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Examining the Economic Optimality of
Automatic Generation Control

Stefanos Baros, Member, IEEE, Yu Christine Chen, Member, IEEE, and Sairaj V. Dhople, Member, IEEE

Abstract—The automatic generation control (AGC) system is
temporally situated between economic dispatch and synchronous
generator dynamics, and its primary role is to regulate frequency
within and tie-line flows between control areas. Given appropriate
choice of participation factors (feed-forward controller gains that
govern the disaggregation of the area-level power requirement
to individual generators), the AGC can be engineered to nudge
system dynamics toward a steady-state operating point corre-
sponding to economic optimality. This paper establishes necessary
and sufficient conditions under which a widely accepted choice
of participation factors guarantees the alignment of steady-state
synchronous generator outputs with a global minimum of a
prototypical economic dispatch problem. In so doing, it resolves
several ambiguities and formalizes technical assumptions gov-
erning the role of the standard AGC architecture in the context
of economic dispatch and steady-state operation. Numerical case
studies tailored to a modified version of the New England 39-bus
10-machine test system validate the theoretical results.

Index Terms—Automatic generation control, economic dis-
patch, loss penalty factors, participation factors.

I. INTRODUCTION

The automatic generation control (AGC) system is an in-
tegral component of the power system control architecture.
The goal of AGC is to regulate system frequency and inter-
area tie-line schedules to their steady-state nominal values [1].
An important consideration is how AGC can attain frequency
and tie-line regulation in an economically optimal fashion.
However, research pertinent to the standard industry-employed
AGC system, described in, e.g. [2], has mainly focused on
improving power quality and dynamic performance, paying
scant attention to economic optimality in steady state. A survey
of such efforts is available in [3]. In recent years, AGC
economic optimality has received significant attention given
the realization that greater frequency regulation effort would
be required in the grid with increased penetration of variable
renewable resources [4], [5]. Academic efforts have sought to
redesign the AGC system so that it provably steers generator
outputs to an optimizer of the companion economic dispatch
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problem [6]–[10]. In contrast, we consider a different problem
and tackle the following fundamental research question:

Under what conditions is the standard AGC system
employed in practice [2], without any retrofits or
modifications, economically optimal?

Surprisingly, the above question has not received due regard in
previous work. Before detailing our contributions, we provide
a comprehensive literature review of recent efforts that focus
primarily on either retrofitting or significantly modifying the
current implementation of AGC so that it guarantees eco-
nomic optimality. We remark that these efforts do not address
the more fundamental question of when the prevailing and
standard AGC system utilized in practice aligns the system
dynamics with economic optimality.

Related work. Academic efforts seeking to redesign the
AGC system so it provably steers generator outputs to an
optimizer of the companion economic dispatch problem in
steady state have been proposed in [6]–[15]. Particularly,
primal-dual gradient methods are proposed in [6]–[10] to
solve optimization problems that jointly consider generator
scheduling and frequency regulation. Newton’s method is
leveraged to design fast-converging distributed AGC systems
in [11]–[13]. Consensus-based algorithms are used to steer
generator outputs to the minimizers of economic dispatch
problems in [14] and [15]. A distributed averaging proportional
integral control for frequency regulation that realizes economic
optimality in steady state is introduced in [16]. Furthermore,
online feedback controllers that converge to the solution of
pertinent cost minimization problems are proposed in [17]–
[20]. More aligned with industry implementations, [21]–
[23] propose various functional enhancements to improve the
economic performance of the prevailing AGC. Alternatives
to standalone economic dispatch and AGC that attempt to
preserve the prevailing secondary control architecture include
solutions of a steady-state frequency-aware economic dispatch
problem [24], an economic dispatch problem constrained by
discretized frequency dynamics [25], and a continuous-time
economic dispatch problem with frequency dynamics [26].
While this work focuses on economic optimality of the
industry-standard AGC system, other performance metrics are
equally important. One that comes to mind foremost is closed-
loop stability. We direct interested readers to [27] for a recent
formal treatment of stability of the industry-standard AGC
system. The literature on stability of retrofits and new variants
of AGC is vast, but this is not aligned with the focus of this
effort which is to examine the industry-standard AGC system.

Contributions. Unlike much of the previous work reviewed
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above, this paper is not centered on algorithm design or control
synthesis. Our main contribution is to uncover conditions un-
der which the standard industry-employed AGC, without any
modifications, is economically optimal, i.e., it steers generator
outputs to the solution of the economic dispatch problem in
steady state. In light of the above, our main contributions can
be summarized as follows:

• In the most general setting, we uncover necessary and
sufficient conditions under which steady-state generator
outputs realized by AGC action with standard feedfor-
ward gains—known as participation factors—correspond
to a Karush-Kuhn-Tucker (KKT) point of the economic
dispatch problem.

• We derive conditions under which such a KKT point is a
global minimum of the economic dispatch problem. The
generality of these results follow from directly analyzing
KKT conditions at pre- and post-disturbance steady-state
operating points. Interestingly, the analysis is predicated
on generator-cost functions conforming to a particular
algebraic constraint that involves loss penalty factors and
derivatives of generator-cost functions up to second order.

• For the case of convex cost functions and a lossless
network, we prove that steady-state generator outputs
realized by the AGC action correspond to the global min-
imum of the economic dispatch problem if the generator-
cost functions are quadratic.

• To validate our theoretical results, we simulate a
differential-algebraic equation (DAE) model of a lossless
version of the New England 39-bus test system involving
models for the two-axis generator, governor and exciter
controls, and a standard AGC system. We then compare
the steady-state generator outputs under AGC action
and the standard choice of participation factors with
the ones obtained using participation factors that depend
on generator governor droops and inertia constants. We
show that, AGC leads to steady-state generator outputs
that exactly match the solution of the economic dispatch
problem with the standard choice of participation factors
under the conditions mentioned above.

