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Bayesian Inference of Parameters in Power System
Dynamic Model Using Trajectory Sensitivities
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Abstract—We propose an analytically tractable Bayesian
method to infer parameters in power system dynamic models
from noisy measurements of bus-voltage magnitudes and fre-
quencies as well as active- and reactive-power injections. The
proposed method is computationally appealing as it bypasses the
large number of system model simulations typically required in
sampling-based Bayesian inference. Instead, it relies on analyt-
ical linearization of the nonlinear system differential-algebraic-
equation model enabled by trajectory sensitivities. Central to the
proposed method is the construction of a linearized model with
the maximum probability of being (closest to) the actual nonlinear
model that gave rise to the measurement data. The linear model
together with Gaussian prior leads to a conjugate family where
the parameter posterior, model evidence, and their gradients can
be computed in closed form, markedly improving scalability for
large-scale power systems. We illustrate the effectiveness and key
features of the proposed method with numerical case studies for
a three-bus system. Algorithmic scalability is then demonstrated
via case studies involving the New England 39-bus test system.

Index Terms—Bayesian inference, Bayesian model selection,
Bayes factor, dynamic model, parameter estimation, trajectory
sensitivities

I. INTRODUCTION

ONLINE monitoring of power system operational relia-
bility relies on a model with accurate parameters for

the network, generators, loads, and other components. Dis-
crepancies between the actual system and its model, including
erroneous parameter values, have contributed to major cascad-
ing failures. For example, following the 1996 Western Inter-
connection outages, engineers could not reproduce recorded
disturbance measurements in simulation with the prevailing
models, indicating that previous studies to set system operating
limits were likely invalid due to model mismatches [1]. Recog-
nizing the importance of accurate models for operating studies,
the North American Electric Reliability Corporation (NERC)
requires utilities to validate and calibrate models (and pertinent
parameters therein) used in system-level dynamic simulations
every ten years [2], [3]. The development of computational
tools aimed at model calibration can be greatly facilitated by
widespread deployment of phasor measurement units (PMUs).
Measurements available from PMUs include magnitude, angle,
and frequency of voltage and current phasors. These quantities
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are typically collected at a very high speed (usually 30
measurements per second), and phasors measured at different
locations by different devices are time synchronized [4].

Model calibration generally leverages the formulation and
solution of either a parameter estimation or inference problem.
In the former, parameters are tuned so that behaviour predicted
by a given model (that does not necessarily accurately repre-
sent the system structure) best matches the measurement data
via, e.g., weighted least-squares estimation [5], [6], gradient-
based optimization [7], and optimization incorporating tra-
jectory sensitivities [8]. These approaches typically do not
quantify the uncertainty in the resulting parameter estimates
affected by, e.g., the quantity and quality of measurement data.
Yet, uncertainty quantification can provide highly insightful
confidence measures in decision making, so as to avoid unnec-
essary risk or excessive engineering margins. In light of this,
we pursue the inference approach, which computes the entire
probability distribution of parameter values that could have
induced the measurement data. In accordance with Bayes’
theorem, an initial prior distribution is determined before
observing any measurements, and it is updated to a posterior
distribution that represents the uncertainty associated with the
inferred model parameters conditioned on the measurement
data. Under the Bayesian framework (see, e.g., [9], [10]),
we develop an analytically tractable method to compute an
approximate posterior distribution for model parameters con-
ditioned on voltage- and current-phasor measurements (from
which complex powers can be calculated) are obtained from
(possibly a subset of) generator buses. Bayesian inference, by
design, seeks a distribution of all (plausible) parameter values
that give rise to the measurement data, so it is generally not
affected by the challenges of observability from estimation
problems.

Classical Bayesian inference uses Markov chain Monte
Carlo (MCMC) algorithms (see, e.g., [11], [12]) that typically
require thousands (or more) repeated simulations of the system
model under study. However, since models of large-scale
power systems consist of many nonlinear differential-algebraic
equations (DAEs) describing generator and load dynamics
coupled across an expansive transmission network, MCMC
can become computationally impractical, even prohibitive. Our
strategy avoids MCMC altogether by linearizing the nonlinear
DAE model around a nominal system trajectory (not a single
operating point) resulting from potentially major disturbances
like large-signal load changes or faults. The linearized time-
varying model comprises trajectory sensitivities that are ana-
lytically derived by differentiating the DAEs with respect to
parameters, which are then evaluated along the nominal trajec-
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tory induced by a particular choice of parameter values [13].
A question then naturally arises: what are the parameter values
that engender the best linearized model? To address this, we
employ a Bayesian model selection formalism to compute and
maximize the model evidence (or equivalently, Bayes factor),
i.e., the probability of measurement data given a candidate
model [14], [15]. Although the model evidence is generally
difficult to estimate [16], we can compute its value analyti-
cally in the space of linearized models along with Gaussian
conjugate priors. We also derive the analytical gradient of
model evidence along the trajectory of linearization, so as
to facilitate gradient-based optimization methods to find the
evidence-maximizing linear model.

We next provide a review of methods for power system
parameter inference. Classical online data assimilation can
be derived as various approximations of the Bayesian fil-
tering problem (see, e.g., [17] Ch. 2 & 4), and the ex-
tended [18], unscented [19], and ensemble [20] Kalman filters
have been used to approximate posteriors for static parameters
by augmenting the dynamic state vector. However, filter-based
methods are typically inefficient for updating static model
parameters because the DAE states are also filtered, and done
so sequentially over time. Thus, when only static parameters
are of interest, a batch inference approach is suitable to find
their posterior conditioned simultaneously on all measurement
data. For batch inference, MCMC algorithms are commonly
used to sample the posterior. MCMC is ergodic and can
capture generic distributions with complex correlation struc-
tures. However, direct MCMC with large-scale DAE models
is generally impractical, especially with higher-order dynamic
models or larger parameter spaces. To sidestep this issue, [21]–
[23] pre-build computationally inexpensive surrogate models,
via polynomial chaos expansions (PCEs), that replace the
DAE model in MCMC. Although these demonstrate orders-of-
magnitude speedups compared to MCMC with DAEs, PCEs
are difficult to scale up to high-dimensional settings. For
instance, a third-order PCE for the 40-parameter example in
our paper would entail solving for 12,341 PCE coefficients
and require a large training set of offline DAE simulations.
Furthermore, a separate PCE is needed for each scalar element
of the entire observation vector. Thus, [22], [23] construct
distinct PCEs for individual generators while neglecting the
transmission network, and [21] demonstrates a case with only
three model parameters. A promising alternative also proposed
in [21] is a Laplace approximation to the posterior enabled
by the adjoint solution to the DAE model, but the method is
validated on a nine-bus test system with only three parameters.

