive-power setpoints that minimize bus voltage
deviations from prescribed references, bus active- and reactive-
power deviations from desired values, as well as cost of DER
outputs. The proposed method partitions the system into multiple
areas and performs per-area computations in parallel, thus
mitigating scalability concerns of centralized implementations.
A linear sensitivity model for each area is first estimated from
measurements via the recursive weighted partial least-squares
algorithm. The estimated sensitivity models are then embedded
in an optimization problem, the structure of which is amenable
to decomposition into per-area subproblems. The subproblems
are solved in parallel using consensus-based alternating direction
method of multipliers to obtain optimal DER setpoints. Both the
estimation and optimization tasks require only the exchange of
information at boundary buses among adjacent areas. Numerical
simulations involving the IEEE 33-bus distribution test system
illustrate the ability of the proposed method to determine
optimal DER setpoints that adapt to operating-point changes in
a distributed fashion. Additional numerical simulations involving
the IEEE 123-bus system demonstrate computational scalability
and the application to multi-phase systems in a practical scenario.

Index Terms—Distributed energy resources, distributed model
estimation, distributed optimization, optimal DER dispatch, par-
tial least-squares estimation, phasor measurement units.

I. INTRODUCTION

MASSIVE deployment of distribution-level distributed
energy resources (DERs), such as rooftop solar-

photovoltaic, wind, and battery-storage systems, is crucial in
the transition to a more sustainable energy future. These tech-
nologies have seen tremendous global growth in recent years.
For example, today, the total installed capacity of small-scale
solar-photovoltaic systems exceeds 20 GW in the United States
and 7 GW in Australia [1]. Benefits for grid operations are
undeniable when DERs can be suitably dispatched via online
optimization routines [2]. However, optimal DER dispatch
may be compromised by inaccurate offline network models
due to incorrect topology information and fast-changing op-
erating points, resulting in suboptimal or undesired system
behaviours [3]. Recent research provides promising directions
in measurement-based methods to infer up-to-date information
about pertinent properties like voltage sensitivities [4], the
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Fig. 1: Illustrating the proposed framework. The distribution
system is partitioned into multiple areas. Each estimates its
own per-area sensitivity model from synchrophasor measure-
ments and subsequently solves its own optimal DER dispatch
subproblem. The optimal DER setpoints are obtained with
exchange of only boundary bus voltages via consensus-based
alternating direction method of multipliers.

power-flow Jacobian matrix [5], and network topology [6].
The ability to accurately estimate up-to-date system attributes
motivates widespread installations of measurement equipment
in distribution grids [7]. Particularly, distribution-level phasor
measurement units are well-suited for online optimization,
as they record so-called synchrophasors—time-synchronized
measurements of voltage and current phasors—with phase
angle accuracy of 0.01◦; and they transmit the data at intervals
in the sub-second range through a standardized communication
interface (e.g., IEEE C37.118) [3]. In the future, synchropha-
sor technology is expected to be embedded in devices like
inverter-interfaced DERs, transformers, and protection relays,
leading to significantly expanded metering capability in distri-
bution systems [7]. With the vast synchrophasor data volume
and greater DER integration, however, estimation of relevant
attributes and the ensuing optimal DER dispatch become large-
scale problems with many decision variables, which poses
challenges for effective and timely DER dispatch.

Aimed at practical implementation and scalability, we pro-
pose a measurement-based and distributed approach to deter-
mine DER active- and reactive-power setpoints that regulate
bus voltages and power injections while minimizing cost
of DER outputs. Figure 1 provides an illustration of the
proposed framework, which consists of two successive and
iterative stages: (i) estimating sensitivity models, and (ii)
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optimizing DER setpoints. In the estimation stage, we partition
the system into multiple areas and, instead of relying on
an accurate offline model, we estimate a linear voltage-to-
power sensitivity model for each area using synchrophasor
measurements available at (possibly a subset of) buses therein.
Then, in the second stage, we embed the estimated sensitivity
models from all areas as equality constraints into a convex
quadratic optimization problem. Per-area sensitivity models
are crucial to enable decomposition of the optimization into
per-area subproblems that can then be solved, in parallel
fashion, via consensus-based alternating direction method of
multipliers (ADMM) to reach an optimal operating point for
the entire system. The per-area estimation and optimization
tasks exchange pertinent information for only boundary buses
among adjacent areas.

We focus our review of prior art in the domains of
distributed estimation and measurement-based optimal DER
dispatch. Distributed algorithms are of particular interest for
large-scale distribution networks in order to improve scalabil-
ity and data privacy. For example, the problem of distributed
power system state estimation is addressed via consensus-
based ADMM in [8], distributed semidefinite programming
in [9], and more recently, a distributed gradient-based method
in [10]. Shifting attention to measurement-based optimal DER
dispatch, [11] uses rule- and optimization-based control strate-
gies in conjunction with an estimated second-order power-flow
sensitivity model. Furthermore, [12], [13] leverage estimated
power-to-voltage sensitivities to determine DER setpoints that
regulate voltages or substation injection with prior knowledge
of feasible topological configurations. In contrast, model-
free control via an extremum seeking approach is developed
in [14]. It forgoes the use of a network model by actively
probing the grid with sinusoidal perturbations of DER injec-
tions. Our previous work in [15] estimates a voltage-to-power
sensitivity model and embeds it in an optimization problem to
dispatch DERs toward multiple operational objectives. How-
ever, the measurement-based DER dispatch methods reviewed
above all involve centralized optimization, which may be
computationally expensive for large distribution networks with
many DERs and measurements. To avoid potential scalability
issues of centralized methods, distributed feedback-based opti-
mization adjusts DER setpoints recursively to converge to the
optimal operating point using measurements as the feedback
signal. Optimal voltage control has been implemented in
distributed fashion via feedback-based optimization [16]–[18].
Primal-dual gradient methods solving a saddle-point problem
achieve combined regulation of substation power supply and
system voltage levels in [2], [19]. These methods tend to be ro-
bust against variations in loads and renewable generation [20],
and they can cope with inaccuracies in the network model.
Nevertheless, in order to compute pertinent gradients in the
feedback-based optimization methods, prior knowledge of the
network topology and line parameters is required.

