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Abstract—Load aggregators can use demand response pro-
grams to motivate residential users toward reducing electricity
demand during peak time periods. This paper proposes a demand
response algorithm for residential users, while accounting for
uncertainties in the load demand and electricity price, users’
privacy concerns, and power flow constraints imposed by the
distribution network. To address the uncertainty issues, we
develop a deep reinforcement learning (DRL) algorithm using an
actor-critic method. We apply federated learning to enable users
to determine the neural network parameters in a decentralized
fashion without sharing private information (e.g., load demand,
users’ potential discomfort due to load scheduling). To tackle the
nonconvex power flow constraints, we apply convex relaxation
and transform the problem of updating the neural network
parameters into a sequence of semidefinite programs (SDPs).
Simulations on an IEEE 33-bus test feeder with 32 households
show that the proposed demand response algorithm can reduce
the peak load by 33% and the expected cost of each user by 13%.
Also, we demonstrate the scalability of the proposed algorithm
in 330-bus and 1650-bus feeders with real-time pricing scheme.

Keywords: demand response, deep reinforcement learning, feder-
ated learning, power flow, semidefinite program.

LIST OF KEY NOTATIONS

N Set of buses
N− Set of households
L Set of transmission lines
T Set of time slots
P b
n,t Base load in household n in time slot t
P c,min
n,t Lower bound for controllable load in household n

in time slot t
P c,des
n,t Desirable value for controllable load in household

n in time slot t
sn,t State of household n in time slot t
ρt Electricity price in time slot t
st System state in time slot t
S Set of system states
P c
n(st) Scheduled controllable load demand in household

n in time slot t
an(st) Action vector for household n in state st
aN (st) Action vector for substation bus N in state st
a(st) Joint action profile in state st
A(st) Feasible action space
dn(·) Discomfort cost of household n
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cn(·) Cost (i.e., bill payment and discomfort cost) of
household n

c(·) Social cost of all households
π(s) Policy in an arbitrary state s
π Policy profile, i.e., π = (π(s), s ∈ S)
V π(s) Value function in state s
β Discount factor in interval [0, 1)
P̃ c
n(st) Load control action before projection for household

n in state s
P̃ c(st) Load control action vector before projection in

state st
Ac(st) Feasible space for load control action in state st
π̃(st) Policy to choose load control action vector P̃ c(st)

in state st
π̃ Policy profile, i.e., π̃ = (π̃(s), s ∈ S)
αn(st) Auxiliary variable to replace (P c

n(st)− P̃ c
n(st))
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ϑ Parameters vector of the DNN for value function
θ Parameters vector of the DNN for policy
V π̃(s,ϑ) Parameterized value function for policy π̃ and

initial state s
J Set of nodes in the first hidden layer of the global

DNN for the value function
λj,n,t Aggregate input from the nodes of state sn,t to

node j ∈ J in the DNN for the value function
λj,n,t Sum of parameters λj,n′,t for n′ ∈ N− \ {n}
λn,t Profile of parameters λj,n,t for j ∈ J
λn,t Profile of parameters λj,n,t for j ∈ J
δn(·) TD error for household n

I. INTRODUCTION

Balancing electricity generation and demand during peak
time periods is an important issue in distribution networks.
A demand response program with real-time pricing scheme
can encourage residential users toward reducing electricity
consumption during peak hours, which eliminates the need
for backup power plants and potential electricity supply inter-
ruption. Smart meters and electricity consumption controllers
(ECCs) can use the energy consumption and pricing informa-
tion to provide users with autonomous load scheduling plans
that take advantage of the potential cost savings offered by a
demand response program with real-time pricing scheme [1].

Despite the aforementioned benefits, there are major chal-
lenges in deploying a demand response program for residential
users. First, as a coordinator for users’ load scheduling deci-
sions, the load aggregator has uncertainty in the electricity
price and demand variation of users. Second, due to privacy
concerns, the load aggregator generally lacks information
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about the users’ discomfort due to curtailing their load, which
may lead to an uncertain amount of aggregate demand re-
duction during peak hours. Furthermore, the load aggregator
should coordinate the users’ load changes to satisfy operational
constraints imposed by the distribution network. Otherwise,
the users’ load scheduling may overload the transmission lines
or lead to an undesirable voltage deviations.

There are several studies in the literature for demand re-
sponse programs that tackle uncertainty in price and users’
demand. Related work falls within three main threads. The
first line of research pertains to offline algorithms for demand
response programs in day-ahead electricity markets using
bidding mechanism design [2], [3], forecasting techniques [4]–
[6], and scenario-based approaches [7], [8]. Offline algorithms,
however, require predictive models with historical data for
uncertain parameters, which may not always be available.
The second line of research comprises online algorithms for
demand response using model-based methods such as dynamic
programming [9], randomized alternating direction method
of multipliers (ADMM) [10], chance-constrained optimiza-
tion [11], robust optimization [12], and stochastic program-
ming [13]. The model-based methods, however, require knowl-
edge of the stochastic process of the uncertain parameters,
which may not be available in practice.

The third line of research is related to applying model-free
approaches to design online algorithms for demand response.
Zheng et al. [14] and Elghitan et al. [15] applied Lyapunov
optimization to design online load control algorithms for users
with thermostatically controlled loads. Lyapunov optimization,
however, is limited to the loads that can be modeled as
a queuing system, which may not be applicable for the
loads other than thermostatically controlled ones. Kim et
al. in [16] and Lesage-Landry et al. in [17] applied online
convex optimization technique to develop online load control
algorithms with bounded regret for the users in a demand
response program. However, the application of online convex
optimization is limited, since it cannot directly handle inter-
temporal constraints. Recently, there is growing interest in
applying deep reinforcement learning (DRL) [18] to design
demand response algorithms for residential users. Wang et
al. [19] developed a DRL-based load scheduling algorithm
using a dueling deep Q-network model with a time-of-use
pricing scheme. Li et al. [20] modeled the charging coor-
dination of electric vehicles in a demand response program
as a Markov decision process (MDP) and applied DRL to
design an online charging scheduling algorithm. Du et al. [21]
designed a pricing mechanism for multiple microgrids and
applied DRL to capture the response of the microgrids to the
price rates in a demand response program. Liu et al. [22]
applied double deep Q-learning approach to design an online
household energy management algorithm. Wan et al. [23]
considered a long short-term memory (LSTM) network to
extract informative features from the price rates and developed
a DRL-based online charging scheduling algorithm for electric
vehicles. Li et al. [24] used trust region policy optimization
technique to develop a DRL-based algorithm for household
appliances scheduling in a demand response program with
real-time pricing scheme. Yu et al. [25] designed a DRL-based