Our work advances over the previous by considering the full
DAE model describing generator dynamics coupled across the
transmission network. The explicit inclusion of the network
enables parameter inference at buses without sufficient local
measurements. We demonstrate this aspect and other key
features along with algorithmic scalability with case studies
involving a three-bus system and the New England (NE) 39-
bus test system. Also distinct from previous work in this do-
main, we construct an optimal linearized model that maximizes
the probability of measurement data amongst candidate linear
models. The linear models enable closed-form evaluations

of the posterior, model evidence, and their gradients, so the
proposed method scales Bayesian inference to higher dimen-
sions than PCEs. Notably, numerical case studies demonstrate
inference of 40 parameters in the NE 39-bus test system.
Finally, we mention that the trajectory sensitivities employed
in model linearization are useful in other pertinent problems,
such as parametric uncertainty assessment, transient stability
analysis, and dynamic security assessment [13], [24].

The remainder of the paper is organized as follows. Sec-
tion II outlines pertinent models for the power system and
noisy measurements, and it also describes the inference prob-
lem. In Section III, we present the proposed Bayesian infer-
ence computation. Section IV provides numerical case studies
to demonstrate the effectiveness and scalability of the proposed
method. Finally, Section V concludes the paper.

II. PRELIMINARIES

In this section, we present the power system DAE model
and the associated trajectory sensitivities. We further describe
the measurement statistical model and state the Bayesian
parameter inference problem tackled in this paper.

A. System DAE Model and Trajectory Sensitivities

Consider an AC transmission grid with synchronous gen-
erators serving constant-power loads over an interconnected
power network. Let x ∈ Rn collect generator dynamic state
variables, such as generator rotor angular position and speed.
Also let y ∈ Rq collect stator algebraic state variables of
all generators and voltage magnitudes and phase-angles of all
buses in the network. Further let u ∈ Rd collect generator set-
points and λ ∈ Rp unknown parameters to be inferred. Then,
the system electromechanical behaviour can be described by
the following DAE model:

ẋ = f(x, y, u;λ), (1)
0 = g(x, y;λ), (2)

where, for a given λ, f : Rn+q+d 7→ Rn collects system
dynamic equations, and g : Rn+q 7→ Rq collects algebraic
constraints [25]. Above, (1) describes dynamics associated
with any number of devices and controllers in the system, such
as synchronous machines, steam/hydro turbines, and exciter
and governor controls; (2) describes algebraic constraints
arising from, e.g., network power flow equations, stator-grid
connections, and static loads. The output z ∈ Rm can be
mapped from system dynamic and algebraic state variables,
as follows:

z = h(x, y;λ), (3)

where, for a given λ, h : Rn+q 7→ Rm. Furthermore, entries
of λ are distinct from state variables x and y; examples of
parameters to be inferred are listed in Table III.

Suppose the DAE system described in (1)–(3) evolves from
initial conditions x(0) = x0 and y(0) = y0 according to
nominal input vector u = u? and parameter value λ = λ?, so
that system states follow nominal trajectory (x?, y?, u?;λ?).
Denote by x?λ ∈ Rn×p (y?λ ∈ Rq×p) the linear sensitivities
of x (y) with respect to λ around the nominal trajectory.
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Note that u is assumed to be independent of λ, so u?λ ≡ 0.
Differentiation of (1)–(2) with respect to λ yields the following
linear dynamic system for trajectory sensitivities:

ẋ?λ = f?xx
?
λ + f?y y

?
λ + f?λ , (4)

0 = g?xx
?
λ + g?yy

?
λ + g?λ, (5)

where

f?x =
∂f

∂x
, f?y =

∂f

∂y
, f?λ =

∂f

∂λ
, (6)

g?x =
∂g

∂x
, g?y =

∂g

∂y
, g?λ =

∂g

∂λ
, (7)

are, in general, time-varying matrices evaluated along the
nominal trajectory (x?, y?, u?;λ?) [8]. Similarly, differentia-
tion of (3) with respect to λ yields trajectory sensitivities of
output z around the nominal trajectory, denoted by z?λ ∈ Rm×p

and given by
z?λ = h?xx

?
λ + h?yy

?
λ + h?λ, (8)

where
h?x =

∂h

∂x
, h?y =

∂h

∂y
, h?λ =

∂h

∂λ
, (9)

are evaluated along the nominal trajectory (x?, y?, u?;λ?).
We assume that along the nominal trajectory, the power flow
Jacobian matrix is invertible. Then we can rearrange (5) as

y?λ = −(g?y)−1(g?xx
?
λ + g?λ). (10)

Further, substitution of (10) into (4) and (8) results in the
following linear time-varying system describing how the tra-
jectory sensitivities evolve along the nominal trajectory:

ẋ?λ = A?x?λ +B?, (11)
z?λ = C?x?λ +D?, (12)

with initial condition x?λ(0) = 0n×p, and where time-varying
matrices A?, B?, C?, and D? are given by

A? = f?x − f?y (g?y)−1g?x, B? = f?λ − f?y (g?y)−1g?λ, (13)

C? = h?x − h?y(g?y)−1g?x, D? = h?λ − h?y(g?y)−1g?λ. (14)

A simultaneous time-domain simulation of (1)–(3) and (11)–
(12) yields the output trajectory sensitivities in z?λ evaluated
along the nominal output trajectory z?. We emphasize that z?λ
in (8) represents the total derivative of z with respect to λ,
which embeds variations in z with respect to dynamic and
algebraic state variables through the partial derivatives h?x and
h?y , respectively.

We can use the output trajectory sensitivities obtained
in (12) to approximate the output of a perturbed system
that results from variations in λ around λ?. To this end, let
z = z? + ∆z, where ∆z results from ∆λ = λ − λ?. Then,
assuming that ∆λ is sufficiently small, we can approximate
the system output around the nominal trajectory as follows:

z ≈ a(λ?)λ+ b(λ?) =: z̃(λ;λ?), (15)

where a(λ?) = z?λ and b(λ?) = z? − z?λλ? are parameterized
by the choice of λ?.

Remark 1 (Trajectory Sensitivities for Hybrid Systems).
Practical power systems typically have discrete variables that

Fig. 1: One-line diagram for three-bus test system.