In this paper, we develop a distributed measurement-based
approach to determine DER active- and reactive-power set-
points. We partition the network into multiple areas, and each
area performs its own sensitivity model estimation and optimal
DER dispatch in parallel. The estimation of per-area sensitivity

models accommodates full or partial coverage of measure-
ments available at all buses or a subset thereof, respectively.
The key advantage of per-area estimation is that the number of
estimated sensitivities is greatly reduced as compared with the
full-network analogue. In the optimal DER dispatch stage, the
distributed ADMM-based solution algorithm affords closed-
form solutions in each subproblem. With respect to informa-
tion related to the physical network, compared to [2], [16]–[19]
that rely on some prior knowledge of the network topology
and line parameters, each per-area subproblem in the proposed
method requires only knowledge of which areas are adjacent to
its boundary buses. Furthermore, we minimize the combined
objective of regulating system voltages and power injections
as well as minimizing cost of DER outputs, unlike [11]–[13],
[16]–[18], which focus either on voltage regulation or active
power provision. Also, compared with [14], the proposed
method affords lower injection perturbations and temporal
measurement resolution. Numerical simulations involving the
IEEE 33-bus system demonstrate the effectiveness and adapt-
ability of the proposed distributed measurement-based frame-
work. Further simulations of the multi-phase IEEE 123-bus
system with realistic load and renewable generation profiles
demonstrate practical applicability and scalability. With the
above in mind, this paper extends our previous work in [15]
in two major directions: (i) estimation of per-area sensitivity
models and (ii) distributed optimal DER dispatch, both of
which are performed in parallel amongst different areas. We
also demonstrate several nontrivial benefits of the proposed
method via numerical simulations involving the IEEE 123-
bus multi-phase test system. First, the proposed distributed
approach accommodates larger and multi-phase systems with
greater synchrophasor measurement coverage (the method
in [15] suffers scalability limitations beyond 100 measured
nodes) while reducing computation time and thus enhancing
algorithmic scalability. Furthermore, it improves estimation
accuracy since the per-area sensitivity model estimation avoids
degradation of accuracy due to estimating zero entries. Finally,
it does not compromise on optimality as the decomposed
distributed optimization problem is equivalent to the original
centralized one.

The remainder of this paper is organized as follows. Sec-
tion II outlines the distribution network model and motivates
the need for a distributed measurement-based approach. Sec-
tion III presents the estimation of per-area sensitivity models.
In Section IV, we formulate the distributed optimal DER
dispatch problem with the estimated sensitivity models and
subsequently solve it via consensus-based ADMM. Numerical
simulations in Section V demonstrate the effectiveness and
scalability of the proposed distributed DER dispatch frame-
work. Finally, we provide concluding remarks in Section VI.

II. PRELIMINARIES

In this section, we establish the system model and formulate
the standard optimal DER dispatch problem. We also motivate
the need for a distributed measurement-based approach.
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A. Network and Power-flow Models

Consider a multi-phase distribution system with buses col-
lected in the set N = {1, . . . , |N |}. Suppose pertinent system
variables are sampled at time t = k∆t, k = 0, 1, . . . , where ∆t
is the sampling interval. We collect phases found at bus
i ∈ N in the set Pi ⊆ {a, b, c}. Let V φi,[k] and θφi,[k] denote,
respectively, the magnitude and phase-angle of the line-to-
neutral1 voltage at bus i ∈ N in phase φ ∈ Pi, and at discrete
time step k. Also let Pφi,[k] and Qφi,[k] denote, respectively,
the net active- and reactive-power injections at bus i ∈ N
in phase φ ∈ Pi, and at time step k. Further collect multi-
phase voltage phase-angles and magnitudes at all buses at time
step k in vector x[k] = [{θφi,[k]}φ∈Pi,i∈N , {V

φ
i,[k]}φ∈Pi,i∈N ]T.

Analogously, collect multi-phase net active- and reactive-
power injections at all buses at time step k in vector y[k] =

[{Pφi,[k]}φ∈Pi,i∈N , {Q
φ
i,[k]}φ∈Pi,i∈N ]T. With the notation es-

tablished above, the power-flow solution at time step k can
be compactly expressed as y[k] = g(x[k]) where g : R2Nφ →
R2Nφ , with Nφ =

∑
i∈N |Pi|. The dependence on network

parameters (such as circuit breaker status and line impedances)
is implicitly considered in the function g(·). In the neighbour-
hood sufficiently close to the operating point at time step k,
the power-flow solution at the next time step k + 1 can be
approximated with the following linear sensitivity model:

y[k+1] ≈ J[k]x[k+1] + c[k], (1)

where J[k] and c[k] respectively given by

J[k] =
dg

dx

∣∣∣
x[k]

, c[k] = y[k] −
dg

dx

∣∣∣
x[k]

x[k],

are the linear- and constant-term coefficients evaluated at the
operating point at time step k. It is worth noting that J[k]

is a sparse matrix whose structure is intimately related to the
network topology. This aspect is key to formulating distributed
estimation and optimization problems in Sections III and IV,
respectively.

B. Optimal DER Dispatch Problem

An optimal DER dispatch problem can be formulated to
minimize a desired cost function (e.g., cost of DER outputs,
deviations from reference values, etc.) subject to the linear
sensitivity model in (1) and other operational constraints. To
this end, let D ⊂ N denote the set of buses connected to
controllable DERs, and let Dφ =

∑
i∈D |Pi|. Assume that

the controllable DER at bus i ∈ D can inject nonzero active
and reactive power into phase φ ∈ Pi. Denote by Pφ,gen

i,[k]

and Qφ,gen
i,[k] , respectively, the controllable components of the

active- and reactive-power injections in phase φ ∈ Pi at
bus i ∈ D and at time step k; and further collect these in
vector ygen

[k] = [{Pφ,gen
i,[k] }φ∈Pi,i∈D, {Q

φ,gen
i,[k] }φ∈Pi,i∈D]T. Also

collect the uncontrollable active- and reactive-power injections
(arising from, e.g., loads) at all buses in vector yload

[k] ∈ R2Nφ

so that y[k] = Cygen
[k] − y

load
[k] , where C ∈ R2Nφ×2Dφ is the

matrix that maps the DER bus/phase indices to buses/phases

1Delta connections can be converted to wye connections in accordance with
our notation.

collected in the entire distribution network. Particularly, the
entry in the ith row and jth column of C is 1 if the jth
element of ygen