Our analysis and results are critical in establishing baselines
for benchmarking performance of potential retrofits and up-
heavals proposed for AGC and economic dispatch. Through
the above contributions, we conclusively reconcile the gap
between the operation of the standard AGC system and
a well-defined notion of economic optimality. Notably, our
results are presented in the backdrop of an economic dispatch
problem that minimizes total cost of generation subject to
supply-demand constraint including losses, generator-capacity
limits, and line-flow limits. Problems with this general form
have been referenced routinely in the context of practical
implementations [28], [29]. We conclude by reiterating that
our main results (discussed above) are necessary and sufficient.
This particular aspect underscores the technical contributions
of the paper in examining economic optimality of the industry-
standard AGC system in a comprehensive and mathematically
rigorous manner. In a nutshell, the paper provides marked
contributions over previous attempts at examining economic

optimality of the AGC system that applied to stylized dy-
namics / economic-dispatch routines and only in the limiting
regime of small load disturbances.

Paper Organization. The remainder of the paper is or-
ganized as follows. In Section II, we describe the system
dynamical model and draw the connection to the solution
of the economic problem. We also show how the standard
choice of AGC participation factors is derived through a
perturbation analysis of the economic dispatch problem. In
Section III, we present our main results: conditions under
which AGC guarantees economic optimality for lossy and
lossless networks. Section IV contains numerical validation
for the IEEE 39-bus system. Finally, we conclude this paper
in Section V.

II. BACKGROUND

In this section, we present the system model that com-
bines dynamics arising from synchronous generators, the AGC
system, and economic dispatch. With these, we characterize
the system steady-state operating point as well as the KKT
conditions of the economic dispatch problem. Finally, we
discuss how the AGC participation factors are typically derived
via a perturbation analysis of economic dispatch.

A. Generator and AGC Dynamical Models

Consider an AC electric power network with synchronous
generators indexed in set G and transmission lines indexed in
set E . For each generator g ∈ G, let δg, ωg, Pm

g , P e
g , and

P r
g denote the electrical angular position, angular speed, tur-

bine mechanical power, electrical power output, and reference
power input, respectively. Dynamics of generator g can be
described by the swing equations augmented with a simplified
turbine-governor model, as follows:

δ̇g = ωg − ωs, (1)
Mgω̇g = Pm

g − P e
g , (2)

τgṖ
m
g = P r

g − Pm
g −

1

Rgωs
(ωg − ωs), (3)

where Mg, τg, and Rg denote its inertia constant, governor
time constant, and droop constant, respectively; and ωs =
2π60 [rad/s] is the synchronous frequency of the system.
The electrical power output, P e

g , is a function of bus-voltage
magnitudes and phase angles as solved from the network
power balance. The generator g reference power input is given
by

P r
g = P ?g + αg(ξ −

∑

j∈G
P ?j ), (4)

where P ?g is the setpoint received from economic dispatch
and αg is the AGC participation factor with

∑
g∈G αg = 1 [2],

[30]. In practice, the participation factors are typically chosen
according to the formula:

αg =
(C

′′

g (P ?g ))−1

∑
j∈G

(C
′′
j (P ?j ))−1

, (5)

where G is the set of generators participating in AGC and
C ′′g (P ?g ) denotes the second derivative of the generator g cost
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function evaluated at the economic dispatch solution, P ?g [2].
Implicit in (5) is that the participation factors are updated with
each instance of economic dispatch [1], [2]. Moreover, ξ is the
AGC state whose evolution is dictated by

ξ̇ = −ξ −ACE +
∑

g∈G
P e

g , (6)

where ACE denotes the area control error that accounts for
deviations in frequency from the synchronous value. For a
single-area system with no tie-line flows, the area control error
is formulated as ACE = b(ω − ωs) where b > 0 is the area
bias factor and ω the prevailing frequency of the system [2].
(Without loss of generality, we assume ω is computed with
real-time measurements as the average electrical frequency of
all generators.)

In the remainder of the paper, we denote values taken by
variables at a new steady-state operating point by X (corre-
sponding values at the initial operating point are denoted by
X). Suppose the system net load Pload changes by amount
∆Pload, so that the new net load is P load = Pload+∆Pload. In
steady state after the load change, the dynamical system (1)–
(6) converges to the following operating point:

ωg = ωs, ∀ g ∈ G, (7)

P
m

g = P ?g + αg(∆Pload + ∆Ploss), ∀ g ∈ G, (8)

ξ = Pload + ∆Pload + ∆Ploss, (9)

where ∆Ploss is the change in system loss due to the change
in operating point. It follows from (2) that generator g steady-
state electrical power output with the new net load is

P
e

g = P ?g + αg(∆Pload + ∆Ploss), ∀ g ∈ G. (10)

The above expressions follow from a steady-state analysis of
system dynamics (see [31] for details). In particular, we will
find (10) central to the main results of this work, since it
establishes the links between the closed-loop system dynamics
(as dictated by generators and AGC) and economic optimality.
The main objective of our work is to uncover conditions under
which P

e

g matches the optimizer P
?

g of the economic dispatch
problem solved with the new net load P load. Taking a step in
this direction, we outline the economic dispatch problem and
characterize its solution next.

B. Economic Dispatch Problem

Let Cg(Pg) denote the cost function for generator g, and
collect Pg, g ∈ G, in PG ∈ R|G|. The economic dispatch
problem takes the following form:

min.
Pg, g∈G

∑

g∈G
Cg(Pg) (11a)

s.t.
∑

g∈G
Pg = Pload + Ploss(PG), (11b)

Pmin
(m,n) ≤

∑

g∈G
Ψg

(m,n)Pg ≤ Pmax
(m,n), ∀ (m,n) ∈ E , (11c)

Pmin
g ≤ Pg ≤ Pmax

g , ∀ g ∈ G, (11d)

where Pload is the look-ahead net load, Ploss(PG) is the
system loss modeled as a function of PG , Pmin

g (Pmin
(m,n)) and

Pmax
g (Pmax

(m,n)) denote the minimum and maximum limits for
generator g capacity (line (m,n) flow), and Ψg