Fig. 2: Example 1: Actual and approximate trajectories of G1 terminal voltage
magnitude due to exciter parameter variations.

model, e.g., switch statuses and operation at minimum or
maximum limits. These can be incorporated into the DAE
model by modifying (1)–(2) as follows:

ẋ = f(x, y, w, u;λ), (16)
0 = g(x, y, w;λ), (17)

where entries of w represent discrete state variables [13]. Away
from discrete events, i.e., with constant w, we can obtain
trajectory sensitivities as described in Section II-A. Near a
switching event, the sensitivities of x, y, and z with respect to
λ embed an additional term that captures the derivative with
respect to the switching time (and by chain rule the derivative
of the switching time with respect to λ). We refer interested
readers to [13] for details on trajectory sensitivities for hybrid
systems. The parameter inference method proposed in this
paper is general in the sense that it applies straightforwardly
to hybrid systems as long as nominal trajectories and asso-
ciated trajectory sensitivities can be simulated or otherwise
obtained. �

Example 1 (Trajectory Sensitivities). We illustrate the mod-
elling concepts introduced above with the three-bus system
shown in Fig. 1. The system initially operates at steady
state and then responds to an increase of 10% in the active-
power load at bus 3 at time t = 15 s. Simulations of the
DAE system in (1)–(3) are performed in PSAT [26] using a
detailed two-axis machine model along with turbine/governor
and exciter controls for each generator [25]. Parameter values
and the initial steady-state power-flow solution are reported
in Appendix A. Suppose z collects the G1 terminal voltage
magnitude, its rotor speed, and active- and reactive-power
injections, i.e., z = [V1, ω1, P1, Q1]T. In Fig. 2, the nominal
trajectory for G1 terminal voltage V ?1 resulting from the load
disturbance and nominal parameter values is plotted as the
solid blue trace.

Next, suppose that, just after time t = 0 s, exciter parameters
for both generators collected in λ increase by 15%. The red
dash-dot trace in Fig. 2 depicts the new V1 trajectory with
the perturbed parameter values. For comparison, the black
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dashed trace represents the trajectory Ṽ1 approximated by (15)
with perturbed parameter values, where z?λ is obtained via
custom MATLAB code that implements time-domain simu-
lations of (11)–(12) along the nominal trajectory. It is worth
mentioning that linearization around the initial steady state (a
single operating point), instead of along the nominal trajectory,
would yield an approximate V1 trajectory that exactly overlaps
V ?1 . This is because the derivatives of V1 with respect to exciter
parameters are zero at the initial steady state. In contrast, the
output trajectory approximated by trajectory sensitivities in-
deed closely matches the actual nonlinear system behaviour. �

B. Measurement Model and Problem Statement

In our setting, we assume PMUs provide synchronized
measurements of terminal voltage and current phasors, as well
as rotor speeds1 of (possibly a subset of) generators. With
measurements of voltage and current phasors, corresponding
active- and reactive-power injections can be easily computed.
Let z[k] denote the actual system output (in our case studies,
this is supplied by a time-domain simulation of the DAE model
furnished with the true parameter values) collected at time
t = k∆t, k = 0, 1, 2, . . . ,M , ∆t > 0, i.e., z[k] = z(k∆t).
Also let ẑ[k] denote the measurement of system output at
time t = k∆t. Considering noisy measurements, ẑ[k] can be
modelled as

ẑ[k] = z[k] + ξ[k] ≈ a[k]λ+ b[k] + ξ[k] =: z̃[k] + ξ[k], (18)

where ξ[k] ∈ Rm denotes additive Gaussian noise associated
with PMU measurements, and the approximation is obtained
by substituting (15). In (18), z̃[k] is linear with respect to λ, and
the linear- and constant-term coefficients a[k] and b[k] depend
on the choice of λ?. Specifically, a[k] and b[k] are constructed
with z?[k] and z?λ,[k], which are obtained by observing discrete
data points in a time-domain simulation of (1)–(3) and (11)–
(12) with nominal parameter value λ?. Furthermore, the entries
in ξ[k] are independent and identically distributed under a
joint Gaussian distribution with zero mean and covariance Σξ,
i.e., ξ[k] ∼ N (0m,Σξ), where Σξ ∈ Rm×m is diagonal with
each diagonal entry reflecting the corresponding measurement
precision. Finally, we collect, in {ẑ[k]}, the set of M + 1
available measurements of the system output, ẑ[0], . . . , ẑ[M ].

As with any sensors, PMUs are subject to random errors
arising from equipment limitations in the measurement of sys-
tem attributes and communication thereof to a repository [28].
Some bad data, such as (i) negative voltage magnitudes,
(ii) values that are orders of magnitude too large or too small,
and (iii) vastly different currents in and out of a bus, can be
removed prior to inference based on plausibility checks [28].
In this paper, we assume standard plausibility tests have been
applied to the PMU measurements before they are passed to
the proposed framework for parameter inference. Moreover,
the Bayesian inference framework can incorporate biased
measurements and potential failures/manipulations of the data
if their distributions are known. If their distributions are not

1If generator rotor speed measurements are not readily available, measure-
ments of the voltage phasor frequency at the bus connected to the generator
provide sufficient estimates [27].

known, we may include these factors as unknown hyperpa-
rameters, which can be learned together with parameters in,
e.g., a hierarchical Bayes model [29].

Using the models established in this section, we tackle two
interrelated but distinct problems. The first is to identify the
best λ? where the approximate linear model in (18) most
likely resembles the measurement-generating nonlinear sys-
tem. Second, we infer the parameter λ from measurements ẑ[k],
given a linearized model constructed around the nominal
output trajectory resulting from a particular choice of λ?. We
approach both problems under a Bayesian framework, where
λ? and λ are treated as random variables, as detailed next.

III. BAYESIAN APPROACH

In this section, we first describe the solution strategy for
the inference of λ given a linearized model constructed with
a particular choice of λ?. We then outline the proposed
optimization approach to find the best λ? choice. The overall
procedure is summarized in Algorithm 1.