[k] represents the same phase and bus as the ith
element of y[k], and it is 0 otherwise. Then we formulate the
following optimization problem to dispatch controllable DERs
in the distribution network at time step k + 1:

minimize
x[k+1],y[k+1],y

gen
[k+1]

f(x[k+1], y[k+1], y
gen
[k+1]), (2a)

subject to y[k+1] = J[k]x[k+1] + c[k], (2b)
y[k+1] = y[k] + C(ygen

[k+1] − y
gen
[k] ), (2c)

xmin ≤ x[k+1] ≤ xmax, (2d)
ygen

[k+1] ∈ Y
gen, (2e)

where f : R2Nφ×R2Nφ×R2Dφ→R is the cost to be minimized,
xmin and xmax represent, respectively, the minimum and maxi-
mum limits of voltage phase-angles and magnitudes, and Ygen

represents the allowable space of DER outputs [15]. Under
typical DER control schemes (including, e.g., active-power
control, reactive-power control, and joint active- and reactive-
power control), Ygen is a convex set [2]. The underlying
assumption for (2b) to hold is that J[k] and c[k] computed or
estimated at time step k model the relationship between y[k+1]

and x[k+1] at time step k + 1 with sufficient accuracy. The
constraint in (2c) holds under the assumption that the uncon-
trollable active- and reactive-power injections do not change
significantly between time steps k and k+1. Nevertheless, we
emphasize that any such fluctuations would be captured by the
sensitivity model updated at the next time step k + 1.

C. Problem Statement

In [15], we developed a measurement-based method that
leverages synchrophasor measurements at a subset of buses to
estimate a reduced version of the sensitivity model in (1);
and both the model estimation and optimal DER dispatch
steps are solved in centralized fashion. Numerical case studies
demonstrate that execution times are feasible for real-time
implementation with relatively few measurements and DERs
in the network [15]. However, with the projected vast deploy-
ments of DERs and synchrophasor measurements in multi-
phase distribution systems [1], [7], the centralized method
involves large-scale estimation and optimization problems that
are computationally burdensome for real-time field implemen-
tations. To avoid potential scalability issues, in this paper,
we partition the distribution system into multiple areas, each
consisting of a portion of the full network. We estimate
a linear sensitivity model for each area and further solve
the optimal DER dispatch problem in a distributed manner,
enabled by consensus-based ADMM. The proposed distributed
measurement-based method has several key advantages: (i) it
reduces the computational burden in both the model estima-
tion and optimal DER dispatch tasks, (ii) it readily adapts
to operating-point changes by estimating per-area sensitivity
models online, and (iii) it affords greater data privacy as
measurements, cost function, and operational constraints are
only shared within the area.
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III. PER-AREA SENSITIVITY MODEL ESTIMATION

In this section, we estimate the linear sensitivity model
relating measured bus voltages to power injections for each
area in the distribution network.

A. Problem Formulation

We partition the distribution network into non-overlapping
areas collected in the set A. Within area α ∈ A, buses with
synchrophasor measurements are collected in the set Eα, and
those connected to DERs, whose setpoints can be remotely
updated, are collected in Dα. The formulation is general in
the sense that it accommodates synchrophasor measurements
collected at a subset of buses or at all buses within an area. For
distinct areas α, γ ∈ A, Eα ∩ Eγ = ∅. Furthermore, let Eα+

represent the extended set of buses in each area α ∈ A, which
also collects the one-hop adjacent measured buses belonging
to areas adjacent to area α. Denote the set of adjacent areas of
area α by Aα, and boundary buses for area α are collected in
Bα = ∪γ∈Aα(Eα+ ∩ Eγ+). Let Ai = {α, i ∈ Eα+} comprise
areas for which the extended set of buses contains bus i.

Denote the measured voltage phase-angle and magnitude at
bus i in phase φ at time step k as θ̂φi,[k] and V̂ φi,[k], respectively.
Similarly, let P̂φi,[k] and Q̂φi,[k] denote the measured net active-
and reactive-power injections at bus i in phase φ at time
step k. Collect measured quantities pertinent to area α ∈ A
in vectors x̂α[k] = [{θ̂φi,[k]}φ∈Pi,i∈Eα+ , {V̂ φi,[k]}φ∈Pi,i∈Eα+ ]T

and ŷα[k] = [{P̂φi,[k]}φ∈Pi,i∈Eα , {Q̂
φ
i,[k]}φ∈Pi,i∈Eα ]T. Further

hypothesizing that, for area α ∈ A, the active- and reactive-
power injections are linearly related to bus-voltage phase-
angles and magnitudes, we get

ŷα[k] = Jα[k]x̂
α
[k] + cα[k], α ∈ A, (3)

where Jα[k] and cα[k] form the sensitivity model relating mea-
sured voltages to power injections in area α ∈ A. Note that,
in (3), while x̂α[k] includes voltage magnitudes and angles at
one-hop adjacent buses in adjacent areas, ŷα[k] includes power
injections at only buses within area α. This is because we are
interested in the sensitivity of bus injections in a particular
area to the voltages on adjacent buses, which includes the
one-hop adjacent buses in adjacent areas. With the voltage
measurements at the one-hop adjacent buses in adjacent areas
included in (3), the structure of the distribution network ad-
mittance matrix enables the estimation of per-area sensitivities
without compromising the accuracy. Then, there exists Hα

[k]

that satisfies the relationship:

(ŷα[k])
T =

[
(x̂α[k])

T 1
]
Hα

[k], α ∈ A, (4)

where Hα
[k] = [Jα[k], c

α
[k]]

T. In the per-area estimation, our goal
is to evaluate the entries of Hα

[k] for each area α ∈ A based
on measurements pertinent to the area.

B. Solution Algorithm

In order to improve adaptability to operating-point changes
and to reduce computational burden, we estimate the entries of
Hα

[k] using only online synchrophasor measurements pertinent

to area α and one-hop adjacent buses belonging to adjacent
areas of area α. To this end, suppose that M samples of
voltage phase-angles and magnitudes, x̂α[k−M+1], . . . , x̂

α
[k], and

active- and reactive-power injections, ŷα[k−M+1], . . . , ŷ
α
[k], are

available. Also, assume that the operating point remains ap-
proximately constant over the M measurement samples (we
will remove this assumption later). Then, with M > 2|Eα|,
we collect M instances of (4) to form the subsequent over-
determined system of linear equations:

Y α[k] = Xα
[k]H

α
[k], α ∈ A, (5)

where Xα
[k] and Y α[k] are given by

Xα
[k] =

(x̂α[k−M+1])
T 1

...
...