(m,n) captures
the sensitivity of line (m,n) active-power flow with respect
to generator g active-power injection [2]. The solution to the
economic dispatch problem, P ?g , provides the reference set-
point for generator g in (4). The Lagrangian for problem (11)
is given by:

L := L(Pg, λ, ψ
+
(m,n), ψ

−
(m,n), µ

+
g , µ

−
g )

=
∑

g∈G
Cg(Pg) + λ(Pload + Ploss(PG)−

∑

g∈G
Pg)

+
∑

(m,n)∈E
ψ+

(m,n)

(∑

g∈G
Ψg

(m,n)Pg − Pmax
(m,n)

)

+
∑

(m,n)∈E
ψ−(m,n)

(
Pmin

(m,n) −
∑

g∈G
Ψg

(m,n)Pg

)

+
∑

g∈G
µ+

g (Pg − Pmax
g ) +

∑

g∈G
µ−g (Pmin

g − Pg), (12)

where λ, ψ+
(m,n), ψ

−
(m,n), µ

+
g , and µ−g are dual variables

corresponding to supply-demand, line-flow, and generator-
capacity constraints. We refer to primal and dual solutions
that satisfy the KKT conditions as KKT points, and we denote
them by P ?g (P ?G in vector form) and λ?, ψ+?

(m,n), ψ
−?
(m,n), µ

+?
g ,

µ−?g , respectively. The KKT conditions for problem (11) can
be derived from the Lagrangian (12), and they are given by:

C ′g(P ?g )− λ?

Λ?g
+

∑

(m,n)∈E
(ψ+?

(m,n) − ψ−?(m,n))Ψ
g
(m,n)

+ µ+?
g − µ−?g = 0, ∀ g ∈ G, (13a)

Pload + Ploss(P
?
G )−

∑

g∈G
P ?g = 0, (13b)

{
ψ+?

(m,n)

(∑
g∈G Ψg

(m,n)P
?
g − Pmax

(m,n)

)
= 0,

ψ+?
(m,n) ≥ 0, ∀ (m,n) ∈ E ,

(13c)

{
ψ−?(m,n)

(
Pmin

(m,n) −
∑

g∈G Ψg
(m,n)P

?
g

)
= 0,

ψ−?(m,n) ≥ 0, ∀ (m,n) ∈ E ,
(13d)

{
µ+?

g (P ?g − Pmax
g ) = 0, µ+?

g ≥ 0,

µ−?g (Pmin
g − P ?g ) = 0, µ−?g ≥ 0,

∀ g ∈ G, (13e)

{
Pmin

(m,n)≤
∑

g∈G Ψg
(m,n)P

?
g ≤ Pmax

(m,n),∀(m,n) ∈ E ,
Pmin

g ≤ P ?g ≤ Pmax
g , ∀ g ∈ G.

(13f)

Above, Λ?g is the loss penalty factor for generator g evaluated
at P ?G ; it is defined as [2]

Λ?g :=

(
1− ∂Ploss(P

?
G)

∂Pg

)−1

. (14)

The overall system architecture discussed thus far is illustrated
in Fig. 1. Before proceeding further, we overview several
details pertaining to the constituent models.

Remark 1 (Note on models). The AGC system described
in (4)–(6) follows from transcribing a state-space description
for block diagrams sketched in [2]. Another architecture that
finds frequent mention in the literature involves determining
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Fig. 1: Illustration of economic dispatch and AGC architectures.

the AGC state by directly integrating ACE without feedback
from generator electrical power outputs [1], [32], [33]. It
turns out that this model yields the same steady-state operating
point as in (10), and so all subsequent developments apply.

The economic dispatch problem (11) is pieced together
from [28], [29], [34], [35]. We emphasize these references as
they are authored by industry stakeholders. See also [2], [32],
[33] for textbook references with similar problem settings.
We provide this collection of references to emphasize that
problem (11) is a reasonable and representative formulation.
The system loss Ploss(PG) in (11) can be modeled as a
quadratic function of PG with Kron’s loss formula:

Ploss(PG) = PT
G BPG + PT

G B0 +B00, (15)

where B ∈ R|G|×|G|, B0 ∈ R|G|, and B00 ∈ R consist of so-
called B-coefficients [2], [36]. Although B-coefficients vary
with operating point, they are typically assumed to be constant
for the purpose of evaluating the loss penalty factors [2], [33].
The line-flow sensitivities, Ψg

(m,n), g ∈ G, (m,n) ∈ E , are
commonly referred to as injection shift factors. They can be
computed from the power flow equations or estimated using
measurements [2], [37].

C. Recovering Standard Participation Factors from a Pertur-
bation Analysis

Before establishing our main results pertaining to the eco-
nomic optimality of the standard AGC, we trace through
typical analytical arguments that have been used to justify
the choice of participation factors (5) in previous work [2],
[38]–[42]. This is an important first step for our analysis as
the economic optimality of the AGC and correspondingly, our
main results, are intrinsically tied to the choice of participation
factors. As we show below, the choice (5) has been frequently
justified in the literature via a perturbation analysis of a com-
panion economic dispatch problem with quadratic generator-
cost functions and a linear supply-demand constraint (see,

e.g., [2], [38]–[42]). Denote by ∆Pg, the deviation in electrical
power output of generator g from the economic dispatch
optimizer, P ?g . Suppose this results from a ∆Pload change in
net load. Consider the first-order Taylor-series expansion of
the generator g marginal cost around the economic dispatch
solution:

C ′g(P ?g + ∆Pg) ≈ C ′g(P ?g ) + C ′′g (P ?g )∆Pg. (16)

The above approximation is only accurate for sufficiently
small load changes, since it is in this regime that we can
assume ∆Pg is small. On the other hand, it is exact for the
special case of quadratic cost functions regardless of the load-
change magnitude. Neglecting losses, line-flow limits, and
generator-capacity limits in (11), we recognize that the KKT
condition (13a) simplifies as

C ′g(P ?g ) = λ?, ∀ g ∈ G. (17)

Let us aspire for optimality through AGC action by supposing
that all generators operate with the same marginal cost at the
new net load. This implies