A. Inference on λ

The model in (18), which is linear in λ, is obtained by lin-
earizing the DAE model along the nominal trajectory induced
by a particular choice of λ?. Treating the unknown parameter λ
as a random variable, its prior represents the uncertainty
in λ before making any observations through measurements,
and the posterior represents the updated uncertainty after
observing measurement data collected in {ẑ[k]}. We make the
reasonable assumption that the prior of λ is independent of
the trajectory of linearization, so the prior probability density
function (PDF) f(λ|λ?) = f(λ) irrespective of λ?. Further
denote the posterior PDF of λ conditioned on measurements
by f(λ|{ẑ[k]}, λ?). Then, direct application of Bayes’ theorem
for conditional probability yields

f(λ|{ẑ[k]}, λ?) =
f({ẑ[k]}|λ, λ?)f(λ)

f({ẑ[k]}|λ?)
, (19)

where f(λ) is the prior PDF for λ, f({ẑ[k]}|λ, λ?) is the
likelihood function, and f({ẑ[k]}|λ?) is the model evidence (a
λ-independent normalization constant for the posterior PDF).
Solving the Bayesian inference problem entails characterizing
the posterior (e.g., sampling from or calculating its PDF).
We can typically evaluate the prior and likelihood, but not
the model evidence. However, we next describe a conjugate
formulation to compute the posterior analytically.

We prescribe Gaussian prior λ ∼ N (µ◦,Σ◦) to represent
the initial uncertainty in λ. The likelihood then follows from
the linearized measurement model in (18):

f({ẑ[k]}|λ, λ?) =

M∏
k=0

(2π)−
m
2 |Σξ|−

1
2

· exp
(
− 1

2
(ẑ[k] − z̃[k])TΣ−1ξ (ẑ[k] − z̃[k])

)
, (20)

where z̃[k] represents discrete data points taken from (15) as
the approximate system output for a given parameter value λ
with the linearized model constructed from nominal parameter
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Algorithm 1 Proposed Bayesian parameter inference.
Input: Prior mean µ◦ and covariance Σ◦, measurement noise
covariance Σξ, initial nominal parameter value λ?◦, learning
rate γ.
Output: Posterior mean µπ,λ?

opt
and covariance Σπ,λ?

opt
.

1: Initialize. Set counter ` = 0, λ?(`) = λ?◦, and ε = 1.
2: while ε > 10−6 do
3: Perform time-domain simulation of (1)–(3), (11)–(12),

and (39)–(41) with λ?(`) to get z?, z?λ, and z?λλ?
i
, i =

1, . . . , p.
4: Evaluate µπ,λ? using (22) and Σπ,λ? using (23).
5: Evaluate objective ln f({ẑ[k]}|λ?) using (29).
6: Evaluate entries in gradient ∇λ? ln f({ẑ[k]}|λ?)|λ?

(`)

using (31) and normalize as ∇λ? ln f({ẑ[k]}|λ?)|λ?
(`)

us-
ing (38).

7: Normalize λ?(`) as λ
?

(`) using (37).
8: Update λ

?

(`+1) = λ
?

(`) + γ∇λ? ln f({ẑ[k]}|λ?)|λ?
(`)

.

9: Scale λ
?

(`+1) to λ?(`+1) via inverse of of (37).
10: Update ε = ||λ?(`+1) − λ

?
(`)||.

11: Set `← `+ 1.
12: end while
13: Perform time-domain simulation of (1)–(3) and (11)–

(12) with λ?opt to get z? and z?λ.
14: Evaluate µπ,λ?

opt
using (22) and Σπ,λ?

opt
using (23).

value λ?. Note that we drop the dependence of z̃[k] on λ and λ?

in (20) to contain notational burden. The combination of linear
model together with Gaussian prior and likelihood leads to a
conjugate system, where the posterior is also Gaussian:

(λ|{ẑ[k]}, λ?) ∼ N (µπ,λ? ,Σπ,λ?), (21)

with the mean and covariance in closed form given by

µπ,λ? = Σπ,λ?

(
Σ−1◦ µ◦ +

M∑
k=0

aT[k]Σ
−T
ξ (ẑ[k] − b[k])

)
, (22)

Σπ,λ? =
(

Σ−1◦ +

M∑
k=0

aT[k]Σ
−1
ξ a[k]

)−1
, (23)

respectively. Above, the subscript π indicates posterior and the
subscript λ? reminds us that the mean and covariance of the
posterior depend on the choice of λ? for linearization.

B. Choice of λ?

The process of finding the best linearized model requires
three main ingredients: i) formulating the optimal model
selection problem, including the metric that evaluates the
“goodness” of candidate models, ii) computing the value of
this metric for a given candidate model, and iii) proposing
new candidate models within the optimization routine.

1) Evaluation Metric and Problem Formulation: Continu-
ing under the Bayesian framework, we adopt the methods of
Bayesian model selection (or equivalently, Bayes factors) [14],
[15]. When considering a finite number of models, application

of Bayes’ theorem given candidate model Φi yields the fol-
lowing model-posterior probability mass function:

Pr(Φi|{ẑ[k]}) =
f({ẑ[k]}|Φi)Pr(Φi)

f({ẑ[k]})
, (24)

which is the probability of model Φi being (closest to)
the true measurement-generating model as supported by, i.e.,
conditioned on, measurement data in {ẑ[k]}. Since our problem
deals with a continuous spectrum of models (parameterized
by λ? that is treated as a continuous random variable), we
consider the continuous analogue of (24) given by

f(λ?|{ẑ[k]}) =
f({ẑ[k]}|λ?)f(λ?)

f({ẑ[k]})
. (25)

Therefore, we evaluate the “goodness” of different linearized
models by comparing their model-posterior f(λ?|{ẑ[k]})
in (25).2 The best candidate λ? thus maximizes this quantity
(equivalently, its logarithm), as follows:

λ?opt = arg max
λ?

ln f(λ?|{ẑ[k]}). (26)

In (25), f({ẑ[k]}) is a constant normalization factor that does
not depend on λ?. Furthermore, assuming a uniform model-
prior (i.e., f(λ?) remaining constant regardless of the choice
of λ?), (26) is equivalent to

λ?opt = arg max
λ?

ln f({ẑ[k]}|λ?). (27)

In other words, here the maximum a posteriori (MAP) λ?

value in (26) is identical to the maximum likelihood estima-
tor (MLE) of λ? in (27). We thus seek to solve (27).