(x̂α[k])
T 1

 , Y α[k] =

(ŷα[k−M+1])
T

...
(ŷα[k])

T

 . (6)

Since (5) is over-determined, we can obtain the ordinary least-
squares (OLS) estimate for Hα

[k] as

Ĥα
[k] ≈ ((Xα

[k])
TXα

[k])
−1(Xα

[k])
TY α[k]. (7)

In practice, however, similar patterns in voltage phase-angle
and magnitude measurements at different buses due to chang-
ing operating points may challenge the OLS estimation [21],
which results in an ill-conditioned regressor matrix in (7).
Also, recursive updates of Ĥα

[k] are desirable to capture chang-
ing operating points while reducing computational burden, and
greater emphasis ought to be placed on more recent measure-
ments than past ones that become outdated. Considering these
circumstances, we use the recursive weighted partial least-
squares (RWPLS) algorithm to compute Ĥα

[k], as it enhances
OLS estimation for ill-posed regression problems.

Assuming that the per-area sensitivity models are updated
every R samples, the RWPLS method employs the partial
least-squares (PLS) decomposition recursively to project key
components in Xα

[k−R] and Y α[k−R] onto lower-dimensional
latent matrices Γα[k−R], G

α
[k−R], L

α
[k−R]. New design and re-

sponse matrices Xα
[k] and Y α[k] at time step k can equivalently

be represented by combining the PLS model of the previous
estimation step at time step k − R with newly collected
measurements between time steps k−R+ 1 and k such that:

Xα
[k] =


σGα[k−R]

T

x̂α[k−R+1]
T 1

...
...

x̂α[k]
T 1

 , Y α[k] =


σΓα[k−R]L

α
[k−R]

T

ŷα[k−R+1]
T

...
ŷα[k]

T

 , (8)

where the forgetting factor σ ∈ (0, 1] prioritizes recent
measurements over earlier ones. Finally, the estimated per-
area sensitivity model Ĥα

[k] at time step k is obtained after
decomposing Xα

[k] and Y α[k] into Γα[k], G
α
[k], L

α
[k] via PLS by

Ĥα
[k] = (Gα[k] G

α
[k]

T)−1Gα[k]Γ
α
[k] L

α
[k]

T . (9)

Details on the RWPLS method can be found in [22].

Example 1 (Sensitivity Model Estimation). To illustrate ideas
introduced above, consider the IEEE 33-bus test system (see,
e.g., [23]) with the one-line diagram shown in Fig. 2. As a
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Fig. 2: IEEE 33-bus test system with DERs connected at ar-
bitrarily chosen buses collected in D = {6, 12, 18, 22, 25, 33}.
The network is partitioned into five areas collected in the
set A = {1, 2, . . . , 5}. Assume, without loss of generality,
synchrophasor measurements are available at all buses. This
test system is single phase, so Pi = {a}, ∀ i ∈ N .
As an example of the notation used throughout this paper,
consider area 1. Within area 1, measured buses are collected
in E1 = {1, 2, 3, 4, 5, 6, 23, 24, 25} and buses connected to
DERs are collected in D1 = {6, 25}. The extended set of
buses is E1+ = E1 ∪ {7, 19, 26}. Adjacent areas are collected
in A1 = {2, 3, 4}. Boundary buses are collected in B1 =
(E1+ ∩E2+)∪ (E1+ ∩E3+)∪ (E1+ ∩E4+) = {2, 6, 7, 19, 26}.
Finally, the boundary bus 6 belongs to the extended set of
buses in areas collected in A6 = {1, 3, 4}.

benchmark, we obtain the full-network sensitivity model H
by evaluating the model-based power-flow Jacobian matrix at
the operating point assuming an accurate network model is
available. Next, we estimate the full-network sensitivity model
Ĥ using measurements obtained from all buses in the system.
We also evaluate entries of the per-area sensitivity models
using (9). For both full-network and per-area estimates, we
collect 100 sets of measurements of bus voltage phase-angles
and magnitudes and active- and reactive-power injections from
synchrophasor measurements assumed to be available, without
loss of generality, at all buses. Also assume that the active- and
reactive-power components of loads at buses in N \ {1} vary
randomly around their nominal values as Gaussian distributed
random variables with 0 mean and 0.1% standard deviation
relative to the respective nominal load values.

To assess the accuracy of the per-area sensitivity models, we
reorder and stack the entries therein suitably to form a matrix
comparable to the full-network sensitivity model. Using the
Frobenius norm as an error metric, i.e., ||Ĥ−H||F /||H||F , we
find that the full-network estimate has an error of 1.995×10−4,
compared to an error of 6.224×10−5 for the per-area estimate.
The reason that the per-area sensitivity models yield lower
estimation error than the full-network counterpart is as follows.
Due to the sparse nature of the network connectivity, many
entries in the sensitivity model are identically zero, but the
full-network estimate contains very small nonzero values (all
less than 0.035 in our numerical example). On the other hand,
for the purpose of error comparison, we merge the per-area
sensitivity models into the full-network analogue. In so doing,
we make use of network connectivity information, i.e., the
locations of zero entries. To illustrate the observations above,
we plot heatmaps of the sensitivities in J[k] in Fig. 3. �

IV. DISTRIBUTED OPTIMAL DER DISPATCH

In this section, we formulate the optimal DER dispatch
problem that embeds each per-area estimated sensitivity model
as an equality constraint within the corresponding optimization
subproblem. We also outline a tractable distributed solution
approach using consensus-based ADMM algorithm.

A. Problem Formulation

We aim to determine the controllable DER active- and
reactive-power setpoints in area α ∈ A at time step k + 1.
Namely, we optimize over variables collected in vector
yα,gen

[k+1] = [{Pφ,gen
i,[k+1]}φ∈Pi,i∈Dα , {Q

φ,gen
i,[k+1]}φ∈Pi,i∈Dα ]T, where

Dα denotes the set of buses with controllable DERs in area α.
In turn, decision variables also include net injections and
voltage phase-angles and magnitudes respectively collected
in yα[k+1] = [{Pφi,[k+1]}φ∈Pi,i∈Eα , {Q

φ
i,[k+1]}φ∈Pi,i∈Eα ]T and

xα[k+1] = [{θφi,[k+1]}φ∈Pi,i∈Eα+ , {V φi,[k+1]}φ∈Pi,i∈Eα+ ]T. Con-
straints imposed on xα[k+1], y

α
[k+1], and yα,gen

[k+1] account for
various operating ranges such as minimum and maximum
allowable voltage limits and DER operating regions. Then,
we pose the following separable optimization problem:

minimize
xα,yα,yα,gen,

α∈A

∑
α∈A

fα(xα, yα, yα,gen) (10a)

subject to yα= Jα[k]x
α + cα[k], ∀α∈A, (10b)

xαmin ≤ xα ≤ xαmax, ∀α∈A, (10c)
yα,gen ∈ Yα,gen, ∀α∈A, (10d)
yα= yα[k] + Cα(yα,gen− yα,gen