C ′g(P ?g + ∆Pg) = λ? + ∆λ, ∀ g ∈ G, (18)

where ∆λ denotes the change in marginal cost due to the
net-load change. Substituting (17) and (18) into (16) we get

∆Pg = ∆λ(C ′′g (P ?g ))−1. (19)

Summing (19) over all generators yields
∑

g∈G
∆Pg = ∆λ

∑

g∈G
(C ′′g (P ?g ))−1 = ∆Pload, (20)

where the second equality holds when losses are neglected.
From (19) and (20), we obtain

∆Pg

∆Pload
=

(C
′′

g (P ?g ))−1

∑
j∈G

(C
′′
j (P ?j ))−1

. (21)

This ratio naturally invites the interpretation of a participation
factor as it captures the fraction of net-load change that ought
to be allocated to each generator. The immediate impulse
that follows is to set AGC participation factors based on the
ratio in (21), or equivalently, per (5). However, notice the
tenuous link to system dynamics in the above developments.
Particularly, while (18) represents economic optimality at
the new operating point, there is no indication that AGC
implemented with participation factors in (5) would actually
steer system dynamics to this operating point. Moreover, it
is not clear under what precise conditions the choice (5) is
optimal for a representative economic dispatch problem (such
as the one in (11)), and with the underlying system dynamics
(such as those described by (1)–(6)). We explore these aspects
in detail next.

III. MAIN RESULTS

In this section, we present the main results of the paper. We
first examine the most general case where AGC with the choice
of participation factors (5) merely steers generator electrical
power outputs to a KKT point of the nonconvex economic
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dispatch problem (11). We then extend this result to show that
under suitable convexity assumptions on the generator-cost and
system-loss functions, AGC provably steers generator power
outputs to a global minimum of the nonconvex economic
dispatch problem (11). We also establish that the same holds
for a convex economic dispatch problem neglecting losses
under different—and easier to satisfy—assumptions. Finally,
we consider the case with linear generator-cost functions.

A. The General Case

We present the following result centered on optimality
of AGC for generic generator-cost functions and a generic
system-loss function in the economic dispatch problem (11).

Theorem 1. Suppose the system initially operates in steady
state with net load, Pload, and generator electrical power
outputs corresponding to a KKT point, P ?g , g ∈ G, of
the economic dispatch problem (11). Consider AGC action
triggered by a change in net load to P load = Pload + ∆Pload.
Denote by P

?

g , g ∈ G, a KKT point of the economic dispatch
problem solved with the new net load, P load. Further, denote
the loss penalty factors corresponding to P ?g and P

?

g , by Λ?g
and Λ

?

g , respectively. Consider the following assumptions:
[A1] The cost function Cg(Pg) is twice differentiable.
[A2] The KKT points P ?g , P

?

g satisfy (13) with non-binding
line-flow constraints (11c) and generator-capacity con-
straints (11d).

[A3] The generator-cost and system-loss functions are such
that for the KKT points P ?g , P

?

g :

Λ
?

gC
′
g(P

?

g)− Λ?gC
′
g(P ?g ) = (P

?

g − P ?g )C ′′g (P ?g ). (22)

Under assumptions [A1]–[A3], the steady-state generator elec-
trical power outputs following the net-load change correspond
to KKT point, P

?

g , i.e.,

P
e

g = P
?

g , ∀ g ∈ G, (23)

if and only if the AGC participation factors are chosen as

αg =
(C ′′g (P ?g ))−1

∑
j∈G

(C ′′j (P ?j ))−1
, ∀ g ∈ G. (24)

Proof. Under assumption [A2], the KKT condition (13a) re-
duces to the following constraints:

λ? = Λ?gC
′
g(P ?g ), λ

?
= Λ

?

gC
′
g(P

?

g). (25)

For subsequent developments, we will find it useful to de-
fine (with slight abuse of notation adopted previously):

∆λ = λ
? − λ?. (26)

Substituting for λ
?

and λ? from (25) into (26), and leveraging
property (22) in assumption [A3], we get

∆λ = Λ
?

gC
′
g(P

?

g)− Λ?gC
′
g(P ?g ) = (P

?

g − P ?g )C ′′g (P ?g ). (27)

Rearranging terms in (27) yields

P
?

g − P ?g = ∆λ(C ′′g (P ?g ))−1. (28)

Then, summing (28) across all generators, we get
∑

g∈G
(P

?

g − P ?g ) = ∆λ
∑

g∈G
(C ′′g (P ?g ))−1

= ∆Pload + ∆Ploss, (29)

where the second equality above follows from the supply-
demand balance constraint (11b). From this equation, we
obtain the following alternative expression for ∆λ

∆λ =
∆Pload + ∆Ploss∑

g∈G(C ′′g (P ?g ))−1
. (30)

Suppose (23) holds. Rearranging terms in (10) along with (23)
yields

αg(∆Pload + ∆Ploss) = P
?

g − P ?g . (31)

Replacing the right-hand side in (31) using (28), we get

αg(∆Pload + ∆Ploss) = ∆λ(C ′′g (P ?g ))−1. (32)

Finally, substituting ∆λ from (30) in (32), we get

αg(∆Pload + ∆Ploss) =
(C ′′g (P ?g ))−1

∑
j∈G

(C ′′j (P ?j ))−1
(∆Pload + ∆Ploss),

(33)

from which we readily obtain the AGC participation factors
in (24).