demand response algorithm for scheduling the demand of the
energy storage system and thermostatically controlled loads
in a household. Mocanu et al. [26] applied policy gradient
evaluation to design a DRL-based online load scheduling
algorithm for peak load reduction in residential households.
Claessens et al. [27] used convolutional neural networks to
extract a set of state-time features for residential households to
be used in a DRL-based load scheduling algorithm. Ruelens et
al. [28] applied batch reinforcement learning to coordinate the
power consumption of users with thermostatically controlled
loads. Babar et al. [29] proposed a decentralized Q-learning
algorithm for bidding of multiple residential households in a
demand response program. Lu et al. [30] proposed a DRL-
based home energy management algorithm combined with a
neural network for price forecasting. Although the aforemen-
tioned papers do not require stochastic models for uncertain
parameters, they do not consider the constraints imposed by
the distribution network topology and operations. Hence, the
developed algorithms may not yield a feasible power flow in
the distribution network. Furthermore, the decision making
processes of individual households become coupled if the
power flow constraints are taken into account. Preserving
privacy becomes a concern for the households with coupling
constraints, which is not addressed in prior art.

In this paper, we model the users’ load control problem as an
MDP and apply DRL to develop a demand response algorithm
in a distribution network. We take into account the uncertainty
in the electricity price, load demand, and users’ discomfort
cost. This paper extends our previous work [31] by designing
a decentralized learning framework, such that the users make
load control decisions in parallel without revealing their private
information (e.g., load demand, discomfort cost) to the load
aggregator. The learning process accounts for distribution net-
work constraints to guarantee a feasible power flow solution.
Specific contributions of this paper are as follows.
• Decentralized Learning Algorithm Design: The central-

ized load control may violate users’ privacy, as users must
provide the load aggregator with information about their
desirable load demand and discomfort cost. To address
the households’ privacy concerns, we apply federated
learning [32], [33], which enables us to develop a decen-
tralized DRL algorithm [18] with actor-critic method [34]
and update the parameters of the local neural networks
associated with each household in parallel. Instead of
revealing private information, the households share only
their local network parameters with the load aggregator
to update the neural network parameters associated with
the policy and value function.

• Distribution Network Constraints: The load control de-
cisions of the households are coupled by the ac power
flow constraints imposed by the distribution network.
It is difficult to obtain a policy that satisfies power
flow constraints. We decouple the tasks of scheduling
the load demand and obtaining a feasible power flow
in the distribution network by projecting the selected
load control action of the households onto the feasible
set defined by the ac power flow constraints. To tackle
the nonconvex power flow constraints, we apply convex



3

relaxation to transform the action projection problem into
a sequence of semidefinite programs (SDPs). Solving the
obtained SDP yields the global optimal solution to the
action projection problem under the given policy and
distribution network constraints.

• Performance Evaluation: We evaluate the performance
of the proposed DRL algorithm in an IEEE 33-bus test
feeder with 32 households. The proposed decentralized
algorithm converges to the solution of the centralized
load control in an acceptable number of iterations. When
compared with Q-learning and double Q-learning ap-
proaches, our proposed algorithm based on actor-critic
method converges faster to a local optimum with lower
user cost. We demonstrate the scalability of our proposed
algorithm in 330-bus and 1650-bus test feeders with
real-time pricing scheme. Additionally, our case study
demonstrates that the proposed algorithm leads to 33%
reduction in the peak load and 13% reduction in the
households’ expected daily cost.

The remainder of this paper is organized as follows. Sec-
tion II introduces the operational constraints for the residential
households and distribution network. In Section III, we for-
mulate the centralized demand response problem as an MDP.
In Section IV, we propose a decentralized DRL algorithm
to solve the underlying MDP. In Section V, we evaluate the
performance of the proposed algorithm through simulations.
Section VI concludes the paper.

II. SYSTEM MODEL

Consider a distribution feeder consisting of N buses col-
lected in set N = {1, . . . , N}. Suppose that bus N corre-
sponds to the substation bus and bus n ∈ N− corresponds
to household n, where N− = {1, . . . , N − 1}. Without loss
of generality, we assume a virtual household with zero load
demand is connected to bus n ∈ N− if no household is
connected to it. Let L ⊆ N×N denote the set of transmission
lines in the feeder. Each household is equipped with an ECC,
which is responsible for load control in that household. The
ECCs are connected to a load aggregator via a two-way
communication network. We consider long-term load control
(e.g., several weeks) and approximate the load control problem
with an infinite operation horizon. We consider a discrete set
T = {1, 2, . . . } containing indices corresponding to time
slots, each with equal duration, e.g., 15 minutes per slot.

A. Household State and Load Control Action

The active power demand for a household consists of a
controllable portion and an uncontrollable base portion. Let
P b
n,t denote the base load demand in household n ∈ N−

in time slot t ∈ T . For load scheduling, ECC n considers
the lower bound P c,min

n,t and the desirable value P c,des
n,t for the

controllable load demand in time slot t. In practice, parameters
P c,min
n,t and P c,des

n,t can be obtained from the operating modes
of the household appliances [35]. We assume that ECC n
observes the base load P b

n,t as well as parameters P c,min
n,t and

P c,des
n,t at the beginning of time slot t, just before scheduling

the controllable loads. ECC n is uncertain about P b
n,t′ , P

c,min
n,t′ ,

and P c,des
n,t′ for upcoming time slot t′ ≥ t+ 1.

