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Analysis of Feasible Synchronverter Pole-placement
Region to Facilitate Parameter Tuning
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Abstract—This paper derives in analytical closed form the
feasible pole-placement region of the synchronverter active-power
loop (APL) so as to eliminate all trial-and-error effort in param-
eter tuning. We consider the well-established setting of a reduced
third-order APL model with two controller parameters that can
be tuned freely. Thus, only two of the three APL poles can
be specified independently in hopes of achieving desired system
dynamics. Central to the presented derivation is the realization
that the two specified poles must represent the dominant mode
of the system. Otherwise the actual system dynamics may be
dictated by the third unspecified pole, leading to unexpected or
undesired dynamic behaviour. Numerical simulations involving
the full-order synchronverter dynamical model and a modified
New England 39-bus test system validate the analysis and the
resulting region within which poles must be placed for actual
system dynamics to match desired ones.

Index Terms—Damping correction loop, grid-forming con-
verter, parameter tuning, pole placement, synchronverter, virtual
synchronous generator.

NOMENCLATURE

Df , Dp Damping and frequency droop coefficients.
eg, Eg Synchronverter inner voltage and its line-to-

line RMS value.
ig Synchronverter output current.
Jg Inertia constant.
Mp, ts APL overshoot and settling time.
Pt, Qt Active- and reactive-power outputs.
Re + jXe Transmission line impedance.
Rs + jXs L-type filter impedance.
Rv + jXv Virtual impedance.
s1, s2, s3 Poles of synchronverter APL.
Te, Tef Electromagnetic torque and its filtered value.
Tm Synchronverter input torque.
udc Dc-bus voltage.
ut, Ut Voltage at point of common coupling and its

line-to-line RMS value.
u∞, U∞ Grid-side voltage and its line-to-line RMS

value.
Xt Total system reactance.
ζ? Desired APL damping ratio.
θg Virtual rotor angle.
θg∞ Phase-angle difference between synchronverter

inner voltage and grid-side voltage.
τf Low-pass filter (LPF) time constant.
ψf , ψff Excitation flux and its filtered value.
ωg Virtual rotor rotating speed.

S. Dong and Y. C. Chen are with the Department of Electrical and Computer
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Canada. Email: {shuan,chen}@ece.ubc.ca.

ωn APL natural frequency.
ωN Rated rotating speed.
ω∞ Grid-side voltage angular frequency.
Ωf Feasible APL pole-placement region.
Superscript
? Reference value.
◦ Equilibrium value.
ss Steady-state value.

I. INTRODUCTION

G IVEN greater integration of power electronic-interfaced
renewable energy systems with little to no inherent

inertia, e.g., wind and solar, the traditional high-inertia syn-
chronous generator-dominated power system is transitioning
into a lower-inertia one augmented by power electronics [1].
This transformation brings forth numerous technical chal-
lenges to maintain power availability and quality. In order
to address these problems, the concept of the virtual syn-
chronous generator (VSG) has been proposed to leverage
power-electronic converters to provide virtual inertia to the
grid [2]–[16]. The core idea of the VSG is to design the
voltage-source converter (VSC) controller so that it mimics
the dynamics of a synchronous generator. In addition to
contributing virtual inertia to the grid, the VSG is also able
to adjust its active- and reactive-power outputs and provide
timely frequency and voltage regulation.

Among the various instantiations of VSGs, the synchron-
verter is a representative design with concise controller struc-
ture [8]–[11]. Our previous work in [9] augments the original
synchronverter design from [8] with the so-called damping
correction loop so that its response speed can be adjusted
freely without violating the steady-state frequency droop
characteristic. Then, aimed at a simple procedure to tune
the synchronverter parameters, [10] develops a method that
directly computes parameter values that satisfy desired tran-
sient and steady-state behaviours [10]. Specifically, the tuning
method in [10] leverages a reduced third-order model of the
synchronverter active-power loop (APL) that captures pertinent
system dynamics. However, since there are only two controller
parameters that can be tuned freely, only two of the three
poles can be specified independently, while the third depends
on the placement of the first two. Consequently, the parameter
tuning method in [10] achieves desired time-domain dynamic
behaviour only if the two specified poles indeed represent the
APL dominant mode. Otherwise, the synchronverter would
display unexpected or undesired dynamics governed by the
third pole. For this reason, as shown in Fig. 1, the method
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Fig. 1. The synchronverter parameter tuning method in [10] directly computes
values for parameters Jg and Df given two specified poles s?2 and s?3 , which
correspond to the desired time-domain dynamics. Since there are only two
freely tuneable parameters, the third pole s1 cannot be fixed independently
and may actually play a more dominant role in the synchronverter dynamics
than the specified ones s2 and s3, leading to undesired time-domain behaviour.
This would then require additional trial-and-error effort to revise the desired
time-domain dynamics.

in [10] requires repetitive trial-and-error effort to specify the
two desired poles until they represent the dominant mode. In
this paper, we improve the method in [10] by eliminating the
potential trial-and-error effort involved with ill-advised choices
of desired poles. Particularly, we provide analysis and develop
precise conditions to determine the feasible pole-placement
region, within which the two placed poles represent the APL
dominant mode.1

In addition to the method developed in [10], lack of un-
derstanding of the feasible pole-placement region also com-
plicates other VSG parameter tuning methods with cumber-
some trial-and-error effort. For example, methods in [3]–[5]
involve repeated specification of the natural frequency and
the damping ratio for desired dominant poles to tune the
VSG parameters with small-signal analysis before achieving
desired dynamics. In view of this problem, numerous tuning
methods endeavour to reduce or remove the required trial-and-
error effort and facilitate the tuning procedure. For example,
[6] leverages the virtual impedance to expand the feasible
pole-placement region, and in so doing, reduces the trial-
and-error effort of seeking feasible dominant pole locations.
However, the adoption of virtual impedance may instead limit
the feasible pole-placement region in some cases. Alterna-
tively, the tuning methods in [11]–[16] do not pursue precise
pole placement, and thus avoid some trial-and-error effort
in the tuning procedure. The aforementioned tuning methods
(at best) reduce the inherent trial-and-error effort involved
instead of eliminating it altogether. However, the analytical
characterization of the feasible pole-placement region a priori
presented in this paper obviates all trial-and-error effort and
significantly simplifies the VSG tuning procedure.