[k] ), ∀α∈A, (10e)

zαi = Fαi x
α = zi, ∀ i∈Bα, α∈A, (10f)

where the parameterization of decision variables with respect
to k + 1 is dropped to contain notational burden. In (10e),
Cα, α ∈ A, is the matrix that maps the DER bus/phase
indices to buses/phases from which measurements are obtained
in area α. Furthermore, (10f) represent consensus constraints
that enforce voltage phase-angles and magnitudes at boundary
buses shared among adjacent areas to be equal. To this end,
we use matrix Fαi , α ∈ A, to map voltage phase-angles and
magnitudes in all phases of bus i ∈ Bα in xα to auxiliary
variable zi, which is common for all areas with bus i as a
boundary bus. The quadratic cost function in (10) is fully
separable among different areas. It comprises a weighted sum
of: (i) voltage phase-angle and magnitude deviations from
respective references, (ii) nodal active- and reactive-power
injection deviations from desired values, and (iii) cost of DER
active- and reactive-power outputs, i.e.,

fα(xα, yα, yα,gen) = (xα − xα◦)TΨα(xα − xα◦)
+ (yα − yα◦)TΦα(yα − yα◦)
+ (yα,gen)TΥαyα,gen, (11)

where xα◦ and yα◦, respectively, denote the voltage references
and desired values for power injections at measured buses
in area α ∈ A. In (11), Ψα = diag(ψ1, . . . , ψ2|Eα+|),
Φα = diag(ϕ1, . . . , ϕ2|Eα|), and Υα = diag(υ1, . . . , υ2|Dα|)
are diagonal matrices with non-negative entries, i.e.,
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Fig. 3: Heatmap representations of the entries in J[k] for (a) the model-based sensitivities, (b) the measurement-based sensitivities
from the proposed per-area estimation, and (c) the measurement-based sensitivities from the centralized estimation. Darker
shades (approaching black) represent entries with larger magnitude, and the shade lightens with decreasing magnitude with
white colour representing entries that are precisely zero. Shaded boxes delineate entries that are related to different areas, and
colours used are consistent with those in Fig. 2.

ψi, ϕi, υi ≥ 0. Without loss of generalization, we assume that
area 1 contains the substation bus 1. Note that y1

[k+1] includes
the substation power injections so that we can achieve feeder-
level active- and reactive-power regulation. Before delving into
the solution approach, we emphasize that the separable prob-
lem in (10) is equivalent to the problem in (2). Furthermore, as
demonstrated in Example 1, the per-area estimated sensitivities
Jα[k], α ∈ A, are in fact more accurate than the full-network
counterpart. Thus, the solution of the separable problem does
not compromise on optimality as compared to the centralized
problem in (2).

We collect decision variables pertinent to area α in χα =
[(xα)T, (yα)T, (yα,gen)T]T and further we define entries in
and structures of Πα, πα, κα, Aα[k], b

α
[k], and Xα in Appendix

A so that (10) is expressed by:

minimize
χα, α∈A,

zαi ,zi, i∈B
α, α∈A

∑
α∈A

1

2
(χα)TΠαχα + (πα)Tχα + κα (12a)

subject to Aα[k]χ
α = bα[k],∀α ∈ A, (12b)

χα ∈ Xα,∀α ∈ A, (12c)
zαi = Kα

i χ
α = zi,∀ i ∈ Bα, α ∈ A, (12d)

where Πα and πα appropriately collect the quadratic and linear
weights of the cost function in (11), and κα is a constant term
that does not affect the problem solution. For area α ∈ A, the
equality constraints in (10b) and (10e) collectively form (12b)
with matrix Aα[k] and vector bα[k] appropriately defined. Sim-
ilarly, the set constraints in (10c) and (10d) are collectively
rewritten as (12c), where Xα, α ∈ A, denotes the typically
convex set of allowable DER operating regions as well as
bus voltage bounds in area α. Finally, (12d) corresponds to
consensus constraints in (10f), where Kα

i , α ∈ A, is a matrix
containing 0s and 1s that maps voltage phase-angles and
magnitudes of bus i in χα to zαi . Also, voltage phase-angle
and magnitude of each boundary bus i ∈ Bα are associated

with auxiliary consensus variable zi, coupled across areas that
share bus i as a boundary bus, i.e., areas in the set Ai.

With positive semidefinite weights in Πα, (12) can be
decomposed into |A| per-area convex quadratic subproblems
coupled with consensus constraints pertinent to adjacent ar-
eas. Due to the consensus constraints among adjacent areas
in (12d), standard solvers for the subproblems are not imme-
diately applicable. In the next section, we present a tractable
consensus-based ADMM algorithm to solve the DER dispatch
problem in (12) in a distributed fashion, where only voltage
phase-angles and magnitudes of boundary buses need to be
exchanged among adjacent areas.

B. ADMM-based Solution Approach

The general idea of the distributed ADMM-based approach
is to treat each per-area subproblem as a convex quadratic
program. In addition, using the auxiliary variables defined
for the voltage phase-angle and magnitude for each boundary
bus, consensus among adjacent areas can be achieved. We
decompose the problem in (12) for each area α ∈ A:

minimize
χα,ωα,

zγi ,zi,i∈B
α,γ∈Ai

1

2
(χα)TΠαχα + (πα)Tχα (13a)

subject to Aα[k]χ
α = bα[k], (13b)

ωα ∈ Xα, (13c)
ωα = χα, (13d)
zγi − zi = 0, ∀ i ∈ Bα, γ ∈ Ai, (13e)
zαi = Kα

i χ
α, ∀ i ∈ Bα, (13f)

where we define auxiliary variables ωα and tie it to decision
variables χα with the equality constraint in (13d), and γ ∈ Ai
is a dummy index variable. Notably, in (13), the per-area
equality constraints on χα, per-area bound constraints on
χα, and consensus constraints among adjacent areas are each
associated with a different decision variable.
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For the per-area subproblem, the ADMM algorithm alter-
nates between solving an equality-constrained quadratic pro-
gram with a projection onto feasible bound constraints, while
achieving consensus among areas via (13e). The augmented
Lagrangian associated with (13) is given by

Lαρ (χα, ωα, µα, {zγi , zi, s
γ
i }i∈Bα,γ∈Ai)

=
(1

2
(χα)TΠαχα + (πα)Tχα

+
ρ

2
‖χα − ωα + µα‖22 −

ρ

2
‖µα‖22

)
+
∑
i∈Bα

∑
γ∈Ai

ρ

2

(
||zγi − zi + sγi ||

2
2 − ||s

γ
i ||

2
2

)
, (14)

where ρ is a positive scalar ADMM parameter, µα, and sγi
are scaled dual variables for the coupling constraints (13d)
and (13e). Note that we do not include constraints (13b), (13c)
and (13f) in the augmented Lagrangian as they will be con-
sidered in the respective subproblems. Below, we provide a
brief summary of the iterative algorithm, which is later used
in numerical case studies presented in Section V. The ADMM
algorithm uses a sequence of iterations indexed by ` to search
for the optimizer of (13).