We define the state of household n ∈N− in time slot t ∈
T as vector sn,t = (P b

n,t, P
c,min
n,t , P c,des

n,t ). Let ρt denote the
electricity price in time slot t. We define the system state in
time slot t as vector st = (sn,t, n ∈ N−, ρt), which includes
the state of all households and the electricity price in time
slot t. We use S to denote the set of system states.

Given state st ∈ S in time slot t ∈ T , the load control
action for household n ∈ N− is defined as the scheduled
controllable load demand P c

n(st). We consider curtailing the
load in the households. Thus, in state st, we have

P c,min
n,t ≤ P c

n(st) ≤ P c,des
n,t , n ∈ N−, t ∈ T . (1)

Finally, household appliances may require reactive power.
We consider the overall power factor φn,t ∈ [−1, 1] \ {0} for
household n in time slot t, which is assumed to be known a
priori by ECC n. The reactive power demand of household
n in state st and time slot t is obtained as κn,t(P c

n(st) +

P b
n,t), where κn,t =

√
1/φ2n,t − 1 for lagging power factor

and κn,t = −
√

1/φ2n,t − 1 for leading power factor.

B. Power Flow Constraints

Let Y denote the distribution network admittance matrix.
For bus n ∈ N , let en ∈ RN denote the nth basis column
vector and Yn = ene

T
nY . Row n of matrix Yn is equal to

row n of the admittance matrix Y , and other entries of Yn are
zero. We use the lumped-element Π model for transmission
lines. Let ynm and ynm, respectively, denote the series and
shunt admittances connected to bus n for line (n,m) ∈ L.
We define Ynm = (ynm + ynm)ene

T
n − ynmeneT

m, so that the
entries (n, n) and (n,m) of Ynm are ynm + ynm and −ynm,
respectively, and all other entries of Ynm are zero. For bus
n ∈ N , we define matrices Yn, Yn, and Mn as follows:

Yn =
1

2

[
Re{Yn + Y T

n } Im{Y T
n − Yn}

Im{Yn − Y T
n } Re{Yn + Y T

n }

]
, (2a)

Yn = −1

2

[
Im{Yn + Y T

n } Re{Yn − Y T
n }

Re{Y T
n − Yn} Im{Yn + Y T

n }

]
, (2b)

Mn =

[
ene

T
n 0

0 ene
T
n

]
. (2c)

For each line (n,m) ∈ L, we define matrices:

Ynm =
1

2

[
Re{Ynm + Y T

nm} Im{Y T
nm − Ynm}

Im{Ynm − Y T
nm} Re{Ynm + Y T

nm}

]
, (3a)

Ynm = −1

2

[
Im{Ynm + Y T

nm} Re{Ynm − Y T
nm}

Re{Y T
nm − Ynm} Im{Ynm + Y T

nm}

]
. (3b)

The sinusoidal steady-state voltage of bus n can be ex-
pressed as a phasor quantity [36, Sec. 2.1]. We use Vn(st)
to denote the voltage phasor of bus n in state st. Let v(st) =
(Vn(st), n ∈ N ) denote the vector of voltage phasors in state
st. Also, let Nn ⊆ N denote the set of buses electrically
connected to bus n. We construct vector vn(st) for bus n



4

from vector v(st) such that the entries m ∈ Nn ∪ {n} of
vectors vn(st) and v(st) are equal, and other entries in vector
vn(st) are set to zero. For bus n ∈ N , we define vector
un(st)=( (Re{vn(st)})T (Im{vn(st)})T )T consisting of the
real and imaginary parts of vn(st) in state st. For n ∈ N , we
define matrix Wn(st) = un(st)un(st)

T in state st. Since
matrix Wn(st) is the outer product of vectors un(st) and
un(st)

T, it is rank-one by construction.
Let Pmax

N denote the upper limit for the injected active power
into the substation bus N . Let Qmin

N and Qmax
N , respectively,

denote the lower and upper limits for the injected reactive
power into the substation bus N . We denote the lower and
upper limits of the voltage magnitude at bus n ∈ N by V min

n

and V max
n , respectively. Let Smax

nm denote the upper limit for
the apparent power flow in line (n,m) ∈ L. Parameters Pmax

N ,
Qmin
N , Qmax

N , V min
n , V max

n , n ∈ N , and Smax
n,m, (n,m) ∈ L, are

constant and are chosen according to the design and operation
of the underlying power distribution network. Let Wk,k′

n (st)
denote the entry (k, k′) of matrix Wn(st). We leverage the
matrices defined in (2a)−(2c), (3a), and (3b) to obtain the
following distribution network constraints in time slot t ∈ T
and state st ∈ S [37]:

P c
n(st) + P b

n,t = −Tr{YnWn(st)}, n ∈ N−, (4a)

κn,t(P
c
n(st) + P b

n,t) = −Tr{YnWn(st)}, n ∈ N−, (4b)
0 ≤ Tr{YNWN (st)} ≤ Pmax

N , (4c)
Qmin
N ≤ Tr{YNWN (st)} ≤ Qmax

N , (4d)
(V min
n )2 ≤ Tr{MnWn(st)} ≤ (V max

n )2, n ∈ N , (4e) (Smax
nm)2 Tr{YnmWn(st)} Tr{YnmWn(st)}

Tr{YnmWn(st)} 1 0
Tr{YnmWn(st)} 0 1

 � 0,

n ∈ N , (n,m) ∈ L, (4f)
Wn,n

n (st) = Wn,n
m (st), m ∈ Nn, n ∈ N , (4g)

Wn+N,n+N
n (st) = Wn+N,n+N

m (st), m ∈ Nn, n ∈ N , (4h)
rank{Wn(st)} = 1, n ∈ N . (4i)

Constraints (4a) and (4b) represent power balance at bus n.
Constraints (4c) and (4d) represent the limits on the injected
active and reactive power into the substation bus, respectively.
Constraint (4e) shows the limits on the voltage magnitude of
bus n. Constraint (4f) represents the limit on the apparent
power flow in line (n,m). Constraints (4g) and (4h) establish
that for two connected buses n and m, the diagonal entries
(n, n) and (n+N, n+N) of matrices Wn(st) and Wm(st)
are equal, as they represent the square of real and imaginary
parts of voltage phasor Vn(st) at bus n in state st, respectively.
Constraint (4i) ensures that Wn(st) is a rank-one matrix.