Given the literature reviewed above, this paper’s contribu-
tions are as follows. First, we develop an analytical condition
that helps to directly compute the range of the achievable
synchronverter APL natural frequency with given APL damp-
ing ratio. Within the range predicted by this condition, we
can indeed choose the desired APL natural frequency freely
and achieve desired dynamics by computing parameters with
the method in [10]. In this way, we completely eliminate
all trial-and-error effort from the parameter tuning method

1For ease of exposition, in the remainder of the paper, we refer to the pole(s)
that represent the APL dominant mode interchangeably as dominant pole(s).

in [10]. Furthermore, based on the developed condition, we
derive analytical expressions that describe the feasible pole-
placement region and visualize this region in the s-plane.
These provide guidance for the synchronverter parameter
tuning procedure and definitively delineate the achievable
synchronverter dynamics. Finally, the analytical development
leads to an improved parameter tuning method, which has the
following advantages over existing methods:

1) Predict achievable VSG dynamics. The proposed method
to compute the feasible pole-placement region enables
analytical prediction of feasible VSG dynamics that can
be achieved prior to parameter tuning. This is not possible
in conventional methods like [7], [17]–[19].

2) Reduce modelling and computation burden. The pro-
posed tuning method does not require potentially onerous
derivation of the small-signal state-space system models
as done in [4]–[6]. Also, it requires much less compu-
tational effort than previous tuning methods, e.g., [12],
[20], that rely on optimization techniques.

3) Realize desired VSG dynamics. Compared to previous
methods that tune parameters using Bode and Nyquist
plots [14], [16], our proposed method realizes desired
VSG dynamics with greater precision. This is because
our method places pertinent dominant poles at specified
locations in the s-plane that precisely correspond to
desired VSG time-domain transient response.

The remainder of this paper is organized as follows. In
Section II, we provide an overview for the synchronverter with
damping correction loop and the associated parameter tuning
method. Furthermore, via a numerical example, we highlight
the necessity of obtaining the feasible pole-placement region
prior to tuning the synchronverter parameters. Section III
analytically derives the feasible pole-placement region and
presents a modified parameter tuning method. Section IV
provides numerical simulations that validate the analysis and
derivation in Section III. Finally, in Section V, we offer
concluding remarks and directions for future work.

II. PRELIMINARIES

In this section, we provide an overview of the synchron-
verter design in [9] and the parameter tuning method in [10].
Also, via a numerical example, we motivate the need to modify
the tuning method in [10] to eliminate all trial-and-error effort.

A. Synchronverter with Damping Correction Loop [9]

As shown in Fig. 2, the synchronverter consists of the active-
power loop (APL) in Fig. 2(a), the reactive-power loop (RPL)
in Fig. 2(b), and the interface to the grid in Fig. 2(c). We
assume that the synchronverter dc-bus voltage udc remains
constant. Also, the grid condition is assumed to be predomi-
nantly inductive, so the active- and reactive-power dynamics
can be considered to be decoupled [16]. Let ψf and ψff ,
respectively, denote the excitation flux generated from the RPL
and its filtered value. In examining only the APL dynamics,
we neglect the decoupled RPL dynamics by setting both ψf
and ψff to be their steady-state value ψ◦f [10]. Since the tuning
method in [10] and the pole-placement region studied in this
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Fig. 2. Synchronverter augmented with damping correction loop [9]. (a) Syn-
chronverter APL. (b) Synchronverter RPL. (c) Grid interface.

paper focus on the APL, below we describe only the APL
and its interface to the grid. Interested readers may refer to
Appendix A for details on the RPL.

1) Active-power Loop: The APL depicted in Fig. 2(a)
provides freely adjustable inertia and damping, as its design
is based on the swing equation augmented with the damping
correction loop [9]. Let θg∞ denote the phase-angle difference
between the inner voltage eg and the grid-side voltage u∞.
Also let ωg , Te, and Tef , respectively, denote the virtual rotor
rotating speed, the electromagnetic torque, and the filtered
electromagnetic torque. The APL dynamic model is as follows:

dθg∞
dt

= ωg − ω∞, (1)

Jg
dωg
dt

= Tm − Tef −Dp(ωg − ω?g)−Df
d

dt

(
Tef

ψff

)
, (2)

τf
dTef

dt
= −Tef + Te, (3)

where Jg denotes the tuneable inertia constant, Tm =
P?

t

ωN

represents the input torque with P ?t being the active-power
reference and ωN the rated rotating speed, ω?g is the ref-
erence rotating speed, and τf denotes the time constant of
the low-pass filter (LPF). In (2), the term Dp(ωg − ω?g)
represents a simplified governor and achieves frequency-droop
control, where Dp denotes the frequency droop coefficient.
The damping correction loop Df

d
dt

(
Tef

ψff

)
provides freely

adjustable damping, since this term is in fact proportional
to ωg − ω∞, where Df and ω∞, respectively, denote the
damping coefficient and the angular frequency of the grid-
side voltage u∞ [9]. We also note that the damping correction

loop does not affect the steady-state frequency droop charac-
teristics, since its output is zero at steady state.

2) Grid Interface: As shown in Fig. 2(c), the synchron-
verter is connected to the grid via an L-type filter Rs + jXs

and a transmission line with impedance Re + jXe. Since the
grid condition is assumed to be predominantly inductive, the
total reactance Xt := Xs+Xe � Rs+Re. Let ψf denote the
excitation flux from the RPL, then the synchronverter inner
voltage reference eg is evaluated as follows:

eg = ωgψf
[
sin θg sin (θ − 2π

3 ) sin (θ + 2π
3 )
]T
, (4)

and its line-to-line RMS value is Eg =
√

3/2ωgψf . With eg
in place, the VSC is operated with pulse width modulation
(PWM) technique. Let U∞ denote the line-to-line RMS value
of u∞. Then the electromagnetic torque is given by

Te =
Pt
ωN
≈
√

3

2

ψfU∞ sin θg∞
Xt

, (5)

where Pt denotes the active-power output [9].