The primal variable update for area α ∈ A solves for
(χα)`+1 and (zαi )`+1 from the following standard equality-
constrained convex quadratic program:

minimize
χα,zαi , i∈Bα

1

2
(χα)TΠαχα + (πα)Tχα

+
ρ

2

∥∥χα − (ωα)` + (µα)`
∥∥2

2

+
∑
i∈Bα

ρ

2

∥∥zαi − (zi)
` + (sαi )`

∥∥2

2
(15a)

subject to Aα[k]χ
α = bα[k], (15b)

zαi = Kα
i χ

α, ∀ i ∈ Bα. (15c)

The solution to (15) can be readily obtained via a closed-form
solution [24]. Next, armed with the primal updates for iteration
` + 1, the updates for auxiliary variables ωα and zi, i ∈ Bα,
are respectively given by

(ωα)`+1=arg minimize
ωα∈Xα

ρ

2
||(χα)`+1−ωα+(µα)`||22, (16)

(zi)
`+1=arg minimize

zi

∑
γ∈Ai

ρ

2
||(zγi )`+1−zi+(sγi )`||22. (17)

The projection problem in (16) admits closed-form solu-
tions for voltage bounds and typical constraints on DER
outputs [24]. Specifically, for the projection onto independent
active- and reactive-power box limits, the solution to (16) is

(ωα)`+1 = min(χαmax,max(χαmin, (χ
α)`+1 − (µα)`)), (18)

where χαmin and χαmax comprise, respectively, the entry-wise
lower and upper bounds of χα. Closed-form projections onto
other typical DER operational regions are provided in [2] and
can be readily integrated in the proposed ADMM solution
approach. For the auxiliary variable zi, i ∈ Bα, the problem
in (17) solves as the average of (zγi )`+1, γ ∈ Ai, i.e., [25]

(zi)
`+1 =

1

|Ai|
∑
γ∈Ai

(zγi )`+1. (19)
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Fig. 4: Time-domain simulation via proposed distributed
measurement-based optimal DER dispatch when DERs are
activated at time tstart = 5 s, and at time t∆ = 10 s, the
system operating point is changed. Top pane: bus voltages Vi at
buses with DERs; Middle pane: bus active-power injections Pi
at buses with DERs; Bottom pane: substation reactive-power
injection Q1 and DER reactive-power injections Qgen

i at buses
with DERs.

Finally, the scaled dual variables admit straightforward recur-
sive updates given by

(µα)`+1 = (µα)` + (ωα)`+1 − (χα)`+1, (20)

(sαi )`+1 = (sαi )` + (zi)
`+1 − (zαi )`+1. (21)

The ADMM algorithm outlined above repeatedly updates
primal variables via (15), followed by the auxiliary variables
via (16) and (17) and dual variables via (20) and (21) un-
til: ||(χα)` − (ωα)`||2 + ||{(zαi )` − (zi)

`}i∈Bα ||2 < ε and
||ρ((ωα)` − (ωα)`−1)||2 + ||ρ({(zi)` − (zi)

`−1}i∈Bα)||2 < ε,
for some predefined tolerance ε > 0. We initialize auxiliary
variables (ωα)0 and (zi)

0 with values corresponding to the
operating point at time step k just before optimization, and
set initial conditions for primal and scaled dual variables to 0.
The ADMM iterations continue until the stopping criteria are
satisfied with optimizer given by χα? from which optimal
DER dispatch yα,gen? (i.e., Pα,gen?

i and Qα,gen?
i , i ∈ Dα) can

be extracted. We highlight that all the updates of primal and
dual variables can be computed in parallel via closed-form
solutions for each area α ∈ A. The only step that requires
exchange among the areas is the auxiliary variable update
in (19), in which updated voltage phase-angles and magnitudes
at boundary buses are shared among adjacent areas.

Example 2 (Distributed Optimal DER Dispatch). We present
simulation results of the distributed optimal DER dispatch
method outlined above as compared to the centralized version
in [15]. We assume that DERs are connected to buses in
the set D = {6, 12, 18, 22, 25, 33}, as depicted in Fig. 2.
The DER active- and reactive-power setpoints are dispatched
to simultaneously (i) minimize voltage-magnitude deviations
from reference level of 1 p.u., (ii) regulate active-power in-
jections at buses 1 and 33 to desired values of 0.3 p.u. and
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TABLE I: Comparison of cost-function and relative-errors
among (i) the centralized model-based nonlinear DER dis-
patch, (ii) the centralized measurement-based DER dispatch,
and (iii) the proposed distributed measurement-based DER
dispatch.

Cost Cost Voltage- Active- Reactive-
function function magnitude power power

(p.u.) error (%) error (%) error (%) error (%)
Model-based (Central) 0.0077 — — — —
Meas-based (Central) 0.0077 0.054 0.002 5.800 0.939
Meas-based (Dist) 0.0077 0.054 0.002 5.849 0.067

0.1 p.u., respectively, and (iii) minimize cost of DER active-
and reactive-power outputs.

In Fig. 4, we plot time evolution of voltage magnitudes
and active-power injections at DER buses, as well as DER
and substation reactive-power outputs. The system initially
operates without DER participation. The DERs are activated at
time tstart = 5 s. Subsequently, at time t∆ = 10 s, the system
operating point changes as active- and reactive-power loads at
all buses in the system increase by 25%. Simulations run until
time tend = 15 s. Once DERs are activated at time tstart = 5 s,
we observe that the proposed measurement-based dispatch
effectively achieves the weighted objectives of minimizing
voltage-magnitude deviations from 1 p.u. and regulating the
active-power injections at buses 1 and 33 to their respective
setpoints. After the operating-point change at time t∆ = 10 s,
the proposed method updates the linear sensitivity models and
adapts the DER dispatch to achieve the same objectives.