III. PROBLEM FORMULATION

In this section, we formulate the centralized load control
problem as an MDP with an infinite operation horizon, where
the system state in the next time slot t + 1 can be inferred
from the state and action in the current time slot t [35].

A. Centralized Load Control MDP
In the centralized load control MDP, the system state st

is observed and the controllable load demand P c
n(st) for

household n ∈ N− is determined as the load control action in
time slot t ∈ T . The power flow constraints (4a)−(4i) depend
on matrix Wn(st), n ∈ N , in state st. Matrix Wn(st) is
a decision variable for bus n ∈ N . Thus, we define the
action associated with household n ∈ N− in state st ∈ S as
an(st) = (P c

n(st), Wn(st)) to include both the load control
action P c

n(st) and decision variable Wn(st). We also define
the action associated with the substation bus N in state st ∈ S
as aN (st) = WN (st). Let a(st) = (an(st), n ∈ N ) denote
the joint action profile in state st. The feasible action space
A(st) is defined by constraints (1) and (4a)−(4i). ECC n can
only control the load demand P c

n(st), whereas matrix Wn(st)
is determined so that the power flow constraints are satisfied.

By performing load scheduling in time slot t, household n
incurs a discomfort cost dn(P c

n(st), P
c,des
n,t ), which models

the user’s dissatisfaction with changing its controllable load
demand from the desirable value P c,des

n,t to the scheduled value
P c
n(st). The discomfort cost captures the user’s flexibility in

scheduling the controllable load demand in the household.

Assumption 1: Although the closed-form expression for the
user’s discomfort cost is unknown to ECC n, the value of the
discomfort cost is revealed to ECC n at the end of time slot t
after scheduling the household’s controllable loads.

Let cn(st, a(st)) = ρt(P
c
n(st)+P b

n,t)+dn(P c
n(st), P

c,des
n,t )

denote the cost (i.e., the bill payment and discomfort cost) of
household n in state st. We consider the social cost as the
immediate cost in state st. We have

c(st, a(st)) =
∑
n∈N−

cn(st, a(st)), st ∈ S. (5)

We consider a stationary randomized policy as a mapping
from states to probabilities of selecting a feasible action. Given
state st = s for any s ∈ S, the policy is defined as a
probability distribution π(s)=(π(a(s) | s), a(s)∈A(s)) that
specifies the probability π(a(s) | s) of choosing a feasible ac-
tion a(s) in state s. A policy is defined as π=(π(s), s∈S).
For a given policy π, the value function V π : S → R in state
s returns the expected discounted cost when starting from state
st = s in time slot t and following policy π in the upcoming
time slots. For a discount factor β ∈ [0, 1), we have

V π(s) = Eπ
{ ∞∑
t′=t

βt
′−t c(st′ , a(st′))

∣∣ st = s

}
, (6)

where Eπ{·} is the expectation over selecting feasible actions
under the given policy π. Under the given policy π, we define
the action-value function Qπ(s, a(s)) in state s and action
a(s) as the expected discounted cost when starting from state
st = s in a given time slot t, performing action a(s), and
following policy π in the upcoming time slots. We have

Qπ(s, a(s)) =

Eπ
{ ∞∑
t′=t

βt
′−t c(st′ , a(st′))

∣∣ st = s, a(st) = a(s)

}
. (7)

Let Pr(s′ | s, a(s)) denote the transition probability from state
s to s′ with action a(s). We can express the action-value
function for state s ∈ S and feasible action a(s) in terms of
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Figure 1. Select action a(st) (a) with policy π; (b) by projecting P̃ c(st)
onto the feasible space with policy π̃.

the value function in the next state s′ ∈ S as follows:

Qπ(s, a(s)) = c(s, a(s))

+ β
∑
s′∈S

Pr(s′ | s, a(s))V π(s′). (8)

The load aggregator aims to obtain policy π such that the
value function is minimized over all states s ∈ S . This is
equivalent to solving the following Bellman equations:

PMDP : V π(s) = minimize
a(s)∈A(s)

E{Qπ(s, a(s))}, ∀ s ∈ S.

Problem PMDP is a recursive optimization problem. In general,
the solution policy π to problem PMDP is suboptimal. Also,
Fig. 1(a) shows that the rank-one constraint (4i) makes it
difficult to determine policy π as a probability of choosing
a feasible action vector a(st). Hence, determining a policy π
for PMDP may lead to an infeasible action that does not satisfy
the power flow constraints, thereby putting the operation of the
power system at risk. To address this challenge, we decouple
the tasks of scheduling the households’ loads and obtaining a
feasible power flow in the distribution network. As Fig. 1(b)
illustrates, to obtain a suboptimal solution to problem PMDP,
we consider a policy π̃ = (π̃(s), s ∈ S) that determines
vector P̃ c(st) = (P̃ c

n(st), n ∈ N−) of load control action
P̃ c
n(st) for household n in feasible space Ac(st) defined by

constraint (1) in state st. Then, P̃ c(st) is projected onto the
feasible action space A(st) to obtain action vector a(st) that
satisfies the power flow constraints.

The policy π̃ in state st = s for any s ∈ S specifies a
probability distribution π̃(s)=(π̃(P̃ c(s) | s), P̃ c(s) ∈ Ac(s))
that includes the probability π̃(P̃ c(s) | s) of choosing load
control vector P̃ c(s) in feasible space Ac(s). With P̃ c(st),
there may not exist matrices Wn(st), n ∈ N , that satisfy
power flow constraints (4a)−(4i). We project P̃ c(st) onto the
feasible action space to obtain a new action profile P c(st) =
(P c
n(st), n ∈ N−), for which there exist rank-one matrices

Wn(st), n ∈ N , that satisfy constraints (4a)−(4i). The
load aggregator solves the following optimization problem:

Pproj
1 : minimize

P c(st),Wn(st), n∈N
||P c(st)− P̃ c(st)||22

subject to constraints (4a)−(4i),
P c(st) ∈ Ac(st).