Remark 1 (On Cascaded Voltage and Current Loops and
Virtual Impedance Branch). More detailed VSG models [21],
which include the LCL filter, the cascaded voltage and
current loops, and virtual impedance branch, can be reduced
to the one in Fig. 2 via two considerations. First, the cas-
caded voltage and current loops (including the converter-side
impedance R1 + jX1 of the LCL filter) can be approximated
as unity gain blocks when tuning parameters or analyzing
dynamics related to the output power [22]. The justifica-
tion for this approximation is that the typical timescales
of operation for the cascaded loops, in the range of 1–
10 ms, are much smaller than those of the APL and RPL
with 0.1–1 s [23]. Next, the virtual impedance branch with
impedance Rv+jXv can be equivalently connected in series to
the grid-side impedance R2 +jX2 of the LCL filter. Thus, by
setting Rs = Rv+R2 and Xs = Xv+X2, the synchronverter
in Fig. 2 and other LCL-filter-based VSG designs share
similar output-power dynamics. We also note that assigning a
positive virtual resistance Rv effectively suppresses potential
VSG synchronous resonance, which is caused by small R/X
ratio or sufficiently fast output-power dynamics [7], [24]. Since
the required virtual resistance value Rv is typically much
smaller than the total system reactance Xt, the predominantly
inductive grid assumption in our paper still holds. �

B. Parameter Tuning by Direct Computation [10]

As demonstrated in [10] and summarized above, the APL
dynamics can be accurately captured by a third-order model,
the block diagram of which is shown in Fig. 3. Furthermore,
the third-order model has the following characteristic equation:

s3 + bs2 +Ks+ d = 0, (6)

where

b =
Jg + τfDp

τfJg
, (7)

K =
1

τfJg

(
Dp +Df

√
3

2

U∞ cos θ◦g∞
Xt

)
, (8)
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Fig. 3. Small-signal APL model.

Fig. 4. Achieving desired APL dynamics by specifying ω?n and ζ? for desired
APL dominant pole locations s?2 and s?3 and directly computing parameters Jg
and Df with (13) and (14) [10].

d =

√
3

2

ψ◦fU∞ cos θ◦g∞
τfJgXt

, (9)

where superscript ◦ denotes the equilibrium value of the cor-
responding variable. We provide a brief sketch of how to
obtain (6) in Appendix B. The three roots of (6), denoted
by s1, s2, and s3, represent the APL poles. Let ω?n and ζ?

denote the desired APL natural frequency and damping ratio,
respectively. Then, as shown in Fig. 4, the desired locations
for two of APL poles, s2 and s3, are specified as

s?2 = ω?ne
j(π−ϕ?) = −ω?n cosϕ? + jω?n sinϕ?, (10)

s?3 = ω?ne
j(π+ϕ?) = −ω?n cosϕ? − jω?n sinϕ?, (11)

respectively, where ϕ? = arccos ζ? ∈ [0, π/2) rad. According
to the model outlined in Section II-A, the APL has four control
parameters that need to be specified: Dp, τf , Jg , and Df .
Among them, Dp is determined based on the local grid code as

Dp =
∆T ss

m

∆ωss
g

, (12)

where ∆ωss
g represents the steady-state deviation of ωg from

its reference value ω?g , and ∆T ss
m is the corresponding steady-

state variation in the input torque Tm required by the grid
code [8]. The time constant τf is chosen based on the required
LPF noise rejection ability. The remaining two parameters,
Jg and Df , are conventionally tuned iteratively by repeatedly
checking system poles under different parameter settings via
small-signal analysis [9]. However, the iterative tuning method
requires repeated evaluation of system poles and significant
trial-and-error effort. To overcome the shortcomings of itera-
tive methods, the method in [10] computes Jg and Df directly
based on the specified ω?n and ζ? as follows:

Jg =

√
3
2ψ
◦
fU∞ cos θ◦g∞ − τfDpXtω

?
n
2

ω?n
2Xt(1− 2τfω?nζ

?)
, (13)

Df =
2ψ◦fζ

?

ω?n
+

τfψ
◦
f

1− 2τfω?nζ
?

Fig. 5. APL time-domain step response with desired maximum relative
overshoot Mp and settling time ts.

Fig. 6. Impact of ω?n and ζ? on APL dynamics. (a) Case I: with ω?n=48
and ζ? = 0.707 desired APL dynamics are achieved by using parameters
computed with (13) and (14). (b) Case II: with ω?n = 100 and ζ? = 0.707,
parameters computed with (13) and (14) do not result in desired dynamics.

−
√

2

3

XtDp

U∞ cos θ◦g∞

(
1 +

τf
2ω?n

2

1− 2τfω?nζ
?

)
. (14)

With Jg and Df computed from (13) and (14), as depicted in
Fig. 4, we place two of APL poles, s2 and s3, at the desired
pole locations, s?2 and s?3, respectively. By specifying two out
of the three poles, as shown in Fig. 5, we aim to achieve
APL time-domain dynamics with desired maximum relative
overshoot Mp and settling time ts given by, respectively, [25]

Mp = e−π cotϕ?

, ts =
4

ζ?ω?n
. (15)

Via a numerical example 1 below, we find that for certain pairs
of ω?n and ζ?, we cannot achieve the desired APL dynamics
with transient-response specifications according to (15).

Example 1 (Impact of Choice of ω?n and ζ? on APL Dy-
namics). In this example, we examine the impact of various
settings for ω?n and ζ? on actual APL dynamics. We use (13)
and (14) to compute Jg and Df based on specified ω?n
and ζ?. Then using the PSCAD/EMTDC simulation soft-
ware, we simulate the full-order system in Fig. 2 with the
resulting values of Jg and Df to obtain the actual APL step
response to a change in P ?t . Note that the synchronverter
simulation model fully considers the APL and RPL dynamics
as well as the PWM switching sequence control. Assume
that Dp = 120 N ·m · s/rad according to local grid code,
and all other parameter settings are reported in Appendix C.
We consider two cases with ω?n set to be 48 (Case I)
and 100 rad/s (Case II). In both cases, we choose ζ? = 0.707,
which is the optimal damping ratio value that enables the
APL to achieve fastest response with minimum overshoot.
The actual APL step response (together with the desired
APL step response with transient performance specifications
in (15)) in Cases I and II are plotted in Fig. 6. As shown in
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Fig. 7. Impact of ω?n and ζ? on pole-placement results in the s-plane.
(a) Case I: ω?n = 48, the parameters computed with (13) and (14) place s2
and s3 at their specified locations and the two placed poles represent the APL
dominant mode; (b) Case II: ω?n = 100, the unspecified s1, instead of s2
and s3, is in fact the APL dominant pole and dictates the APL dynamics.