We benchmark the proposed distributed measurement-based
optimal DER dispatch method against centralized model- and
measurement-based analogues, where all buses in the network
are assumed to belong to one area. The nonlinear model-based
optimal dispatch problem is solved with the MATPOWER
Interior Point Solver [26]. We record voltage profiles and
bus active- and reactive-power injections, at tend = 15 s
for (i) the centralized model-based nonlinear DER dispatch,
(ii) the centralized measurement-based DER dispatch, and
(iii) the proposed distributed measurement-based DER dis-
patch. Table I summarizes errors in (ii) and (iii) as compared
to the model-based benchmark (i). The converged solution
from the proposed method indeed matches very closely to
those from model-based optimal dispatch with accurate system
model and the centralized measurement-based dispatch, with
respect to the cost function value, voltage magnitudes, and
active- and reactive-power injections. �

V. APPLICATION TO MULTI-PHASE SYSTEM

In this section, we demonstrate the scalability of the pro-
posed distributed measurement-based optimal DER dispatch
framework via numerical case studies involving the IEEE 123-
bus test system shown in Fig. 5. We refer interested readers
to [27] for details on system parameters.

A. Simulation Setup

We use residential customer load profiles for a 24-hour
period with 1-min resolution from [6], that we interpolate to
obtain 1-second resolution load data. A random number of
customers (integer between 5 and 10) is connected to load

Fig. 5: IEEE 123-bus multi-phase test system partitioned into
6 areas. Synchrophasor measurements are available at 60% of
buses with load and/or generation, DERs are installed at 25%
of buses.

0 2 4 6 8 10 12 14 16 18 20 22

0

0.5

1

24

Fig. 6: Normalized daily solar PV output for different
locations with intermittent solar irradiation [28].

buses, resulting in non-uniform distribution of loads across
different phases. We assume a constant power factor of 95%
for each load. We also connect uncontrolled three-phase solar
photovoltaic (PV) systems at buses 13, 18, 35, 52, 60, 67, 72,
single-phase solar at buses 32c, 94a, and 99b, and two-
phase solar at bus 36 between phases a and b. The solar PV
output is normalized from actual measurements with 1-second
resolution [28], and each solar PV system uses a different
profile from the data set, as shown in Fig. 6. We use solar
PV profiles from a day with rapid fluctuations and high ramp
rates in generation before noon, which challenge the model
estimation and optimal dispatch.

We partition the test system into 6 areas, with each con-
taining several single- and three-phase DERs, as indicated
in Fig. 5. The DERs operate with independent active- and
reactive-power limits within P gen

i ∈ [−0.05, 0.05] p.u. and
Qgen
i ∈ [−0.05, 0.05] p.u. Three-phase DERs operate in bal-

anced manner, where active- and reactive-power outputs are
equal across all phases. In the simulations, we deactivate ex-
isting voltage regulators as DERs are used to regulate voltages
and we limit our studies to the default switch configurations.

In three different scenarios, we assume that measurements
of voltage phasors and active- and reactive-power injections
sampled at 1-second intervals are available from (i) all area
boundary buses as well as locations with controllable DERs
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Fig. 7: Time-domain simulation of the scenario without active
DER control. (a) bus voltages Vi at all buses; (b) substation
active-power injections P1; (c) bus active-power injections Pi
at buses with loads/injections; (d) substation reactive-power
injections Q1; (e) bus reactive-power injections Qi at buses
with loads/injections.

resulting in a synchrophasor measurement coverage of 40%,
(ii) buses labelled with ? in Fig. 5 resulting in a synchrophasor
measurement coverage of 60%, and (iii) from all buses in the
system corresponding to 100% synchrophasor measurement
coverage.

The sensitivity model for each area is updated every R = 10
samples via RWPLS in (9). Optimal DER dispatch is similarly
solved every 10 seconds to allow ample time for the ADMM-
based solution to converge to the new setpoints. We dispatch
DER active- and reactive-power setpoints to simultaneously
(i) regulate the active- and reactive-power injections at the
substation bus 1 to 0.15 and 0.03 p.u., respectively, and
(ii) minimize cost of DER active- and reactive-power outputs
while keeping voltages within acceptable bounds of 0.95 and
1.05 p.u. We set entries in the diagonal weight matrices Ψ,Φ,
and Υ accordingly to achieve the objective above.

B. Discussion of Simulation Results

In this subsection, we evaluate the performance of the
proposed method and discuss the simulation results. In par-
ticular, we evaluate (i) time-domain evolution of bus voltage
magnitudes as well as active- and reactive-power injections,
(ii) performance of different levels of synchrophasor measure-
ment coverage, and (iii) execution times.

1) Time-domain Evolution: In Figs. 7 and 8, respectively,
for the cases without and with DER control via the distributed
measurement-based framework, we plot time evolution of bus
voltage magnitudes at all buses with load and/or generation,

as well as active- and reactive-power injections at the sub-
station and at buses with DERs for the scenario with 60%
synchrophasor measurement coverage. In Fig. 8, we observe
that the substation active- and reactive-power injections are
indeed regulated to their respective references and voltages are
regulated within the acceptable bounds of 0.95 and 1.05 p.u.
The proposed framework is very effective during times with
relatively smooth solar PV output, but it is challenged under
highly intermittent conditions, where the operational objectives
are not met with the 10-second DER setpoint updates. This
issue may be addressed by pairing the proposed method
with local DER controllers or by reducing the time between
consecutive DER setpoint updates. We emphasize that the
60% synchrophasor coverage is by no means a requirement
for the proposed method to be effective. It simply reflects a
future scenario with widespread measurement coverage due,
in part, to greater DER integration. Such a scenario calls for
distributed algorithms, like the one proposed in this paper, that
can be implemented at scale.