Problem Pproj
1 is a nonconvex optimization problem due to the

rank-one constraint (4i). We relax constraint (4i) and replace
it with constraint Wn(st) � 0, n ∈ N , that enforces matrices
Wn(st), n ∈ N , to be positive semidefinite. Furthermore,
we define an auxiliary variable αn(st) for n ∈ N−, such that
the inequality constraint (P c

n(st)− P̃ c
n(st))

2 ≤ αn(st) can be
expressed as the following linear matrix inequality:[

αn(st) P c
n(st)− P̃ c

n(st)

P c
n(st)− P̃ c

n(st) 1

]
� 0, n ∈ N−. (9)

We replace the objective function with
∑
n∈N− αn(st) to

transform Pproj
1 into the following optimization problem:

Pproj
2 : minimize

P c(st), αn(st), n∈N−,
Wn(st), n∈N

∑
n∈N−

αn(st)

subject to constraints (4a)−(4h) and (9),
Wn(st) � 0, n ∈ N ,
P c(st) ∈ Ac(st).

Problem Pproj
2 is an SDP and can be solved efficiently to obtain

joint action a(st) = (P c(st), Wn(st), n ∈ N ), which is
feasible for the distribution network. We show that the optimal
solution to Pproj

2 is the global optimal solution to Pproj
1 .

Theorem 1: The relaxation gap between problems Pproj
1 and

Pproj
2 is zero. That is, the solution matrices Wn(st), n ∈ N

to Pproj
2 are rank-one.

The proof can be found in Appendix A. Theorem 1 implies that
a feasible action a(st) can be obtained for the given policy π̃
by solving the convex optimization problem Pproj

2 .

B. DRL-based Solution Approach

Although the problem of determining a feasible action is
addressed above, obtaining a policy that solves problem PMDP

is still challenging, since the transition probabilities between
the states may not be available. We develop a DRL-based
algorithm to gradually update the value function and policy
without any knowledge of the transition probabilities between
the states. Furthermore, to address high-dimensional and large
state space S and continuous action space Ac(st) in state st,
we consider a discretized action space with parameterized
value function and policy [18]. We use a deep neural network
(DNN) shown in Fig. 2(a) with parameters vector ϑ, an input
layer s, and an output layer V π̃(s,ϑ) to obtain the value
function in state st = s for all s ∈ S . The continuous action
space Ac(st) is discretized. We use a DNN shown in Fig.
2(b) with parameters vector θ, an input layer s, and an output
layer with N − 1 softmax functions to obtain π̃(P̃ c

n(s) | s, θ)
for household n ∈ N− in state st = s for all s ∈ S.

In practice, the load aggregator cannot perform the forward
propagation and back propagation steps [18] in a centralized
fashion since household n may prefer not to reveal its state
sn,t and discomfort cost to the load aggregator due to privacy
concerns. To address this issue, in the next section, we develop
a decentralized learning algorithm executed by the ECCs.
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Figure 2. DNN for (a) the value function and (b) the policy.

IV. DECENTRALIZED ALGORITHM DESIGN

We use an actor-critic-based reinforcement learning frame-
work [34] to determine the optimal neural network parameters.
To implement the proposed learning approach in a decentral-
ized fashion, we apply federated learning [32], [33], where
each ECC is responsible for updating the network parameters
and sends the updated parameters to the load aggregator.

A. Household Partial Observability

Using federated learning, ECCs do not reveal their private
information (i.e., state, discomfort cost) to the load aggregator.
However, ECC n requires information about system state st
to update the network parameters using back propagation.

Assumption 2: The ECC of household n can only observe
the state in its own household.

Assumption 2 implies that ECC n partially observes system
state st. Due to privacy concerns, a household prefers not
to reveal its local state to other households. We address the
partial observability of the ECCs without revealing the state
of each household to other households. Consider the set of
nodes J in the first hidden layer of the global DNN for
the value function. As Fig. 3(a) shows, for household n,
we define parameter λj,n,t as the aggregate input from the
nodes of state sn,t to node j ∈ J in the DNN for the
value function. For household n and node j ∈ J , we define
parameter λj,n,t =

∑
n′∈N−\{n} λj,n′,t. We define vectors

λn,t = (λj,n,t, j ∈ J ) and λn,t = (λj,n,t, j ∈ J ) for
n ∈ N−. Similarly, we define vectors γn,t and γn,t for
the DNN associated with the policy. To perform forward
propagation and back propagation, observing electricity price
ρt, local state sn,t, and vectors λn,t and γn,t is equivalent
to observing the system state st. Meanwhile, the states of
other households are not revealed to ECC n. For household
n ∈ N−, we use the DNN in Fig. 2(a) for the value function
to construct another DNN shown in Fig. 3(b) with parameters
vector ϑn. Instead of the joint state st, the input layer in
the DNN of household n for the value function includes the
electricity price ρt, local state sn,t, and a bias node with input
equal to 1 and weights λn,t. We use the DNN in Fig. 2(b)
for the policy to construct another DNN shown in Fig. 3(c)
for household n with parameters vector θn. The input layer
includes the electricity price ρt, local state sn,t, and a bias
node with input equal to 1 and weights γn,t. The output layer
is the policy π̃(P̃ c

n(st) | st,θn) for household n.

Figure 3. (a) Parameter λj,n,t and vector λn,t for the DNN associated with
the value function for household n. The DNN for household n associated
with (b) the value function and (c) the policy.

B. Algorithm Description

Algorithm 1 describes our proposed decentralized load
control algorithm. An iteration of Algorithm 1 corresponds
to one time slot. Lines 1 and 2 describe the initialization in
time slot t = 1, where each ECC n randomly chooses values
for parameters θn,t and ϑn,t for its local DNNs. The loop
involving Lines 3 to 20 encompasses the information exchange
Lines 4 to 6, actor and critic updates Lines 8 to 13, and action
selection Lines 15 to 18 in time slot t. In Lines 4 to 6, ECC n
receives information about the joint state of other households
by receiving vectors λn,t and γn,t from the load aggregator.