Fig. 6(a), with ω?n = 48 (Case I), the actual APL step response
(trace (a1)) matches well with the desired one characterized
by (15) (trace (b1)). However, with ω?n = 100 rad/s (Case II),
as shown in Fig. 6(b), the actual APL step response (trace (a2))
is significantly slower than the desired one (trace (b2)). In this
case, the desired APL dynamics are not achieved. �

C. Problem Statement

As shown in Example 1, after specifying ω?n and ζ? and
computing Jg and Df with (13) and (14), we may not achieve
desired APL dynamics. The root cause of this problem can
be identified by examining the specified poles s2 and s3
relative to the unspecified one s1 in the s-plane. In Case I
with ω?n = 48, as shown in Fig. 7(a), the two specified
poles s2 and s3 are placed at their desired locations, and
since s1 = −92.9 < Re(s2), s2 and s3 are the APL dominant
poles and govern the APL dynamics. Thus, we achieve desired
APL time-domain dynamics, as shown in Fig. 6(a). However,
in Case II with ω?n = 100, as depicted in Fig. 7(b), although
specified poles s2 and s3 are placed at their desire locations,
the unspecified pole s1 = −22.5 > Re(s2), and s1 becomes
the APL dominant pole. Due to the influence of s1, as shown
in Fig. 6(b), the actual APL step response (trace (a2)) is much
slower than the desired one (trace (b2)). In this case, we cannot
achieve desired APL dynamics, and consequently the tuning
procedure requires additional trial-and-error effort when spec-
ifying desired performance specifications. Thus, in order to
completely eliminate potentially onerous trial-and-error effort,
the tuning method in [10] should further determine the feasible
choices of ω?n and ζ?, which ensure that s2 and s3 indeed
represent the APL dominant mode upon parameter tuning.

III. FEASIBLE POLE-PLACEMENT REGION

We present the main contribution of this paper: analytical
characterization of the feasible pole-placement region. This
enables us to determine the values of ω?n and ζ? that ensure s2
and s3 are dominant poles before computing parameters Jg
and Df . In this way, the potentially burdensome process
of repeatedly setting the desired APL poles is completely
eliminated. For the specified APL poles to represent the APL
dominant mode, the following condition must be satisfied:

s1 < Re(s2) = Re(s3) = −ω?nζ?. (16)

We derive the feasible pole-placement region that satisfies (16)
in analytical closed form. We first derive the feasible range
of ω?n for a fixed ζ? (or equivalently ϕ?). The key observation
is that depending on the value of Dp, there are three possible
cases to consider. Then, by varying ζ? from 1 to 0 (or
equivalently, varying ϕ? from 0 to π/2 rad), we visualize
the entire feasible pole-placement region in the s-plane, which
also consists of three cases depending the value of Dp. Finally,
based on the pole-placement region analysis, we improve the
direct computation method in [10] by eliminating the trial-
and-error effort needed to specify ω?n and ζ?.

A. Analytical Characterization

Here, we specify a particular value for ζ? and study the
range of values that ω?n can take to ensure s2 and s3 sat-
isfy (16) and represent the APL dominant mode. To begin our
analysis, we express s1 as a function of ω?n and ζ?. Application
of Vieta’s formulas for (6) yields s1 expressed as [26]

s1 = − d

s?2s
?
3

= − d

ω?n
2 . (17)

By substituting (13) into (9), and further substituting the
resultant into (17), we express s1 as the following function
of ω?n and ζ?:

s1(ω?n, ζ
?) = − M2(2τfζ

?ω?n − 1)

τf (ω?n +M) (ω?n −M)
, (18)

where

M =

√√
3

2

ψ◦fU∞ cos θ◦g∞

DpτfXt
, (19)

with the values of τf and Dp already set based on other
design considerations mentioned in Section II-B. We note that
according to (18), the value of s1 is parametrized by the value
taken by M . Also, since M is inversely proportional to

√
Dp,

the range for ω?n satisfying (16) similarly depends on the value
of Dp. In order to delineate the feasible range of ω?n, we define
an auxiliary variable µ ≥ 0, as follows:

µ :=
1

2τfM
=

√
Dp

N
, (20)

where

N =
2
√

6τfψ
◦
fU∞ cos θ◦g∞
Xt

. (21)

Next, we separately consider cases where µ = 0 and µ > 0
and characterize the range of ω?n that satisfies (16) in each.

1) µ = 0 (Dp = 0): The synchronverter is not required
by the grid code to provide primary frequency regulation.
With Dp = 0, the expression for s1 in (18) simplifies as

s1 = 2ω?nζ
? − 1

τf
. (22)

By substituting (22) into (16), and bear in mind that ω?n > 0,
we get the range of ω?n, which ensures that s2 and s3 are APL
dominant poles, as follows:

ω?n ∈
(

0,
1

3τfζ?

)
. (23)
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Fig. 8. Range of ω?n which ensures that s2 and s3 are the APL dominant poles (i.e., s1 < Re(s2) = Re(s3)) with (a) 0 < µ < ζ? (0 < Dp < Nζ?2)
(b) µ ≥ ζ? (Dp ≥ Nζ?2).

2) µ > 0 (Dp > 0): The synchronverter is required by the
local grid code to provide frequency regulation with Dp > 0.
By substituting (18) into (16), we get

F (ω?n)− 1

(ω?n +M)(ω?n −M)
> 0, (24)

where

F (ω?n) := −τfζ
?ω?n

3

M2
+ 3τfζ

?ω?n. (25)

Recognizing that ω?n > 0 and M > 0 by definition, the
conditions in (24) can be equivalently expressed as

0 < ω?n < M and F (ω?n) < 1, (26)

or
ω?n > M and F (ω?n) > 1. (27)

We leverage a graphical approach to solve the range of ω?n
from (26) and (27). Specifically, we plot F (ω?n) in Fig. 8, and
note that when ω?n = M , F (ω?n) takes its maximum value as

Fmax = F (M) = 2τfMζ? =
ζ?