2) Computing the Metric: The key to solving (27) is
recognizing that the model likelihood f({ẑ[k]}|λ?) is precisely
the model evidence (i.e., the denominator) in (19). The model
evidence is generally very challenging to compute and, for
this reason, the task of computing it is typically avoided
in Bayesian inference. However, we can obtain it in closed
form owing to the analytical posterior in (21)–(23). Rearrang-
ing (19) and taking the logarithm of the resultant, we get

ln f({ẑ[k]}|λ?) = ln f({ẑ[k]}|λ, λ?) + ln f(λ)

− ln f(λ|{ẑ[k]}, λ?). (28)

We then substitute into (28) the closed-form expressions
for the prior PDF λ ∼ N (µ◦,Σ◦) and posterior PDF
(λ|{ẑ[k]}, λ?) ∼ N (µπ,λ? ,Σπ,λ?) along with the likelihood
function in (20). We then arrive at the following analytical
closed-form expression for the log-evidence:

ln f({ẑ[k]}|λ?)

= −p
2

ln(2π)− 1

2
ln |Σ◦| −

1

2
(λ− µ◦)TΣ−1◦ (λ− µ◦)

− m(M + 1)

2
ln(2π)− M + 1

2
ln |Σξ|

− 1

2

M∑
k=0

(ẑ[k] − z̃[k])TΣ−1ξ (ẑ[k] − z̃[k]) +
p

2
ln(2π)

2Bayes factor differs slightly by focusing on the (ratios of) model likelihood
f({ẑ[k]}|λ?) instead of the model-posterior. However, they are equivalent
when the model-prior is uniform. We will invoke this shortly.
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+
1

2
ln |Σπ,λ? |+ 1

2
(λ− µπ,λ?)TΣ−1π,λ?(λ− µπ,λ?), (29)

where z̃[k], µπ,λ? , and Σπ,λ? depend on the value of λ?. Note
that (29) holds for any value of λ.

3) Update Strategy: Various optimization algorithms (e.g.,
gradient-based, quasi-Newton, and derivative-free methods)
can be employed to iteratively select candidates for λ? toward
the optimizer λ?opt of (27). For example, adopting gradient-
ascent leads to the following update formula:

λ?(`+1) = λ?(`) + γ(`)∇λ? ln f({ẑ[k]}|λ?)|λ?
(`)
, (30)

where γ(`) is a learning rate (gradient-ascent step size)
and ∇λ? ln f({ẑ[k]}|λ?)|λ?

(`)
is the gradient of the objective

ln f({ẑ[k]}|λ?) evaluated at λ?(`). A major advantage of the
proposed framework is that the objective function in (27)
and its gradient can be computed in closed form, enabling
greater scalability. Particularly, we completely bypass all nu-
merical approximations of the gradient involving, e.g., finite
differences, which would be computationally impractical for
high-dimensional λ?. Next, we discuss details with respect to
analytical computation of the gradient and iterative updates of
candidate models.

C. Analytical Gradient Computation

The ith entry of the gradient vector in (30) can be computed
analytically by differentiating (29) with respect to λ?i as

∂

∂λ?i
ln f({ẑ[k]}|λ?) =

1

2

M∑
k=0

z̃Tλ?
i ,[k]

(Σ−1ξ + Σ−Tξ )(ẑ[k] − z̃[k])

− 1

2
Tr

(
Σπ,λ?

∂Σ−1π,λ?

∂λ?i

)
− (λ− µπ,λ?)TΣ−1π,λ?

∂µπ,λ?

∂λ?i

+
1

2
(λ− µπ,λ?)T

∂Σ−1π,λ?

∂λ?i
(λ− µπ,λ?), (31)

where z̃λ?
i ,[k]

is obtained by observing the derivative of (15)
with respect to λ?i at time instant k, given by

z̃λ?
i ,[k]

= aλ?
i ,[k]

λ+ bλ?
i ,[k]

. (32)

with
aλ?

i ,[k]
= z?λλ?

i ,[k]
, bλ?

i ,[k]
= −z?λλ?

i ,[k]
λ?. (33)

The expression for bλ?
i ,[k]

is derived by applying the product
rule and recognizing that z?λ?

i ,[k]
= z?λ,[k]ei, where ei is the ith

basis vector. Also, z?λλ?
i ,[k]

represents discrete data points of
zλλ?

i
, the partial derivative of z?λ with respect to λ?i , at time

instant k. See Appendix B for details on how to obtain z?λλ?
i
.

Furthermore, we can differentiate (22) and the inverse of (23)
with respect to λ?i to get

∂µπ,λ?

∂λ?i
= Σπ,λ?

( M∑
k=0

∂aT[k]

∂λ?i
Σ−Tξ (ẑ[k] − b[k])−aT[k]Σ

−T
ξ

∂b[k]

∂λ?i

)
+
∂Σπ,λ?

∂λ?i
Σ−1π,λ?µπ,λ? , (34)

∂Σ−1π,λ?

∂λ?i
=

M∑
k=0

∂aT[k]

∂λ?i
Σ−1ξ a[k] + aT[k]Σ

−1
ξ

∂a[k]

∂λ?i
. (35)

Finally, recognizing that

∂Σπ,λ?

∂λ?i
= −Σπ,λ?

∂Σ−1π,λ?

∂λ?i
Σπ,λ? , (36)

we can substitute (35) into (36) and use the resultant to further
simplify (34).

Remark 2 (Normalized Quantities). In our problem setting,
the inferred parameters and associated gradients may differ
by several orders of magnitude. In order to promote numerical
stability, we make use of normalized parameters and gradients
defined as, respectively,

λ
?

(`)=Σ
− 1

2
◦ (λ?(`) − µ◦), (37)

∇λ? lnf({ẑ[k]}|λ?)|λ?
(`)

=Σ
− 1

2
◦ ∇λ? lnf({ẑ[k]}|λ?)|λ?

(`)
, (38)

in updating λ? through a given optimization solver, e.g.,
gradient ascent in (30). �

IV. NUMERICAL CASE STUDIES

This section demonstrates the effectiveness of the pro-
posed Bayesian inference approach along with the modelling
framework via numerical case studies involving the three-
bus test system from Example 1 and the NE 39-bus test
system (see, e.g., [26]). The three-bus case study details
results of the proposed approach, and the NE case study
demonstrates scalability. Time-domain simulations of the DAE
model in (1)–(3) that include dynamics arising from two-
axis generators, governors, and exciters are performed using
PSAT [26]. Synthetic measurements are collected from the
simulation at discrete intervals of ∆t = 0.0333 s, within the
capability of current measurement technology [4]. In accor-
dance with [30], [31], we assume that measurements of bus-
voltage magnitudes, rotor frequency, and active- and reactive-
power injections are subject to additive Gaussian noise with
0.05%, 0.01%, and 0.1% standard deviation, respectively, and
all with zero mean. Note that since parameter uncertainty is
informed by measurement precision, we typically find that
parameter posteriors become wider as the standard deviations
of the Gaussian measurement noise increase.