For time slot t = 1, ECC n performs the action selection
in Lines 15 to 18 to determine a feasible action in state s1.
In time slot t > 1, ECC n performs the actor and critic
updates in Lines 8 to 12. In Line 8, ECC n computes the
temporal difference (TD) error δn(ϑn,t−1) corresponding to
the previous time slot t− 1, as follows:

δn(ϑn,t−1) = (N − 1) cn(st−1, a(st−1))

+ β V π̃(θn,t−1)(st, ϑn,t−1)

− V π̃(θn,t−1)(st−1, ϑn,t−1). (10)

The TD error in (10) approximates Qπ̃(θ)(s, a(s))
−V π̃(θ)(s, ϑ) in time slot t − 1. ECC n obtains the value
function in states st−1 and st using forward propagation in
the local neural network for the value function [18].

In Appendix B, we show that ECC n can perform the
following critic update to determine the updated network
parameter ϑn,t in Line 9:

ϑn,t =ϑn,t−1 − ηt∇ϑn

(
δn(ϑn)

)2 ∣∣∣
ϑn=ϑn,t−1

, (11)

where ηt is the step size for the critic update in time slot t. In
(11), the gradient in ϑn = ϑn,t−1 is obtained using back
propagation in the neural network for the value function [18].

Appendix B also shows that ECC n can perform the
following actor update to determine the updated parameter
vector θn,t in Line 10:

θn,t = θn,t−1 + µt (N − 1) δn(ϑn,t−1)

×∇θn
(

ln
(
π̃(P̃ c

n(st−1) | st−1, θn)
))∣∣∣

θn=θn,t−1

, (12)

where µt is the step size for the actor update in time slot t. In
(12), the gradient vector in θn = θn,t−1 is obtained using back
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Algorithm 1 Decentralized Load Control Algorithm.
1: Set t := 1, ε := 10−3.
2: ECC n randomly initializes parameters θn,1 and ϑn,1.
3: Repeat
4: ECC n observes state sn,t and electricity price ρt.
5: ECC n sends λn,t and γn,t to the load aggregator.
6: Load aggregator sends vectors λn,t and γn,t to ECC n.
7: If t 6= 1,
8: ECC n obtains the TD error according to (10).
9: ECC n obtains the updated ϑn,t according to (11).

10: ECC n determines the updated θn,t according to (12).
11: ECC n sends the updated network parameter vectors

ϑ̂n,t and θ̂n,t to the load aggregator.
12: Load aggregator computes the updated parameters

ϑ̂t and θ̂t according to (13a) and (13b), respectively.
It broadcasts vectors ϑ̂t and θ̂t to ECCs n ∈ N−.

13: ECC n sets ϑ̂n,t := ϑ̂t and θ̂n,t := θ̂t.
14: End if
15: ECC n uses policy π̃(P̃ c

n(st) | st, θn,t) to obtain
controllable load demand P̃ c

n(st).
16: Load aggregator solves optimization problem Pproj

2 to
obtain a feasible action vector a(st).

17: Load aggregator sends the feasible action vector an(st)
to ECC n.

18: ECC n receives the immediate cost cn(st, a(st)).
19: t := t+ 1.
20: Until ||ϑn,t−1 − ϑn,t−2|| < ε and ||θn,t−1 − θn,t−2|| <

ε, n ∈ N−, t > 2.

propagation in the local neural network for the policy [18].
In Lines 11 to 13, the updated local network parameters

for the households are aggregated. ECC n constructs network
parameters ϑ̂n,t and θ̂n,t from vectors ϑn,t and θn,t by ex-
cluding the parameters for the nodes associated with state sn,t
in the DNNs for the value function and policy, respectively. In
Line 11, ECC n sends network parameter vectors ϑ̂n,t and θ̂n,t
to the load aggregator. In Line 12, load aggregator computes
the network parameters ϑ̂t and θ̂t as the average value of
parameters θ̂n,t and ϑ̂n,t, n ∈ N−. We have

ϑ̂t =
1

N − 1

∑
n∈N−

ϑ̂n,t, (13a)

θ̂t =
1

N − 1

∑
n∈N−

θ̂n,t. (13b)

The load aggregator broadcasts parameter vectors ϑ̂t and θ̂t
to ECC n ∈ N−. In Line 13, ECC n sets network parameters
θ̂n,t and ϑ̂n,t to parameter vectors ϑ̂t and θ̂t.

In Line 15, ECC n selects P̃ c
n(st) and informs the load

aggregator. In Line 16, the load aggregator determines a
feasible action vector a(st) by solving problem Pproj

2 . In Line
17, the load aggregator sends the feasible action an(st) =
(P c
n(st), Wn(st)) to ECC n. In Line 18, ECC n receives

immediate cost for the action vector an(st). Next time slot
begins in Line 19. In Line 20, the stopping criterion is given.

Remark 1: For Algorithm 1 to converge to the solution

of problem PMDP, it is necessary that ηt and µt satisfy∑∞
t=1ηt =

∑∞
t=1µt = ∞ and

∑∞
t=1(ηt)

2 =
∑∞
t=1(µt)

2<∞,
and

∑∞
t=1

(
µt/ηt)

ς<∞ for some ς >0 [34].

Remark 2: To solve problem Pproj
2 in Line 16 of Algo-

rithm 1, the load aggregator requires the households’ state,
which is not available due to privacy concerns. Instead,
the load aggregator can apply the proposed decentralized
algorithm in [38], which is based on the proximal Jacobian
alternating direction method of multipliers (PJ-ADMM) [39,
Algorithm 4] with prox-linear method [40] to decompose prob-
lem Pproj

2 into subproblems for the substation and households.