µ
. (28)

The relationship in (28) implies that the ratio between ζ? and µ
determines the relationship between Fmax and 1 and influences
the feasible range of ω?n solved from (26) and (27). Next,
we characterize the feasible range of ω?n with 0 < µ < ζ?

and µ ≥ ζ?.
(i) 0 < µ < ζ? (0 < Dp < Nζ?2): According to (28),

Fmax > 1. As illustrated in Fig. 8(a), setting F (ω?n) = 1
yields two positive-valued roots, which we denote by ω?n1
and ω?n2 (with 0 < ω?n1 < ω?n2). Note that the solutions
depend on ζ? and the roots can be solved from F (ω?n) =
1 via numerical methods or Cardano’s formula [26].
Here, leveraging the intuition from Fig. 8(a), the solution
of (26) and (27) is given by

ω?n ∈ (0, ω?n1) ∪ (M, ω?n2) . (29)

(ii) µ ≥ ζ? (Dp ≥ Nζ?2): In this case, (28) implies
that Fmax ≤ 1, so F (ω?n) ≤ 1 for all ω?n > 0, and
(27) is never satisfied. Thus, as shown in Fig. 8(b), the
solution of (26) is given by

ω?n ∈ (0, M) . (30)

To sum up, for a particular ζ? = cosϕ?, the range of ω?n
ensuring that s2 and s3 represent the APL dominant mode is
given by

ω?n ∈


(

0,
1

3τfζ?

)
, if µ = 0,

(0, ω?n1) ∪ (M, ω?n2) , if 0 < µ < ζ?,

(0, M) , if µ ≥ ζ?.

(31)

We refer to these conclusions on µ summarized in (31) as
the µ-condition. Based on (15) and (31), we can indeed predict
that the settling time of achievable APL dynamics is within
the following range

ts ∈



(12τf , +∞) , if µ = 0,(
4

ζ?ω?n2
,

4

ζ?M

)
∪
(

4

ζ?ω?n1
, +∞

)
, if 0<µ<ζ?,(

4

ζ?M
, +∞

)
, if µ ≥ ζ?.

(32)

Example 2 (Revisiting Example 1 with the µ-Condition). In
this example, we use the µ-condition to justify the impact
of choice of ω?n and ζ? on the pole-placement results ob-
served in Example 1. Recall that Dp = 120 N ·m · s/rad
and ζ? = 0.707, so that µ = 0.84 > ζ? according to (20).
Also, M is computed to be 59.35 from (19). Thus, according
to (31), setting ω?n ∈ (0, 59.35) rad/s would ensure that s2
and s3 represent the APL dominant mode. In time-domain
quantities, the achievable APL settling time ts is within the
range (0.095,+∞) s. In Case I, we set ω?n to be 48 ∈
(0, 59.35) rad/s, and as shown in Fig. 7(a), (16) is satisfied
and s2 and s3 are indeed the APL dominant poles as desired.
However, in Case II, ω?n = 100 /∈ (0, 59.35) rad/s, and thus
as depicted in Fig. 7(b), (16) does not hold and instead s1
represents the APL dominant mode. �

Remark 2 (Range of ω?n to Ensure that s1 < mRe(s2),
m > 1). In order to achieve desired APL dynamics with
greater precision, we may further limit the impact of s1
by revising the condition in (16) to be s1 < mRe(s2),
where m > 1. To this end, when specifying ω?n before
computing Jg and Df , the feasible range of values that ω?n
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Fig. 9. Different feasible pole-placement regions for APL dominant poles s2 and s3 in the s-plane when (a) µ = 0 (Dp = 0), (b) 0 < µ < 1 (0 < Dp < N ),
and (c) µ ≥ 1 (Dp > N ).

can take is of the following form:

ω?n∈



(
0,

1

(m+2)τfζ?

)
, if µ = 0,

(0, ω?n1) ∪ (M, ω?n2) , if 0<µ<

√
(m+2)3

27m
ζ?, (33)

(0, M) , if µ ≥
√

(m+2)3

27m
ζ?,

where ω?n1 and ω?n2 (ω?n1 < ω?n2) are the two positive-valued
roots of

−mτfζ
?ω?n

3

M2
+ (m+ 2)τfζ

?ω?n = 1. (34)

For brevity, we omit the derivation of (33) as it is similar to
that of (31). �

B. Visual Representation
Based on the feasible range of ω?n for specific ζ?= cosϕ?

in (31), we vary ζ? from 1 to 0, or equivalently vary ϕ? from 0
to π/2, and visualize the entire feasible pole-placement region
for the APL dominant poles s2 and s3 in the s-plane. There
are three possibilities for the feasible pole-placement region
of s2 and s3 depending on the value of µ, as shown in Fig. 9.

1) Pattern (a) with µ = 0 (Dp = 0): Since (23) holds for
all ϕ? ∈ [0, π/2), the real parts of s2 and s3 satisfy

Re(s2) = Re(s3) = −ω?nζ? ∈
(
− 1

3τf
, 0

)
. (35)

Thus, as marked by the green colour in Fig. 9(a), the region
in which we can place s2 and s3 as APL dominant poles is

Ωf =

{
z ∈ C

∣∣∣∣− 1

3τf
< Re(z) < 0

}
. (36)

2) Pattern (b) with 0 < µ < 1 (0 < Dp < N ): The feasible
pole-placement region Ωf for the APL dominant poles is given
by the union of regions Ωf1 and Ωf2, i.e., Ωf = Ωf1 ∪ Ωf2,
which we describe separately below.

(i) Region Ωf1: With ϕ? varying from 0 to arccosµ, we
have 0 < µ < cosϕ? = ζ?. This corresponds to the
second case summarized in (31), and thus as marked by
the sea-green colour in Fig. 9(b), Ωf1 is given by

Ωf1 =
{
z = ω?ne

j(π±ϕ?)
∣∣∣ 0 ≤ ϕ? < arccosµ, 0 <

ω?n < ω?n1(ϕ?) or M < ω?n < ω?n2(ϕ?)
}
. (37)

where ω?n1(ϕ?) and ω?n2(ϕ?) (0 < ω?n1(ϕ?) < ω?n2(ϕ?))
are the two positive-valued roots of F (ω?n) = 1. Note
that ω?n1 and ω?n2 are functions of ϕ?, since the func-
tion F (ω?n) in (25) is parameterized by the value taken
by ζ? or equivalently ϕ?.