A. Three-bus Test System

For each generator i = 1, 2 in the system shown in Fig. 1,
we infer its inertia constant Hi, damping constant Di, droop
constant RDi, and governor time constant TCHi. Suppose the
load at bus 3 increases from 2.35 p.u. to 2.85 p.u. just after
time t = 0 s and then decreases to 2.1 p.u. at time t = 4 s.
Measurements are acquired from t = 0 s to t = 8 s. We assume
measurements of generator terminal voltage magnitude Vi,
rotor speed ωi, and active- and reactive-power injections Pi
and Qi are available at: i) bus 1 only with output vector
z = [V1, ω1, P1, Q1]T (m = 4), and ii) both buses 1 and 2 with
output vector z = [V1, V2, ω1, ω2, P1, P2, Q1, Q2]T (m = 8).
We find that the simple step load-change disturbances along
with the measurements described above are sufficient for
inference of the frequency-related parameters. Inference of
other generator parameters, such as X ′di, X

′
qi, Xdi, Xqi, T ′d0i,
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Fig. 3: Three-bus test system: orange-coloured traces correspond to measurement scenario i) with z = [V1, ω1, P1, Q1]T (m = 4), and blue-coloured traces
correspond to scenario ii) with z = [V1, V2, ω1, ω2, P1, P2, Q1, Q2]T (m = 8). Upper right inset: demonstrating convergence of λ? to λ?opt; Lower left
triangle: pairwise marginal PDFs for λ posterior with λ? = λ?opt; Diagonal: marginal PDF for λ posterior with λ? = λ?opt.

and T ′q0i, may require more specialized disturbance scenarios.
For example, following the analysis in [32, Ch. 4], slow
sinusoidal variations in load are needed to adequately infer X ′di
and X ′qi. Before delving into the case studies, we emphasize
that had the network not been considered in the system model,
inference of parameters of the generator at bus 2 would not
be possible in the m = 4 scenario where measurements are
available only at bus 1. This is one of the key advantages of
the proposed method over [22], [23], where models do not
reflect coupling amongst different generators.

1) Choice of λ?: We minimize the negative of the objective
in (27) with the MATLAB native fminunc function, which
uses a quasi-Newton method. The initial λ? is set as λ?(0) =

0.9λtrue, where λtrue denotes the true measurement-generating
parameter values in the nonlinear DAE. In each iteration `, the
optimization routine provides an updated candidate λ?(`), with
which we perform time-domain simulation of (1)–(3), (11)–
(12), and (39)–(41). The value of the objective is evaluated
analytically in each iteration ` via (29) in conjunction with the
posterior mean and covariance in (22) and (23), respectively, as
well as the approximate output z̃ resulting from the simulation.
Also, instead of relying on fminunc to approximate the
gradient vector via numerical finite differences, we compute its
value analytically using (31) along with pertinent trajectories
and trajectory sensitivities provided by the simulation. We
then pass the gradient vector to fminunc so as to inform
the direction for the next update λ?(`+1). The optimization
routine searches for the optimizer until the stopping crite-
rion ||λ?(`+1) − λ?(`)|| < 10−6, and at this point, we return
λ?opt = λ?(`+1). In the top pane of the top-right inset in Fig. 3,
we plot the convergence of the objective function in (27) for
the two measurement scenarios. Both measurement scenarios
converge within 24 iterations, and in even fewer iterations if

the termination criterion is relaxed. The middle and bottom
panes of the inset show updates in nominal parameters H?

1 and
D?

2 , which are typical of others. Note that we do not expect
convergence to true parameter values listed in Table III due
to inherent model discrepancy [29], [33] as the optimization
routine explores the space of approximate linearized models
whereas the measurement data arise from a nonlinear system.

2) Inference on λ: We prescribe Gaussian prior λ ∼
N (µ◦,Σ◦) regardless of the value taken by λ?(`), where µ◦ =

1.5λtrue, Σ◦ = 0.52diag(λtrue)2. The time-domain simulation
of (1)–(3) and (11)–(12) with each updated candidate λ?(`)
yields trajectories of a(λ?(`)) and b(λ?(`)), with which we
construct the approximate output z̃(λ, λ?(`)) in (15). We then
take the value of z̃ at each time instant k = 0, . . . ,M
to compute the mean µπ,λ?

(`)
and covariance Σπ,λ?

(`)
of the

posterior in closed form via (22) and (23), respectively. In
Fig. 3, we plot pairwise posterior marginal PDF contours of
λ and the marginal PDF of each inferred parameter, with
λ? = λ?opt, for the two measurement scenarios. We observe
that the m = 8 scenario yields narrower posteriors (i.e., lower
uncertainty), which is expected since the measurements for the
m = 8 scenario contain those for the m = 4. We also observe
different degrees of correlation amongst different parameter
pairs. For example, {RD1, D1}, {RD2, D2}, {TCH1, D1},
and {TCH1, RD1} appear to have strong positive correlations;
{D1, H1} and {RD1, H1} carry strong negative correlations;
and {TCH2, H1}, {TCH2, D1}, and {TCH2, RD1} are nearly
uncorrelated. When compared to the prior standard deviations,
the posterior marginal PDFs achieve 2 to 3 orders of magnitude
reduction of uncertainty for both the m = 4 and m = 8
scenarios as a result of inference from the noisy measurements.
We also note that some true parameter values are quite
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Fig. 4: Three-bus test system: comparison amongst output trajectories that are obtained from noisy measurements, simulation of nonlinear DAE model with
the true parameter values, and simulations of the nonlinear DAE model with parameters sampled from the posterior PDF.

TABLE I: Three-bus test system: posterior mean µπ,λ?
opt

for various load-change and fault-disturbance scenarios. Digits in boldface reflect the order of
magnitude of the corresponding marginal PDF standard deviation.