Remark 3: Algorithm 1 preserves the privacy of each house-
hold. The elements of vectors λn,t and γn,t for household
n are linear combinations of the household’s state and the
parameters for the nodes associated with state sn,t in the
DNNs for the value function and policy, respectively. Hence,
the load aggregator cannot infer any single household’s state
from vectors λn,t and γn,t. Moreover, the parameters for the
nodes associated with state sn,t are excluded from vectors
ϑ̂n,t and θ̂n,t. Thus, the load aggregator cannot infer the
household’s state from network parameters ϑ̂n,t and θ̂n,t.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed load control
algorithm on an IEEE 33-bus distribution feeder with 32
households. The system data is sourced from [41]. We set
the parameters used in power flow constraints (4a)−(4i). The
lower and upper bounds for all bus voltage magnitudes are
set to 0.9 pu and 1.1 pu, respectively. The maximum apparent
power flow through each transmission line is set to 1.1 pu.
Initially, no limit is considered for the active and reactive
power injected at the substation bus. One day is divided
into 96 time slots, each with duration of 15 minutes. We
initially consider a time-of-use pricing scheme with rates
shown in Fig. 4. We consider seven controllable and seven
uncontrollable appliances for each household. We use the state
model in [35] to obtain the MDP for the appliances in each
household. Then we obtain the MDP for the base load P b

n,t,
and parameters P c,min

n,t and P c,des
n,t , t ∈ T , n ∈ N−. The

discount factor β is set to 0.9. We use a piecewise linear
function dn

(
P c
n(st), P

c,des
n,t

)
= ωn,t|P c

n(st)− P c,des
n,t | to obtain

the value of the discomfort cost for household n in time slot t,
where the weighting coefficient ωn,t is uniformly chosen at
random from the interval [0.1, 1] cents / kW between 9 am of
the current day and 6 am of the next day, and is set to 5
cents / kW otherwise. The power factor for each household
in each time slot is uniformly sampled at random from
interval [0.8, 0.9]. For the actor, we consider a neural network
comprising three hidden layers with 30 nodes. We consider
six levels to obtain a discrete action space for each household.
For the critic, we consider a neural network comprising three
hidden layers with 30 nodes. We use leaky rectified linear unit
(ReLU) activation function. The step sizes for the critic and
actor updates are set to ηn,t = 15/t0.7 and µn,t = 8/t. We
perform simulations using MATLAB/CVX with MOSEK solver
and PYTORCH library in PYTHON 3.7.
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Figure 4. Electricity price rates during one day.

Figure 5. Aggregate demand of 32 households in the feeder in day 30.

A. Reducing Peak Load and User Cost

In Fig. 5, we show the feeder’s aggregate load demand in
three scenarios on day 30 as an example. In scenario one,
we consider the load profile without load scheduling. The
peak load demand is 90 kW at 7 pm. Scenario two shows
the load demand when the households use Algorithm 1 for
load scheduling. The peak load is reduced from 90 kW to
60 kW (i.e., 33% reduction). Reducing the controllable load in
a time slot causes the desirable demand increases in upcoming
time slots. As Fig. 5 shows, the desirable demand with load
scheduling is greater than or equal to the demand without load
scheduling. This can be interpreted as shifting the load demand
to the future. In scenario three, we consider an upper limit of
30 kW for the active power injection into the substation from
1 am to 6 am to show that, indeed, the load control policy
is updated to satisfy the network constraints. Fig. 5 shows
that, with a limited injected active power, the scheduled load
demand increases from 5 pm to 9 pm to avoid shifting too
much load to the time period from 1 am to 6 am.

We show that the policy and value function converge to the
(local) optimal solution of PMDP. The critic update in (11)
aims to decrease the TD error. Fig. 6(a) shows the convergence
of the average TD errors of all households during the first
30 days. The TD error may not be zero, since it approximates
the difference between the action-value function and the value
function. The goal of actor update in (12) is to obtain a policy
that results in a lower value function. Fig. 6(b) shows the
convergence of the value function from $12 to $7 for a given
initial state of household 1. Fig. 6(c) shows the convergence of
the expected daily cost of the controllable loads in a household
from 95 cents to 65 cents after 30 days. Fig. 6(d) shows that
the expected daily cost per household is reduced by 13% (from
$3.38 to $2.94) with load scheduling in day 30.

B. Comparing with State-of-the-art Algorithms

We compare the convergence of Algorithm 1 with cen-
tralized learning algorithms based on actor-critic method, Q-
learning, and double Q-learning, which have been proposed
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Figure 6. (a) Average TD error; (b) Value function for a given initial state;
(c) Expected daily cost for controllable loads; (d) Expected daily total cost
with and without load scheduling.

in the literature (e.g., [22], [27]–[29]). For the centralized
algorithm with actor-critic method, we determine the pa-
rameters of the DNNs for the value function and policy.
For the centralized algorithm with Q-learning, we consider
a DNN comprising three hidden layers with 40 nodes. For
the centralized algorithm with double Q-learning, we consider
two DNNs comprising three hidden layers with 40 nodes. As
shown in Fig. 7, Algorithm 1 converges to the suboptimal
solution obtained from the centralized algorithm with actor-
critic method. However, Algorithm 1 converges slightly slower
and has higher oscillations around the suboptimal solution, as
(10) approximates the TD error in the centralized algorithm by
considering the cost of household n instead of the total cost of
all households. When compared with the centralized algorithm
using Q-learning, Algorithm 1 converges significantly more
quickly to a suboptimal solution with a lower daily cost for
the users. When compared with Q-learning, using double Q-
learning improves the convergence speed and decreases the
expected daily cost for the users. However, Algorithm 1 still
converges more quickly to a suboptimal solution. Algorithm
1 with actor-critic method is preferred, since the ECC uses
the critic DNN to learn the advantage function (i.e., the
difference between the action-value function and the value
function) instead of learning the action-value function. Thus,
the evaluation is based on how much an action can improve the
value function. Learning the advantage function significantly
reduces the fluctuations in learning using the stochastic gradi-
ent decent method. Fig. 7 also demonstrates the performance
of Algorithm 1 in training the DNNs parameters. Particularly,
the expected daily cost for controllable loads with Algorithm 1
converges after day 30, which implies that the DNNs have
successfully completed the training phase.
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Figure 8. (a) Real-time pricing rates during one day; (b) Expected daily cost
for the controllable loads for a household in feeders with 330 and 1650 buses.