Next, consider the other direction. Suppose that AGC par-
ticipation factors are indeed chosen as in (24). From (10), we
see that the steady-state generator g electrical power output
with the choice of AGC participation factors (24) is given by

P
e

g = P ?g +
(C ′′g (P ?g ))−1

∑
j∈G

(C ′′j (P ?j ))−1
(∆Pload + ∆Ploss). (34)

Leveraging (22) from assumption [A3], we get

P
e

g = P ?g +

P
?
g−P?

g

Λ
?
g C

′
g(P

?
g )−Λ?

g C
′
g(P?

g )

∑
j∈G

P
?
j−P?

j

Λ
?
jC

′
j(P

?
j )−Λ?

jC
′
j(P?

j )

(∆Pload +∆Ploss). (35)

Further, recognizing that (27) holds for all g ∈ G, we can
express the above as

P
e

g = P ?g +

P
?
g−P?

g

∆λ
1

∆λ

∑
j∈G

(P
?

j − P ?j )
(∆Pload + ∆Ploss), (36)

which simplifies to

P
e

g = P ?g +
P
?

g − P ?g∑
j∈G

(P
?

j − P ?j )
(∆Pload + ∆Ploss). (37)

Finally, since ∆Pload + ∆Ploss =
∑
j∈G(P

?

j − P ?j ) from the
supply-demand constraint (11b), we see that P

e

g = P
?

g , ∀ g ∈
G. This completes the proof.

The main takeaway from Theorem 1 is the precise set of
conditions under which AGC steers system dynamics to a
KKT point of the standard economic dispatch problem (11).
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As we have mentioned before, similar versions have been
frequently referenced in the literature [2], [28], [29], [32]–[35].
The fact that line-flow and capacity constraints are assumed to
be non-binding for the results to hold does not suggest that the
theorem is applicable for a simpler (less constrained) version
of the economic dispatch problem.

B. Convex Generator-cost & System-loss Functions

The result in Theorem 1 applies, in general, to arbitrary
generator-cost and system-loss functions. We now consider the
particular case of the loss model (15) and convex generator-
cost functions. In this setting, we first characterize the solu-
tions of the economic dispatch problem (11).

Lemma 1. Consider the following assumptions:
[A4] The cost function Cg(Pg) is strictly convex, and marginal

cost C ′g(Pg) > 0.
[A5] The system-loss model (15) is strictly convex with B � 0.
[A6] For net-load values Pload and P load, the respective KKT

points P ?g , P
?

g , g ∈ G, collected in P ?G , P
?

G satisfy:

P ?G , P
?

G <
1

2
B−1(1|G| −B0). (38)

(The above constraint is equivalent to requiring Λ?g > 0,
∀ g ∈ G for the particular loss model (15).)

Under [A1], [A2], [A4]–[A6], the KKT points P ?g , P
?

g corre-
spond to global minima of the nonconvex problem (11).

The proof for the above statement is provided in the Appendix.
With this characterization of the solution to problem (11), we
now examine if (and when) AGC steers the system dynamics
to a global minimum of the economic dispatch problem.

Theorem 2. Suppose the system initially operates in steady
state with net load, Pload, and generator electrical power
outputs corresponding to a global minimum of the economic
dispatch problem (11), P ?g , g ∈ G. Consider AGC action
triggered by a change in net load to P load = Pload + ∆Pload.
Denote by P

?

g , g ∈ G, a global minimum of the economic
dispatch problem solved with the new net load, P load. Un-
der assumptions [A1]–[A6], steady-state generator electrical
power outputs following the net-load change correspond to a
global minimum of the nonconvex economic dispatch problem
solved with the new net load and corresponding system loss,
i.e., P

e

g = P
?

g , ∀ g ∈ G, if and only if the AGC participation
factors are chosen as in (5).

Proof. The proof follows along the same line as that for The-
orem 1, with the added realization that KKT points considered
in Theorem 1 correspond to global minima per Lemma 1.

C. Convex Generator-cost Functions and Lossless Network

In practice, condition (22) in assumption [A3] may be
difficult to satisfy as it depends on individual generator-cost
functions and network-wide power flow. Next, by neglecting
losses, we make a similar statement about AGC optimality,
albeit under an equivalent assumption that is easier to satisfy.

Theorem 3. Suppose the generator-cost functions are strictly
convex and assume the system is lossless; this setup renders

problem (11) convex. Suppose the system initially operates
in steady state with net load, Pload, and generator electri-
cal power outputs corresponding to the global minimum of
the economic dispatch problem (11), P ?g , g ∈ G. Consider
AGC action triggered by a change in net load to P load =
Pload + ∆Pload. Denote by P

?

g , g ∈ G, the global minimum of
the economic dispatch problem for the new net load, P load.
Consider also the following assumption:

[A7] The generator g cost function is such that for the eco-
nomic dispatch solutions P ?g , P

?

g :

C ′g(P
?

g)− C ′g(P ?g ) = (P
?

g − P ?g )C ′′g (P ?g ). (39)

Under [A1], [A2], and [A7], the new steady-state generator
electrical power outputs following the load change correspond
to the global minimum of the economic dispatch problem
solved with the new net load, i.e., P

e

g = P
?

g , ∀ g ∈ G,
if and only if AGC participation factors are chosen as in (5).

Proof. The proof follows along the same line as Theorem 1
while setting Λ?g = Λ

?

g = 1, and with the added realization
that a KKT point considered in Theorem 1 correspond to the
unique global minimum per the assumptions listed above.

Remark 2 (Generator-cost functions that satisfy [A7]). Linear
and quadratic generator-cost functions satisfy (39) while,
e.g., cubic cost functions, do not. However, Theorem 3 does
not apply for linear cost functions. Note that the optimal
solution of the economic dispatch problem with linear cost
functions enforces all generators with nonzero output (except
one marginal generator) to operate at maximum capacity.
(This is also in direct contradiction with assumption [A2].)
Consequently, new steady-state generator electrical power
outputs with the choice of AGC participation factors (5)
correspond to the unique global minimum of the economic
dispatch problem if and only if the generator-cost functions
are quadratic.

Remark 3 (Can [A3] be satisfied for small ∆Pload and
quadratic cost functions in lossy networks?). This is an impor-
tant question that governs the range of settings under which
the general results highlighted above hold. For a lossy system,
assumption [A3] need not be satisfied even if the cost functions
are quadratic and we consider a small value of ∆Pload. To see
why, note that a small ∆Pload would only imply that Λ

?

g ≈ Λ?g
and not Λ

?

g ≈ Λ?g ≈ 1.