Load-change Scenarios Fault-disturbance Scenarios

λtrue
LC(◦) LC(a) LC(b) LC(c) LC(d) FD(a) FD(b) FD(c)

P3(0 < t ≤ 4) (p.u.) 2.85 1.1P3(0) 1.2P3(0) 1.3P3(0) 1.4P3(0) Bus Bus Bus
P3(4 < t ≤ 8) (p.u.) 2.1 0.95P3(0) 0.9P3(0) 0.85P3(0) 0.8P3(0) 1 2 3

H1 (s) 7.9657 7.8818 7.9616 7.9788 7.9842 7.8494 7.8821 7.8606 8
H2 (s) 2.9918 2.9612 2.9898 2.9985 3.0018 3.038 3.0258 3.0372 3.01
D1 (p.u.) 10.263 10.981 10.293 10.164 10.12 11.6 10.805 11.61 10
D2 (p.u.) 10.091 10.409 10.109 10.032 10.016 9.9633 9.9765 9.9612 10
RD1 (p.u.) 0.040389 0.041732 0.040435 0.040242 0.040166 0.042804 0.042385 0.042946 0.04
RD2 (p.u.) 0.039973 0.040664 0.040003 0.039886 0.039869 0.040335 0.039712 0.040437 0.04
TCH1 (s) 0.50002 0.50604 0.50017 0.49982 0.49937 0.49807 0.48323 0.49946 0.5
TCH2 (s) 0.49499 0.49701 0.4949 0.49587 0.49651 0.46918 0.48347 0.46811 0.5

close to the centres of the corresponding posterior marginal
Gaussian distributions, but others appear further away. This is
unsurprising due to two factors: i) inference is conducted with
only a finite number of noisy measurements, and ii) there exists
inherent model discrepancy [29], [33] with the approximate
linearized model.

3) Model Outputs with λ Posterior: For the m =
8 scenario, we sample the posterior PDF of λ ∼
N (µπ,λ?

opt
,Σπ,λ?

opt
) 25 times and, for each sample, we per-

form time-domain simulation of (1)–(3). In Fig. 4, we plot the
resulting trajectories (each represented by an orange-coloured
trace) along with the model output under the true parameter
values as well as the recorded noisy measurements used
to infer parameters. We observe that the output trajectories
obtained by sampling the posterior closely follow the model
output, providing strong evidence that the inferred parameters
indeed could have induced the measurement data.

Remark 3 (Other Disturbances). Here, we consider a suite of
load-change and fault-disturbance scenarios to further assess
the performance of the proposed Algorithm 1. In the numer-
ical case studies described above, the load increases from

P3(0) = 2.35 p.u. to 2.85 p.u. just after time t = 0 s and then
decreases to 2.1 p.u. at time t = 4 s (LC(◦) in Table I). We now
consider four additional load-change disturbances labelled as
LC(a)–LC(d) in Table I. We also consider three-phase line-to-
ground fault disturbances at the three different buses labelled
as FD(a)–FD(c) in Table I. In each fault-disturbance scenario,
the fault is applied at t = 0.1 s and cleared at t = 0.14 s by
returning to the pre-fault system. Measurements are collected
from t = 0.1667 s to t = 8 s. In Table I, we report the
posterior mean µπ,λ?

opt
for different load-change and fault-

disturbance scenarios described above, along with their true
values in the right-most column. The boldface digit in each
reported posterior mean signifies the order of magnitude of the
corresponding marginal PDF standard deviation. In the load-
change disturbances, we generally observe that the mean value
of the inferred parameter moves closer to the true values as
the magnitude of the load disturbance increases. �

B. New England 39-Bus Test System

For each generator i = 1, . . . , 10 in the NE test system, we
infer parameters Hi, Di, RDi, and TCHi using measurements
obtained from a uniform increase in all loads of 10% applied
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TABLE II: 39-Bus test system: posterior mean µπ,λ?
opt

. Digits in boldface
reflect the order of magnitude of the corresponding marginal PDF standard
deviation.

Generator i Hi (s) Di (p.u.) RDi (p.u.) TCHi (s)
1 0.11095 10.002 0.039976 0.49960
2 0.07964 9.9964 0.039984 0.50088
3 0.093523 10.014 0.040001 0.50166
4 0.075475 10.003 0.039990 0.50073
5 0.068751 9.9825 0.039936 0.50175
6 0.091737 10.013 0.039985 0.50198
7 0.06902 9.9844 0.040013 0.49974
8 0.064233 9.9774 0.039948 0.50009
9 0.090849 9.9861 0.039931 0.50065
10 1.3255 10.045 0.040058 0.49558

just after t = 0 s. Assuming synthetic measurements Vi, ωi, Pi,
and Qi are available for all generators, and they are acquired
from t = 0 s to t = 2 s. We utilize the same procedure
as detailed in Section IV-A to obtain the optimal nominal
parameter value of λ?opt after 11 iterations. Given λ?opt and
Gaussian prior N (1.5λtrue, 0.52diag(λtrue)2), we compute
the Gaussian posterior N (µπ,λ?

opt
,Σπ,λ?

opt
) via (22)–(23). In

Table II, we report the mean of the posterior marginal PDF
corresponding to each parameter. For comparison, the true
measurement-generating parameter values are: H1 = 0.1114,
H2 = 0.08035, H3 = 0.09495, H4 = 0.07585, H5 =
0.06895, H6 = 0.0923, H7 = 0.07005, H8 = 0.06445,
H9 = 0.0915, H10 = 1.3263 s; and for all i = 1, . . . , 10,
Di = 10 p.u., RDi = 0.04 p.u., and TCHi = 0.5 s. In
Fig. 5a, we plot a histogram of the standard deviations
of the posterior marginal PDFs normalized with respect to
the corresponding mean values, demonstrating low posterior
uncertainty. Also, Fig. 5b shows a histogram of the number
of standard deviations between the posterior mean and the
respective true parameter values. We observe reasonably good
agreement between the posterior coverage compared to λtrue,
again keeping in mind finite noisy observations as well as
the linearized model approximation. In Fig. 6, we make use
of the posterior covariance matrix Σπ,λ?

opt
to visualize the

degree of pairwise correlation between different parameters.
While most parameter pairs are weakly correlated, we observe
strong positive correlation for {TCHi, Di} and {RDi, Di} for
each generator i. The strong positive correlation observed
between RDi and Di is aligned with the fact that they both
describe frequency dependence, and the {RDi, Di} correlation
approaches 1 as TCHi decreases toward 0. Strongly correlated
parameters are often associated with identifiability challenges
(e.g., both parameters can simultaneously increase/decrease
and still appear plausible as the measurement-generating set-
ting). In our problem context, it may suggest the need for
additional measurement data or observation under different
disturbance scenarios.