(ii) Region Ωf2: With ϕ? varying from arccosµ to π/2, we
have µ ≥ cosϕ? = ζ?. This corresponds to third case
in (31). Also, based on (19), we note that M is inde-
pendent of ϕ?. Thus, as shown by the two circle sectors
shaded in green colour in Fig. 9(b), Ωf2 is given by

Ωf2 =
{
z = ω?ne

j(π±ϕ?)
∣∣∣ arccosµ ≤ ϕ? < π

2
,

0 < ω?n < M
}
. (38)

3) Pattern (c) with µ ≥ 1 (Dp ≥ N ): For ϕ? ∈ [0, π/2),
we have µ ≥ 1 ≥ cosϕ? = ζ?. This corresponds to third case
in (31). Accordingly, as marked by green colour in Fig. 9(c),
the feasible pole-placement region for the APL dominant poles
is given by

Ωf =
{
z = ω?ne

j(π±ϕ?)
∣∣∣0 ≤ ϕ? < π

2
, 0 < ω?n < M

}
. (39)

C. Updated Parameter Tuning Method

Based on the analysis of the feasible pole-placement region
above, we improve the tuning method for the APL parame-
ters Dp, τf , Jg , and Df in Section II-B as follows. As before,
we first compute Dp with (12) according to local grid code
and further determine τf based on the LPF noise rejection
requirements. With these, we solve the system equilibrium
point and compute µ using (20). Then, we choose the desired
damping ratio ζ? for the APL dominant mode. After that, we
determine the desired natural frequency ω?n in the range (31)
(or (33) if s1 < mRe(s2), m > 1, is required) with due
consideration for the desired APL response speed. Finally, we
compute Jg and Df according to (13) and (14). The revised
method described above is depicted graphically in Fig. 10.
Unlike the method in [10] portrayed in Fig. 1, we do not
need to repetitively specify ω?n, and compute Jg and Df until
the APL poles s2 and s3 indeed represent the APL dominant
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Fig. 10. Improved APL tuning method. Unlike the method in [10] depicted
in Fig. 1, the updated tuning method is a linear procedure and requires no
iterative trial-and-error effort when specifying the desired APL dynamics.

mode. In the next section, we verify the analytical development
for the feasible pole-placement region via simulation studies.

Remark 3 (RPL Parameter Tuning Method). Although the
analysis and tuning procedure presented thus far focuses
on the APL, a similar line of reasoning can be applied to
parameter tuning for the RPL. Interested readers may refer
to Appendix A for more details on the analysis and ensuing
parameter tuning for the RPL. �

IV. CASE STUDIES

In this section, via time-domain simulations of the system
in Fig. 2, we verify that by choosing ω?n within the range
specified by the derived µ-condition in (31), for a particular ζ?,
we indeed satisfy (16) and ensure that s2 and s3 represent
the APL dominant mode. We also validate the feasible pole-
placement region derived in Section III-B based on the µ-
condition and visualized in the s-plane. Moreover, we demon-
strate that the improved parameter tuning method effectively
enables the synchronverter to achieve desired APL dynamics
when it is connected to a benchmark test power system.
The system under study in Sections IV-A and III-B is the
synchronverter-connected system in Fig. 2 and values for all
system parameters except Dp are reported in Appendix C. The
system simulated in Section III-C is modified from the New
England 39-bus test system reported in [27] and [28].

A. Verification of µ-Condition for Specific Choice of ζ?

In order to verify the proposed µ-condition as summarized
in (31), we choose APL damping ratio ζ? = 0.707 and
consider three cases: I) Dp = 0 N ·m · s/rad, II) Dp =
75 N ·m · s/rad, and III) Dp = 120 N ·m · s/rad. According
to (20), we get µ = 0 in Case I, 0 < µ < ζ? in Case II,
and µ > ζ? in Case III, which correspond to the three possible
options in (31). With these parameter settings, we compute the
range of ω?n satisfying (16) based on the µ-condition in (31)
and shade the resulting regions in green colour in Figs. 11(a)–
(c). To verify the range of feasible ω?n obtained from (31),
we vary ω?n from 0 to 140 rad/s, compute Jg and Df

using (13) and (14), substitute the resultant values into the APL
characteristic equation (6), and solve for the actual APL
poles s1, s2, and s3 as the roots of (6). We plot s1 and Re(s2)
with respect to ω?n as the blue and red traces, respectively, in
Figs. 11(a)–(c) for Cases I–III, respectively. Visual inspection
of the red and blue traces in Figs. 11(a)–(c) reveals that
indeed (16) is satisfied only when ω?n lies within the green
region, as predicted by (31). Thus, by specifying ω?n within the

Fig. 11. Verification of µ-condition in (31) that specifies range of ω?n for ζ?=
0.707 when (a) µ = 0 (Dp = 0), (b) 0 < µ = 0.666 < ζ? (0 < Dp =
75 < Nζ?2), and (c) µ = 0.843 ≥ ζ? (Dp = 120 ≥ Nζ?2). Note that
in Figs. 11(a)–(c), we use green shadow to mark the range of ω?n computed
from (31), and by choosing ω?n within this range, we ensure that s2 and s3
represent the APL dominant poles and achieve desired time-domain APL
dynamics after tuning synchronverter parameters with (13) and (14).

range predicted by the µ-condition, we ensure that s2 and s3
represent the APL dominant mode and subsequently achieve
desired APL dynamic performance. Furthermore, the latter is
also evident by checking the actual APL step response with
different choices of ω?n in Cases I–III against desired response
satisfying (15) as shown in Figs. 11(d)–(f). Although we verify
the µ-condition in (31) only for ζ? = 0.707 above, we note
that it holds for all possible ζ? ∈ (0, 1].

B. Verification of Feasible Pole-placement Region

In this study, we further verify that by placing s2 and s3
within the feasible pole-placement region, we automatically
satisfy (16) and ensure that s2 and s3 are the APL dominant
poles. As shown in Fig. 9, the feasible pole-placement region
consists of three cases (Cases I–III) depending on the value
of µ. We verify the three cases discussed in Section III-B by
setting Dp to be 0, 90, and 200 N ·m · s/rad, which result
in µ= 0, 0<µ= 0.730< 1, and µ= 1.088> 1 in Cases I, II,
and III, respectively. We compute the feasible pole-placement
regions in Cases I–III with (36)–(39) and shade them with
green or sea-green colours in Fig. 12. Then, we validate the
pole-placement regions predicted in (36)–(39) by placing the
APL poles s2 and s3 within and outside these regions and
checking the actual resulting poles. In both Cases I and III,
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Fig. 12. Verification of feasible pole-placement region developed based on
the µ-condition when (a) µ = 0 (Dp = 0), (b) 0 < µ = 0.730 < 1
(0 < Dp = 90 < N ), and (c) µ = 1.088 > 1 (Dp = 200 > N ). We
shade the feasible pole-placement region with sea-green and green colours.
By specifying the desired APL poles s?2 and s?3 within the feasible pole-
placement region, (16) is satisfied and s2 and s3 indeed represent the APL
dominant mode.

the poles s2 and s3 marked with × within the green region
satisfy (16), while it is not true for those marked with 2
outside the green region. Similarly, in Case II, we have (16) for
the APL poles marked with × and 4 within the feasible pole-
placement region, while not for those marked with 2 and #
outside the highlighted region. Based on these observations,
we conclude that (16) is satisfied only if s?2 and s?3 are chosen
to be within the feasible pole-placement region computed
from (36)–(39). Thus, we validate the feasible pole-placement
region visualized in the s-plane in Section III-B.