D. Linear Generator-cost Functions and Lossless Network

We now examine the case where the generator-cost func-
tions are linear. One can easily notice that the participation
factors given by (5) are ill-defined in this setting since the
second derivative of the cost functions would be identically
zero. In light of this, we derive suitable participation factors
that enable AGC to guarantee economic optimality. Let gener-
ator g ∈ G participating in frequency regulation have a linear
cost function, i.e.,

Cg(Pg) = agPg + bg, ∀ g ∈ G, (40)
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for some constants ag, bg > 0. With the net load Pload, suppose
generator m is the marginal generator in the system dictating
the marginal cost of electricity, i.e., λ? = C ′m(P ?m) = am.

Consider a net-load change of ∆Pload > 0 from the original
value Pload so that the new net load is P load = Pload+∆Pload.
Define set G′ := {j ∈ G : aj ≥ am} that collects generators
in order of increasing linear-term coefficients in their cost
functions, i.e., the generator with the lowest linear-term coef-
ficient, which is still greater than or equal to am, is associated
with the index m + 1 and so on. Further suppose that the
capacity constraints of the transmission lines are not binding.
To ensure that the new steady-state generator electrical outputs
with AGC, P g = P ?g + αg∆Pload, g ∈ G, exactly match the
optimizers of the economic dispatch problem solved with the
new net load P load, i.e., P g = P ?g + αg∆Pload = P

?

g , g ∈ G,
the AGC participation factors should be picked as follows. If
∆Pload ≤ Pmax

m − P ?m, i.e., the marginal generator m can
accommodate the entire net-load increase without violating its
maximum capacity limit, then

αm = 1, and αg = 0, ∀ g ∈ G′. (41)

If, instead, ∆Pload > Pmax
m − P ?m, where for some m′ ∈ G′,

∑

j∈G′, j<m′

Pmax
j − P ?j < ∆Pload ≤

∑

j∈G′, j≤m′

Pmax
j − P ?j .

Then, generator m′ ∈ G′ becomes the new marginal generator,
and the participation factors should be set as follows:

αg =

{
0, ∀ g > m′, g ∈ G′,
(Pmax

g −P?
g )

∆Pload
, ∀ g < m′, g ∈ G′,

αm′ = 1−
∑

j∈G′, j<m′

Pmax
j − P ?j
∆Pload

.

(42)

The choices for the participation factors above can be
justified by considering a simple procedure to arrive at the
optimal solution of the economic dispatch problem with linear
generator-cost functions for a net-load increase. One would
first increase the output of the generator with the lowest
marginal cost until its maximum capacity is reached. Then the
output of the unit with the next lowest marginal cost would
be raised until it reaches maximum capacity. Eventually, the
repeated procedure arrives at a generator whose maximum
capacity is not reached but the new net load is entirely served
by generators in the system. This generator is designated as
the new marginal generator in the system. In light of the
above procedure, the AGC recruits the marginal generator and
then generators with next lowest marginal costs to balance the
net-load increase. In this way, the AGC guarantees economic
optimality by provably steering generation to the optimizers
of the economic dispatch problem. The case in which the net-
load change ∆P < 0 follows via similar logic, and we refrain
from including details to avoid undue repetition.
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Fig. 2: One-line diagram for the New England test system.

IV. CASE STUDIES

We focus on validating Theorem 3 with numerical simu-
lations of the New England 39-bus 10-machine test system.
While theoretical developments are based on simplified gen-
erator models, the DAE simulations performed in PSAT [43]
involve detailed two-axis machine models along with governor
and exciter controls [44]. All numerical values are reported to
4 significant digits.

A. Simulation Setup

The one-line diagram of the test system is depicted in
Fig. 2. Generator parameters and nominal load values are
sourced from the PSAT data file in [43], while line resistances
are set to zero to model a lossless system. Cost function
for generator g is assumed to be quadratic of the form
Cg(Pg) = agP

2
g +bgPg +cg, with coefficients ag, bg, and cg for

all generators in the system reported in Table I. The original
PSAT data file for the New England test case does not contain
generator-cost data. Thus, we choose ag by sampling a uniform
distribution between 0 and 10, bg by sampling between 0
and 5, and cg between 0 and 1. Each simulation begins with
the system operating in steady state with generator electrical
power outputs equal to the economic dispatch optimizer, i.e.,
P e

g = P ?g , ∀ g ∈ G. These are obtained by solving prob-
lem (11) neglecting losses for the nominal load (as specified
in the PSAT data file), and numerical values are reported in
Table I. We perform a total of 15 time-domain simulations
for 5 different values of net-load change, ∆Pload, spanning
−40%, −30%, −20%, −10%, and +10% (in each simulation,
all loads in the system are varied uniformly). Notably, the
net-load variations we consider do not lead to any violations
in operating constraints, per assumption [A2]. For each of
the 5 net-load change scenarios, 3 different choices of AGC
participation factors are considered. The first choice is the
optimal one (5). The other two are based on generator droop

TABLE I: Coefficients for generator g cost function of the form Cg(Pg) = agP 2
g + bgPg + cg and economic dispatch optimizers, P ?

g , for initial load.

g = 30 g = 31 g = 32 g = 33 g = 34 g = 35 g = 36 g = 37 g = 38 g = 39

ag [$/hr · p.u.2] 7.842 7.314 4.542 3.864 7.756 7.343 4.303 6.938 9.452 3.600
bg [$/hr · p.u.] 4.319 3.528 1.950 2.955 2.297 0.2515 1.144 4.171 0.0780 0.5465
cg [$/hr] 0.05630 0.07810 0.5002 0.2180 0.5716 0.1222 0.6712 0.5996 0.05600 0.6690
P?

g [p.u.] 4.364 4.733 7.795 9.033 4.542 4.937 8.322 4.943 3.845 10.03



8

TABLE II: For each load change, ∆Pload, we report: i) the global optimizers from economic dispatch with new net-load in rows labelled “P ?
g : Dispatch;”

ii) electrical power outputs from generators with AGC participation factors picked to be the optimal (5), governor-based αGovernor
g , and inertial-based αInertia

g
in rows labelled “P e

g : Optimal,” “P e
g : Governor,” and “P e

g : Inertial,” respectively; and iii) total cost of dispatch in the column labelled “
∑

g∈G Cg(·).”