2) Comparison of Different Synchrophasor Coverage: We
compare the probability of various bus voltage values for the
three scenarios with different levels of synchrophasor mea-
surement coverage. Particularly, in Fig. 9, we plot histograms
of all bus voltages during the 24-hour simulation period for
the three scenarios of 40%, 60%, and 100% synchrophasor
measurement coverage, compared to the case without active
DER control. For the three scenarios of 40%, 60%, and
100%, respectively, 99.20%, 99.83%, and 99.95% of the bus
voltages are within voltage limits of 0.95 p.u. and 1.05 p.u.
Without DER support, voltage violations occur more fre-
quently, 94.52% of the bus voltages are within limits over the
simulation time. Further, we evaluate the probability of voltage
violations at the bus with the lowest voltage in the system (bus
114) in Fig. 10. We observe that the probability of voltage
violations is reduced, when synchrophasor measurements are
available at a higher share of the buses. For the case with
partial synchrophasor coverage of 40% and 60%, we obtain a
probability of voltage violations below 0.95 p.u. of 88.75% and
59.7% as compared to 9.05% for the case with full coverage.
This is because with partial synchrophasor coverage, voltage
violations at unobserved buses are not accounted for in the
optimal DER dispatch. Nevertheless, in all three scenarios
with active DER control, the voltage violations are only of
small magnitudes up to 0.005 p.u. In contrast, without active
DER control, there are significant voltage violations up to
0.025 p.u. during the majority of the day. These results suggest
that even partial synchrophasor coverage significantly benefits
the operational performance, and the case with full coverage
improves the performance even more.

3) Execution Time: In Table II, we highlight the com-
putational benefits of the distributed method by reporting
execution times required for model estimation via RWPLS
and DER dispatch via distributed ADMM-based optimiza-
tion for 3 scenarios with different levels of synchrophasor
measurement coverage. We compare these to the centralized
implementation from [15]. We implement pertinent algorithms
in MATLAB R2018b on a personal computer with Intel Core
i7-10610U processor at 1.80 GHz, and 16 GB RAM. For the
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Fig. 8: Time-domain simulation via proposed estimation and
optimization framework. (a) bus voltages Vi at all buses;
(b) substation active-power injections P1; (c) bus active-power
injections Pi at buses with loads/injections; (d) substation
reactive-power injections Q1; (e) bus reactive-power injections
Qi at buses with loads/injections.

TABLE II: Comparison of execution times.

Synchrophasor Model Optimal DER Dispatch
Coverage Estimation (s) Per iteration (s) # iterations Total (s)

40% Centralized 0.499 3.906× 10−5 2245 0.094

Distributed 0.0062 1.567× 10−5 1120 0.0176

60% Centralized 1.216 4.783× 10−5 2739 0.131

Distributed 0.0098 2.023× 10−5 1246 0.0252

100% Centralized 1.924 1.586× 10−4 3122 0.495

Distributed 0.021 2.608× 10−5 1484 0.0387

distributed method, we report execution times for area 6, as
it contains the most measurement locations and DERs. We
set the ADMM parameter ρ = 0.7 and the residual tolerance
ε = 10−6. These parameters are set empirically to achieve
good convergence and satisfactorily accurate DER setpoints.
We observe computational savings in the scenarios with partial
synchrophasor coverage over the one with full coverage, due
to lower-dimensional estimation and optimization problems.
In the scenarios with 60% and 100% synchrophasor cov-
erage, the centralized implementation of the estimation and
optimization tasks exceeds the 1-s interval between consec-
utive measurement samples, limiting practical applicability.
On the other hand, in our particular implementation, the
proposed distributed method overcomes scalability issues with
around 100× and 10× improvements in model estimation
and optimization tasks, respectively, thus facilitating real-time
operations.

4) Communication Considerations: In both the estimation
and optimization stages, the only information that needs to
be communicated between two adjacent areas are variables
associated with the boundary buses that are connected across

Fig. 9: Probability of voltage magnitudes at all buses for
the different simulation scenarios. (a) Scenario without active
DER control and scenario with active DER control and 40%
synchrophasor measurement coverage; (b) Scenarios with ac-
tive DER control with 60% and 100% synchrophasor measure-
ment coverage, respectively. The vertical red line indicates the
lower voltage limit of 0.95 p.u.

Fig. 10: Probability of bus voltage violations at bus 114 with
different levels of synchrophasor measurement coverage of
40%, 60%, and 100%. The vertical red line indicates the lower
voltage limit of 0.95 p.u.

the two areas, not those associated with internal buses. Also,
since information is only required of neighbouring buses in
adjacent areas, the physical distance over which data is trans-
ferred is relatively small. Moreover, while ADMM requires
many iterations when the stopping criterion imposes a tight
tolerance, it can lead to good performance in a fraction of the
number of iterations [25]. For example, we set ε = 10−6 for
the execution times reported in Table II. On the other hand, if
we set ε = 10−3, in the 100% coverage case, it takes merely
68 iterations (instead of 1484) for the ADMM to converge to
DER setpoints that achieve an objective function value only
1.6429×10−5% higher than that achieved by setting ε = 10−6.
With modern communication channels like 5G offering round-
trip communication times in the range of 1 ms [29], the
communication delay would incur approximately an additional
0.07 s on the execution time.

VI. CONCLUDING REMARKS

In this paper, we present a distributed measurement-based
method to dispatch optimal DER active- and reactive-power
outputs that adapt to system operating point. Optimal DER
setpoints are obtained by embedding recursively estimated per-
area sensitivity models as equality constraints in an optimiza-
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tion problem, which is solved in distributed fashion via the
consensus-based ADMM method. The distributed estimation
and optimization require little information exchange among
adjacent areas (only voltages at boundary buses) and yield
closed-form solutions. As demonstrated by numerical case
studies, the main advantages of the proposed method include
(i) adaptability to operating-point changes, (ii) computational
savings over centralized implementations in both the model
estimation and optimal DER dispatch, and (iii) requiring only
information about which areas are adjacent to its boundary
buses from an offline network topology model. Finally, impor-
tant avenues for future research include application of ADMM-
based algorithms that mitigate against communication noise or
failure (see e.g., [30], [31]) and consideration of DERs with
nonconvex operating regions.

APPENDIX

A. Reformulating (10) and (11) as Quadratic Program in (12)
In (12), Πα, πα, and κα are obtained by suitable algebraic

manipulations of (11) and they are given by

Πα = 2

Ψα 0 0
0 Φα 0
0 0 Υα

 , πα = −2

Ψαxα◦

Φαyα◦

0

 , (22)

κα = (xα◦)TΨxα◦ + (yα◦)TΦyα◦, (23)

where 0s are matrices or vectors of all zeros with appropriate
dimension. The linear constraints in (12b) is constructed by
combining (10b) and (10e) with

Aα[k] =

[
−Jα[k] I2|Eα| 0

0 I2|Eα| −Cα
]
, bα[k] =

[
cα[k]

yα[k] − Cαy
α,gen
[k]

]
,

(24)

where I2|Eα| denotes the 2|Eα| × 2|Eα| identity matrix and 0s
represent matrices of all zeros with appropriate dimensions.
Finally, Xα represents the composition of set constraints
in (10c) and (10d).
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