C. Verification in New England 39-Bus Test System

To further validate the feasible pole-placement region anal-
ysis as well as the updated tuning method in Section III,
we implement it to tune the parameters for a synchronverter
connected to a 39-bus test system, the one-line diagram of
which is shown in Fig. 13. The test system is modified from
the New England 39-bus system reported in [27] and [28], and
as shown in Fig. 13, we replace the synchronous generator at
Bus 30 with a synchronverter-controlled VSC with rated

Fig. 13. Modified 39-bus test system used to validate the updated parameter
tuning method.

Fig. 14. Equivalent single-synchronverter infinite-bus system obtained from
the 39-bus test system via network reduction.

capacity SN = 100 MVA, rated AC voltage UN = 22.0 kV,
and switching frequency fsw = 5 kHz. The synchronverter is
connected to Bus 30 via an L-type filter with impedance Rs+
jXs = 0.080+j0.754 Ω. Note that all generators at Buses 31-
39 are equipped with exciters, steam turbines, and governors,
which help to stabilize system voltages and achieve primary-
frequency regulation.

Then, via network reduction techniques in [29], we compute
an equivalent single-synchronverter infinite-bus system from
the 39-bus system in Fig. 13. In the resultant equivalent two-
bus system shown in Fig. 14, we have Ze ≈ j0.150 Ω
and U∞ = 22.7 kV. Assume that the grid code does not
require synchronverter to perform primary-frequency control,
we have Dp = 0. Also, we set τf = 0.01 s for LPFs to reduce
measurement noise.

Next, we tune the APL parameters Jg and Df following
the updated procedure described in Section III-C. First, we
set the desired APL damping ratio ζ? = 0.707 and compute
the system equilibrium. With Dp = 0, we have that µ =
0 < ζ?. Based on the µ-condition in (31), the APL natural
frequency ω?n ∈ (0, 47.1) rad/s, and correspondingly, the
achievable APL settling time ts ∈ (0.12,+∞) s. In accor-
dance with its feasible range, we set the desired APL natural
frequency ω?n = 22.6 rad/s, which corresponds to ts = 0.25 s.
Then using (13) and (14), we compute the APL parameters and
get Jg = 4.63× 103 kg ·m2 and Df = 4.07 V · s/rad.

With the computed synchronverter parameters in place, we
model and simulate the synchronverter-connected 39-bus test
system in Fig. 13 in the PSCAD/EMTDC simulation software.
In this study, we increase the active-power reference P ?t from 0
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Fig. 15. Verification of proposed feasible pole-placement region analysis and
updated tuning method in actual grid conditions.

Fig. 16. Verification of RPL dynamics in actual grid conditions.

to 60 MW at t = 0.5 s. As shown in Fig. 15, the actual APL
step response obtained from the simulation (trace (i)) indeed
nearly matches the desired one with ζ? = 0.707 and ω?n =
22.6 rad/s (trace (ii)). Thus, we demonstrate that the updated
parameter tuning method, which considers the feasible pole-
placement region analysis, tunes the synchronverter without
any trial-and-error effort.

Remark 4 (Verification of RPL Dynamics). Making use of the
39-bus test system, we verify the analysis for RPL dynamics in
Appendix A. Assume that the synchronverter is not required
to perform voltage-droop control, i.e., Dq = 0. Next, recall
that LPF time constant τf = 0.01 s, so the settling time t′s
of the RPL step response is freely adjustable within the
range (0.08,+∞) s. Bearing this in mind, we choose the
desired RPL dominant pole to be s?4 = −5 ∈ Ω′f2, which
corresponds to t′s = 4/|s?4| = 0.8 s. Then according to (47),
we get Kg = 2.49×106 Var · rad/V. Finally, we simulate the
system in PSCAD/EMTDC by increasing the reactive-power
reference Q?t from 0 to 40 MVar at t = 5.5 s. As shown in
Fig. 16, the actual RPL step response (trace (i)) matches well
with the desired one with t′s = 0.8 s (trace (ii)). �

V. CONCLUDING REMARKS

In this paper, we derive the µ-condition to compute the
range of the APL natural frequency ω?n for chosen APL
damping ratio ζ?. Within the range of ω?n predicted by the µ-
condition, we are able to freely place the APL dominant
poles and achieve desired APL dynamic performance. Thus,
by incorporating the µ-condition into the tuning procedure
of the synchronverter parameters, we eliminate the trial-and-
error effort of repeatedly specifying ω?n for the APL dominant
mode, computing the APL parameters, and checking that s2

Fig. 17. Small-signal RPL model.

and s3 indeed represent the APL dominant mode. Based
on the µ-condition, we visualize the feasible pole-placement
region in the s-plane. Within this region, we are able to
place the APL dominant poles freely and achieve desired
APL dynamic performance. A similar line of reasoning is
applied to determine the feasible range of achievable RPL
dynamics and the corresponding parameters that lead to de-
sired RPL dynamics. Compelling directions for future work
include exploring the impact of the LPF filter on the feasible
pole-placement region, computing the feasible pole-placement
region of other VSG designs, and developing a systematic
method of computing the feasible pole-placement region for
other higher-order controller systems.