Remark 4 (Computational Burden). In each iteration `,
with the updated nominal parameter value λ?(`), the proposed
Bayesian framework performs Lines 3–11 in Algorithm 1. The
most computationally intensive tasks are in Line 3, involving a
single time-domain simulation of (1)–(3), (11)–(12), and (39)–
(41). We can then compute the posterior mean and covariance
(Line 4) as well as update the nominal parameter value λ?(`+1)

(a) (b)
Fig. 5: 39-Bus test system: histograms illustrate the number of parameters
out of a total of 40 for which (a) normalized posterior marginal standard
deviations and (b) the number of standard deviations between the posterior
mean and the respective true parameter values, lie within certain ranges.

Fig. 6: 39-Bus test system: pairwise parameter posterior correlation.

(Lines 6–9), both in closed form. In this way, we completely
bypass MCMC sampling of the nonlinear DAE model or
surrogates thereof. To give a flavour of the computational
burden and the scalability of the proposed framework, we
report execution times taken to run Lines 3–11 for one iteration
of Algorithm 1 for the 39-bus test system. Assuming measure-
ments are available at all generators, a single iteration takes
180 s, 270 s, and 340 s, respectively, to infer p = 20, 30, and 40
parameters. All simulations were performed using MATLAB
R2017b on a personal computer with 16 GB RAM and Intel
Core i7-8750H processor at 2.20 GHz. Simulations of the DAE
system in (1)–(3) were performed in PSAT [26], and custom
MATLAB code was developed for time-domain simulations
of (11)–(12) and (39)–(41) alongside PSAT simulations. �

V. CONCLUDING REMARKS

We proposed an analytically tractable Bayesian framework
to infer dynamic power system parameters conditioned on
noisy measurements obtained at generator terminals. The



10

TABLE III: Parameter values for dynamic model of three-bus system shown in Fig. 1.

Machine Data Turbine/Governor Data Excitation System Data
T ′
d0 T ′

q0 H D Xd Xq X′
d X′

q Rs TCH TSV RD TA TE TF KA KE KF

Bus 1 8.96 0.31 8 10 0.146 0.0969 0.0608 0.0608 0 0.5 0 0.04 0.2 0.314 0.35 200 1 0.063
Bus 2 5.89 0.60 3.01 10 1.3125 1.2578 0.1813 0.1813 0 0.5 0 0.04 0.2 0.314 0.35 200 1 0.063
Unit s s s p.u. p.u. p.u. p.u. p.u. p.u. s s p.u. s s s p.u. p.u. p.u.

main advantages of the proposed strategy are that it avoids
computationally expensive MCMC sampling of the posterior,
and it computes an approximate posterior, model evidence,
and their gradients in analytical closed form. As a result,
this approach is able to scale to higher dimensional settings.
Furthermore, the explicit inclusion of the transmission network
in modelling considerations enables parameter inference for
generators for which measurements are not available. We
demonstrated the effectiveness and scalability of the proposed
approach via numerical case studies involving a three-bus
and the NE 39-bus test systems. Compelling directions for
future work include assessing the effect of bad data on and
incorporating non-Gaussian measurement noise models into
the proposed framework. Also, we will explore ideas from
the area of optimal experimental design for optimal PMU
placement under the Bayesian framework.

APPENDIX

A. Three-bus Test System Parameters

Transmission Lines. The line impedance z12 = 0.01 +
j0.085, z23 = 0.02 + j0.161, z13 = 0.01 + j0.092. The shunt
admittance ysh12 = j0.088, ysh23 = j0.153, and ysh13 = j0.079.

Initial Steady State. V1∠θ1 = 1.04∠0◦, V2∠θ2 = 1.025∠−
0.148◦, V3∠θ3 = 0.994∠−7.65◦, S1 = 1.597+j0.452, S2 =
0.791− j0.279, S3 = −2.35− j0.5.

Parameters related to the machine, turbine-governor, and
excitation system are reported in Table III. The saturation
function SE(Efd) = 0.0039e1.555Efd for both generators.

B. Evaluating z?λλ?
i

To obtain z?λλ?
i
, we will find it useful to define x?λλ?

i
and

y?λλ?
i

as the partial derivatives of x?λ and y?λ, respectively, with
respect to λ?i . Then, applying chain rule to differentiate (12)
with respect to λ?i , we get

z?λλ?
i

= (h?xx?x?λei + h?xy?y
?
λei + h?xλ?

i
)x?λ + h?xx

?
λλ?

i

+ (h?yx?x?λei + h?yy?y
?
λei + h?yλ?

i
)y?λ + h?yy

?
λλ?

i

+ h?λx?x?λei + h?λy?y
?
λei + h?λλ?

i
, (39)

where, in general, the notation h?ab refers to the partial
derivative of gradient vector h?a with respect to the vector
or scalar variable b, and ei is an appropriate sized basis
vector with 0s in all entries except the ith one with 1. The
partial derivatives in (39) can all be computed in analytical
closed form. Furthermore, we have nominal trajectories x?λ
and y?λ resulting from nominal parameter value λ?. Thus, to
evaluate (39), we need only to solve for sensitivity trajectories
x?λλ?

i
and y?λλ?

i
. To do so, we take the derivative of (4) and (5)

with respect to λ?i to get

ẋ?λλ?
i

= (f?xx?x?λei + f?xy?y
?
λei + f?xλ?

i
)x?λ + f?xx

?
λλ?

i

+ (f?yx?x?λei + f?yy?y
?
λei + f?yλ?

i
)y?λ + f?y y

?
λλ?

i

+ f?λx?x?λei + f?λy?y
?
λei + f?λλ?

i
, (40)

0 = (g?xx?x?λei + g?xy?y
?
λei + g?xλ?

i
)x?λ + g?xx

?
λλ?

i

+ (g?yx?x?λei + g?yy?y
?
λei + g?yλ?

i
)y?λ + g?yy

?
λλ?

i

+ g?λx?x?λei + g?λy?y
?
λei + g?λλ?

i
, (41)

where, in general, the notation f?ab (g?ab) refers to the partial
derivative of gradient vector f?a (g?a) with respect to the vector
or scalar variable b. Simultaneous time-domain simulation
of (1)–(3), (11)–(12), (40)–(41), and (39) yields the nominal
trajectories taken by the system outputs collected in z?, their
sensitivities to parameters collected in z?λ, as well as their
second-order sensitivities with respect to λ?i collected in z?λλ?

i
,

which is acquired at time instant k to help evaluate (32).
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