∆Pload P
?
g , P

e
g [p.u.] g = 30 g = 31 g = 32 g = 33 g = 34 g = 35 g = 36 g = 37 g = 38 g = 39

∑
g Cg(·)

−40%

P
?
g : Dispatch 2.560 2.799 4.680 5.372 2.719 3.011 5.034 2.904 2.348 6.100 $875.0/hr

P
e
g : Optimal 2.560 2.798 4.680 5.371 2.720 3.011 5.034 2.904 2.348 6.100 $875.0/hr

P
e
g : Governor 0.934 2.312 5.374 6.612 2.122 2.516 5.901 2.522 1.625 7.608 $927.5/hr

P
e
g : Inertial 2.114 2.170 5.232 6.470 1.979 2.374 5.758 2.379 1.432 7.617 $913.1/hr

−30%

P
?
g : Dispatch 3.011 3.282 5.459 6.287 3.174 3.492 5.856 3.414 2.722 7.082 $1175/hr

P
e
g : Optimal 3.011 3.282 5.459 6.287 3.175 3.492 5.856 3.413 2.722 7.082 $1175/hr

P
e
g : Governor 1.792 2.917 5.979 7.217 2.727 3.122 6.506 3.127 2.180 8.214 $1205/hr

P
e
g : Inertial 2.677 2.810 5.873 7.110 2.620 3.015 6.399 3.020 2.036 8.220 $1197/hr

−20%

P
?
g : Dispatch 3.462 3.766 6.238 7.202 3.630 3.974 6.678 3.923 3.096 8.065 $1520/hr

P
e
g : Optimal 3.462 3.765 6.238 7.202 3.631 3.974 6.678 3.923 3.096 8.065 $1520/hr

P
e
g : Governor 2.649 3.522 6.584 7.822 3.332 3.727 7.111 3.732 2.735 8.819 $1533/hr

P
e
g : Inertial 3.239 3.451 6.513 7.751 3.261 3.656 7.040 3.661 2.639 8.823 $1529/hr

−10%

P
?
g : Dispatch 3.913 4.249 7.016 8.117 4.086 4.456 7.500 4.433 3.471 9.047 $1908/hr

P
e
g : Optimal 3.913 4.249 7.016 8.118 4.087 4.456 7.500 4.433 3.471 9.047 $1908/hr

P
e
g : Governor 3.506 4.128 7.190 8.428 3.937 4.332 7.716 4.337 3.290 9.424 $1912/hr

P
e
g : Inertial 3.801 4.092 7.154 8.392 3.902 4.296 7.681 4.302 3.242 9.427 $1911/hr

+10%

P
?
g : Dispatch 4.815 5.216 8.574 9.948 4.998 5.419 9.143 5.453 4.219 11.01 $2819/hr

P
e
g : Optimal 4.815 5.217 8.573 9.948 4.998 5.419 9.144 5.453 4.219 11.01 $2819/hr

P
e
g : Governor 5.221 5.338 8.400 9.638 5.148 5.542 8.927 5.549 4.400 10.63 $2822/hr

P
e
g : Inertial 4.926 5.374 8.436 9.673 5.183 5.578 8.963 5.584 4.448 10.63 $2821/hr

and inertia constants, given by αGovernor
g = R−1

g /
∑
j∈G R

−1
j

and αInertia
g = Mg/

∑
j∈GMj , respectively, where Rg and Mg

are the droop and inertia constants for generator g.

B. Simulation Results

For each load-change scenario considered, we report the
global optimizer P

?

g , g ∈ G, of the economic dispatch
problem (11) with the new load, and the steady-state generator
electrical power outputs P

e

g, g ∈ G, with optimal, governor-
based, and inertia-based AGC participation factors in Table II.
The generator electrical power outputs are recorded in steady
state once AGC action has subsided. The total cost of dispatch
corresponding to each set of generator setpoints or outputs is
provided in the last column.

In each scenario, the steady-state generator outputs that re-
sult from the optimal AGC participation factors match the op-
timizer of the economic dispatch problem solved with the new
load. The maximum error across all simulations is 0.001 p.u.
and this is likely attributable to numerical integration errors
and the higher-order generator models used in the simulations.
It is worth noting that these errors do not lead to perceptible
differences in total dispatch cost. Furthermore, steady-state
generator electrical power outputs resulting from both the
governor- and the inertia-based AGC participation factors yield
higher costs than those from the optimal choice. Although
the inertia-based participation factors appear to perform better
than the governor-based ones, this is clearly a system-specific
numerical artifact. The system may operate with the new
load that is unaccounted for in the pre-load-change dispatch
for a significant period of time. The accumulated cost of
operation—which we do not report to preserve generality
of findings—would be notably lower with the optimal AGC
participation factors over some operating horizon. In addition
to validating the theoretical results reported in Theorem 3,
the simulations justify the reduced-order generator dynamical
model used to establish the theoretical results.

V. CONCLUDING REMARKS & FUTURE WORK

This paper establishes necessary and sufficient conditions
under which a widely accepted choice of participation factors
guarantee that steady-state generator electrical power outputs
with AGC align with a global minimum of a prototypical
economic dispatch problem. We validate our main results and
compare the economic performance of AGC under different
choices of participation factors through numerical case studies
involving a modified version of the New England test system.
Our analysis and results are important in establishing bench-
mark baselines to assess the performance of new or retrofit
AGC and economic dispatch designs.

An exhaustive examination of operation with binding con-
straints is excellent grounds for future work. Other pertinent
directions include investigating the performance of AGC with
the nominal participation factors (5) in lossy networks where
the optimal solution(s) of economic dispatch is (are) well
characterized. This would also suggest avenues for optimal
design of participation factors for a system with losses.