APPENDIX

A. Modelling, Analysis, and Tuning of RPL Dynamics

Modelling. According to Figs. 2(b) and (c), we can describe
the RPL dynamics with the small-signal RPL model in Fig. 17,
in which [9]

Qt =
Xe

X2
t

E2
g −

Xs

X2
t

U2
∞ +

Xs −Xe

X2
t

EgU∞ cos θg∞, (40)

Ut =

√
X2
e

X2
t

E2
g +

X2
s

X2
t

U2
∞ +

2XeXs

X2
t

EgU∞ cos θg∞. (41)

Then, leveraging Mason’s gain formula [30], we get the RPL
transfer function model as follows

∆Qt = G3(s)∆Q?t +G4(s)∆U?t , (42)

where G3(s) and G4(s), respectively, describe the dynamics
in ∆Qt with respect to ∆Q?t and ∆U?t . In (42), we note
that G3(s) and G4(s) share the following second-order char-
acteristic equation

1 +Ks

(
s+

1

τf

)
= 0, (43)

where

K :=
Kgτf

∂Qt

∂ψf

∣∣
x◦ +Dq

√
2
3
∂Ut

∂ψf

∣∣
x◦

∝ Kg. (44)

Analysis. Let s4 and s5, where Re(s5) ≤ Re(s4), denote
the two roots of the RPL characteristic equation (43). By
varying K from 0 to +∞, we plot the root loci patterns
of (43) in Fig. 18. According to Fig. 18, the feasible RPL
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Fig. 18. Root loci patterns of 1 +Ks
(
s+ 1

τf

)
= 0 in the s-plane.

pole-placement region Ω′f is the union of two regions, i.e.,
Ω′f = Ω′f1 ∪ Ω′f2, which we describe separately below.

1) K ∈ (0, 4τ2f ]: As shown in Fig. 18, increasing K from 0
to 4τ2f makes s4 and s5 move toward each other along the
line Re(si) = −1/(2τf ) until they meet at the point B, i.e.,
(−1/(2τf ), 0), on the real axis. Thus, the first part of the
feasible RPL pole-placement region, in which we can place
the RPL dominant poles s4 and s5 freely, is along the line
described by

Ω′f1 =

{
z ∈ C

∣∣∣∣Re(z) = − 1

2τf

}
. (45)

In the time domain, the settling time t′s of the RPL step
response is fixed at t′s = 4/|Re(s4)| = 8τf while the overshoot
remains adjustable.

2) K ∈ (4τ2f ,+∞): As shown in Fig. 18, increasing K
from 4τ2f to +∞ makes s4 and s5 move away from each other
along the real axis until they, respectively, arrive at points A
and O. In this case, we have s5 < s4 and so s4 dominates the
RPL dynamics. Thus, the second part of the feasible RPL pole-
placement region, in which we can place the RPL dominant
pole s4 freely, is the segment BO, i.e.,

Ω′f2 =

{
z ∈ R

∣∣∣∣− 1

2τf
< z < 0

}
. (46)

In the time domain, the settling time t′s can be freely adjusted
within (8τf , +∞) and the RPL dynamics are overdamped.
Tuning. Based on the analysis above, we recommend tuning
the synchronverter RPL by placing s4 within the region Ω′f2
delineated in (46). In this way, the RPL response is freely
adjustable and also well damped. Let s?4 denote the desired
location of s4 in the s-plane, substitute s4 = s?4 and (44)
into (43), and we get

Kg = −
∂Qt

∂ψf

∣∣
x◦ +Dq

√
2
3
∂Ut

∂ψf

∣∣
x◦

s?4(τfs?4 + 1)
. (47)

Recall that the voltage-droop constant Dq is determined based
on the grid code, we can directly compute the remaining
parameter Kg according to (47). In this way, we achieve RPL
time-domain dynamics with t′s = 4/|s?4| [25].

B. Small-signal APL Model
The APL dynamics are sufficiently described by (1)–(3)

and (5). Let ∆(·) denote small-signal perturbations in vari-
able (·). Note that ω?g is a reference value for ωg and remains

fixed, i.e., ∆ω?g = 0. Thereafter, by linearizing (1)–(3) and (5)
around the system equilibrium point, taking the Laplace
transformation of the resultant, we can obtain the expression
for ∆θg∞ (see Section III in [10]). Finally, substitution of the
expression for ∆θg∞ into the linearized version of (5) yields
the following small-signal third-order APL model [10]:

∆Pt =
d · (τfs+ 1) · (∆P ?t − ωN (Jgs+Dp)∆ω∞)

s3 + bs2 +Ks+ d
=: G1(s)∆P ?t +G2(s)∆ω∞, (48)

where b, K, and d are given by (7)–(9), respectively. Note that
the third-order APL model in (48) considers the LPF dynamics
in (3), and thus captures the APL dynamics with high accuracy,
as verified in [10].

C. Parameters of Synchronverter-connected System in Fig. 2

Rs = 0.741 Ω, Ls = 20 mH, Re = 0.0 Ω, Le = 38.5 mH,
τf = 0.01 s, Dp = 120 N ·m · s/rad, ωN = ω?g =
376.99 rad/s, U∞ = 6.6 kV, udc = 13 kV, rated grid
frequency is 60 Hz, rated ac side voltage is 6.6 kV, and rated
synchronverter capacity is 1 MVA.
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[26] J. W. Harris and H. Stöcker, Handbook of Mathematics and Computa-
tional Science. New York: Springer-Verlag, 1998.

[27] T. Athay, R. Podmore, and S. Virmani, “A practical method for the
direct analysis of transient stability,” IEEE Trans. Power App. Syst., vol.
PAS-98, no. 2, pp. 573–584, Mar. 1979.

[28] M. A. Pai, Energy Function Analysis for Power System Stability.
Norwell, MA: Kluwer, 1989.

[29] G. J. Berg and A. Ghafurian, “Representation of coherency-based
equivalents in transient stability studies,” Electric Power Syst. Res.,
vol. 6, no. 4, pp. 235–241, Dec. 1983.

[30] F. Golnaraghi and B. Kuo, Automatic Control Systems, 9th ed. New
York: Wiley, 2010.

Shuan Dong (S’16–M’20) received the B.S. degree
in electrical engineering from Tianjin University,
Tianjin, China in 2012, the M.S. degree in renewable
energy from China Electric Power Research Insti-
tute, Beijing, China, in 2015, and the Ph.D. degree
in electrical engineering from The University of
British Columbia, Vancouver, BC, Canada in 2019,
respectively.

His research interests include HVDC technology
and renewable energy integration in power systems.

Yu Christine Chen (S’10–M’15) received the
B.A.Sc. degree in engineering science from the Uni-
versity of Toronto, Toronto, ON, Canada, in 2009,
and the M.S. and Ph.D. degrees in electrical engi-
neering from the University of Illinois at Urbana-
Champaign, Urbana, IL, USA, in 2011 and 2014,
respectively.

She is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC,
Canada, where she is affiliated with the Electric

Power and Energy Systems Group. Her research interests include power
system analysis, monitoring, and control. Christine presently serves as Editors
for the IEEE Transactions on Energy Conversion and the IEEE Transactions
on Power Systems.