APPENDIX

Proof of Lemma 1. We begin by relaxing the constraint (11b)
to obtain the following convex version of problem (11):

min.
Pg, g∈G

∑

g∈G
Cg(Pg) (43a)

s.t.
∑

g∈G
Pg ≥ Pload + Ploss(PG), (43b)

Pmin
(m,n) ≤

∑

g∈G
Ψg

(m,n)Pg ≤ Pmax
(m,n), ∀ (m,n) ∈ E , (43c)

Pmin
g ≤ Pg ≤ Pmax

g , ∀ g ∈ G. (43d)

The Lagrangian of problem (43) is given by

L =
∑

g∈G
Cg(Pg) + ν(Pload + Ploss(PG)−

∑

g∈G
Pg)



9

+
∑

(m,n)∈E
ψ+

(m,n)

(∑

g∈G
Ψg

(m,n)Pg − Pmax
(m,n)

)

+
∑

(m,n)∈E
ψ−(m,n)

(
Pmin

(m,n) −
∑

g∈G
Ψg

(m,n)Pg

)

+
∑

g∈G
µ+

g (Pg − Pmax
g ) +

∑

g∈G
µ−g (Pmin

g − Pg). (44)

The KKT conditions of problem (43) are as follows:

C ′g(P ?g )− ν?

Λ?g
+

∑

(m,n)∈E
(ψ+?

(m,n) − ψ−?(m,n))Ψ
g
(m,n)

+ µ+?
g − µ−?g = 0, ∀g ∈ G, (45a){

ν?(Pload + Ploss(P
?
G )−∑g∈G P

?
g ) = 0,

ν? ≥ 0,
(45b)

{
ψ+?

(m,n)

(∑
g∈G Ψg

(m,n)P
?
g − Pmax

(m,n)

)
= 0,

ψ+?
(m,n) ≥ 0, ∀(m,n) ∈ E ,

(45c)

{
ψ−?(m,n)

(
Pmin

(m,n) −
∑

g∈G Ψg
(m,n)P

?
g

)
= 0,

ψ−?(m,n) ≥ 0, ∀(m,n) ∈ E ,
(45d)

{
µ+?

g (P ?g − Pmax
g ) = 0, µ+?

g ≥ 0,

µ−?g (Pmin
g − P ?g ) = 0, µ−?g ≥ 0,

∀g ∈ G, (45e)

{
Pmin

(m,n)≤
∑

g∈G Ψg
(m,n)P

?
g ≤ Pmax

(m,n),∀(m,n) ∈ E ,
Pmin

g ≤ P ?g ≤ Pmax
g , ∀ g ∈ G.

(45f)

Per assumptions [A4]–[A5] on convexity, the KKT condi-
tions (45) are necessary and sufficient for the optimal solution.
Furthermore, if ν? > 0, the KKT conditions (45) for the
convex problem (43) are identical to those in (13) for the
nonconvex problem (11). We therefore set out to uncover
conditions under which ν? > 0 holds. Given assumption [A2],
we set ψ+?

(m,n) = ψ−?(m,n) = µ+?
g = µ−?g = 0 in (45b) to

get: ν? = C ′g(P ?g )Λ?g . Assumption [A4] implies C ′g(P ?g ) > 0
for Pmin

g ≤ P ?g ≤ Pmax
g . Also, given the model adopted for

system loss in (15), it follows that (38) in assumption [A6]
enforces Λ?g > 0, ∀ g ∈ G. Thus, under assumptions [A4] and
[A6], it follows that ν? > 0. The inequality (43b) is therefore
binding at the optimal solution of the convex problem (43).
Subsequently, this also corresponds to the optimal solution of
the nonconvex problem (11). Since Cg(Pg) is strictly convex,
the optimal solution P ?G that satisfies the KKT conditions (45)
is unique. That is, it corresponds to the global minimum of the
convex problem (43) and a global minimum of the nonconvex
problem (11). The arguments above also apply to show that
P
?

G (corresponding to net load P load) is a global minimum of
problem (11) under the same assumptions.
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[5] S. Baros and M. D. Ilić, “Distributed torque control of deloaded wind
DFIGs for wind farm power output regulation,” IEEE Trans. Power Syst.,
vol. 32, no. 6, pp. 4590–4599, Nov 2017.

[6] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control
and economic dispatch from an optimization view,” IEEE Control Netw.
Syst., vol. 3, no. 3, pp. 254–264, Sep 2016.

[7] J. W. Simpson-Porco, B. K. Poolla, N. Monshizadeh, and F. Dörfler,
“Quadratic performance of primal-dual methods with application to
secondary frequency control of power systems,” in IEEE Conference
on Decision and Control, 2016, pp. 1840–1845.

[8] D. Cai, E. Mallada, and A. Wierman, “Distributed optimization decom-
position for joint economic dispatch and frequency regulation,” IEEE
Trans. Power Syst., vol. 32, no. 6, pp. 4370–4385, Nov 2017.

[9] Z. Wang, F. Liu, S. H. Low, C. Zhao, and S. Mei, “Distributed frequency
control with operational constraints, part I: Per-node power balance,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 40–52, Jan 2019.

[10] T. Stegink, A. Cherukuri, C. De Persis, A. V. D. Schaft, and J. Cortés,
“Hybrid interconnection of iterative bidding and power network dynam-
ics for frequency regulation and optimal dispatch,” IEEE Control Netw.
Syst., vol. 6, no. 2, pp. 572–585, Jun 2019.

[11] A. M. Annaswamy, A. Malekpour, and S. Baros, “Emerging research
topics in control for smart infrastructures,” Annual Reviews in Control,
vol. 42, pp. 259–270, Oct 2016.

[12] A. Annaswamy and S. Baros, A Dynamic Framework for Electricity
Markets. New York, NY: Springer New York, 2018, pp. 129–153.
[Online]. Available: https://doi.org/10.1007/978-1-4939-7822-9 6

[13] D. J. Shiltz, S. Baros, M. Cvetković, and A. M. Annaswamy, “Integration
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