C. Demonstrating Scalability

We examine the convergence of Algorithm 1 in test systems
with 330 and 1650 buses with real-time pricing scheme. We
construct test systems with 330 and 1650 buses by connecting
ten and fifty 33-bus feeders, respectively, via transmission lines
with resistance of 0.01 pu and reactance of 0.0015 pu, . To
mimic real-time pricing scheme, we use the historical price
data for Ontario, Canada power grid database from Sept. 1,
2019 to Feb. 29, 2020 [42]. Fig. 8(a) shows the pricing rates
per time slot from Feb. 25, 2020 to Feb. 26, 2020 as an
example. In practice, load aggregators may need to mitigate
any large fluctuation in the price rate. Nevertheless, this
scenario helps to demonstrate the performance of Algorithm
1 in a volatile electricity market. Fig. 8(b) shows that, by
using Algorithm 1, the expected daily cost of the controllable
loads per household converges to the suboptimal solution in
90 days and 105 days in test systems with 330 and 1650
buses, respectively. When compared with our original case
study, the required number of days for convergence is higher
in these large test systems, because the ECCs need to adjust
their policy according to the time-varying price rates as well
as the distribution network constraints in a larger test system.
Nevertheless, Algorithm 1 can still be used in large test
systems, since the expected daily cost of the controllable loads
decreases gradually (e.g., approximately 10% reduction in 30
days), leading to a lower total cost for the households.

Finally, we evaluate the communication overhead of Algo-
rithm 1. Each iteration of Algorithm 1 involves six message
exchange between ECC n and load aggregator. To reduce
the communication overhead, one can use minibatch gradient
descent, where the batch size is set to more than one. However,
using a small batch size achieves better training stability, as
the parameters of the DNNs for the policy and value function
are updated more frequently by the load aggregator.

VI. CONCLUSION

In this paper, we applied DRL to design a load scheduling
algorithm for residential households under uncertainty in the
electricity price, load demand, and users’ discomfort cost.
To address the users privacy concerns, we applied federated
learning technique to develop a decentralized load scheduling
algorithm executed by the users. Also, we accounted for
distribution network constraints and transformed the problem
of updating neural network parameters into a sequence of
SDPs to deal with nonconvex power flow constraints. Via
numerical simulations, we showed that the proposed load
scheduling algorithm can benefit the load aggregator by 33%
reduction in the aggregate demand during peak hours. It
also benefits a user by 13% reduction in its expected daily
cost. The proposed decentralized algorithm converged to the
solution of the centralized algorithm in an acceptable number
of iterations. Results showed that the proposed algorithm is
applicable in a system with large number of users and real-time
pricing scheme. For future work, we will consider the impact
of data tampering and false information from the households
on the DRL-based demand response algorithm.

APPENDIX

A. Proof of Theorem 1

We obtain problem P r-proj
1 by relaxing rank-one constraint

(4i) in problem Pproj
1 as follows:

P r-proj
1 : minimize

P c(st),Wn(st), n∈N
||P c(st)− P̃ c(st)||22

subject to constraints (4a)−(4h),
Wn(st) � 0, n ∈ N ,
P c(st) ∈ Ac(st).

The objective function of problem P r
2 can be expressed as

||P c(st)− P̃ c(st)||22 =∑
n∈N−

((
P c
n(st)

)2 − 2 P̃ c
n(st)P

c
n(st) +

(
P̃ c
n(st)

)2)
. (14)

Considering (14), we can interpret problem P r-proj
1 as an opti-

mal power flow (OPF) problem in the underlying distribution
network, where the load in bus n has a quadratic cost function(
P c
n(st)

)2−2 P̃ c
n(st)P

c
n(st)+

(
P̃ c
n(st)

)2
. With quadratic cost

function, practical distribution networks satisfy the sufficient
conditions given in [37, Sec. IV-C] for the network topology
and constraints. The sufficient conditions can be summarized
as i) the graph induced by Re{Y } is connected, and ii) the
Lagrange multipliers associated with the active power balance
constraints are non-negative and greater than or equal to
the Lagrange multipliers associated with the reactive power
balance constraints. Consequently, the SDP relaxation gap
between Pproj

1 and P r-proj
1 is zero. Problem P r-proj

1 is equivalent
to Pproj

2 . This completes the proof. �

B. Critic and Actor Updates for ECC n ∈ N−

The goal of critic update is to reduce the advantage function
A(s, ϑ, θ) = E{Qπ̃(θ)(s, a(s), ϑ)} − V π̃(θ)(s, ϑ) for state
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s ∈ S by minimizing the following objective function [34]:

f critic(ϑ, θ) =
∑
s∈S

A2(s, ϑ, θ). (15)

In time slot t, ECC n applies the stochastic gradient descent
method and approximates the gradient of f critic(ϑ, θ) with
respect to ϑ by the gradient of A2(st−1, ϑ, θ) in state
st−1. Moreover, ECC n approximates the advantage function
A(st−1, ϑ, θ) by the TD error δn(ϑn,t−1) in (10) for the local
DNNs of household n. Hence, ECC n can use (11) to obtain
the updated network parameter ϑn,t. By taking the average
of the local network parameters in (13a), the global network
parameter vector ϑt−1 is updated in the stochastic gradient
direction of the objective function f critic(ϑ, θ).

To improve the policy, the actor aims to minimize the
following objective function [34]:

f actor(ϑ, θ) =∑
s∈S

(
− E

{
ln
(
π̃(P̃ c(s) | s, θ)

)
Â(s, a(s), ϑ, θ)

})
. (16)

where E{·} is the expectation over the actions in state s. Func-
tion Â(s, a(s), ϑ, θ) = Qπ̃(θ)(s, a(s), ϑ)−V π̃(θ)(s, ϑ) is
the advantage function in state s and action a(s) for network
parameters ϑ and θ. ECC n approximates the gradient of
objective function f actor(θ, ϑ) with respect to θ by the gradi-
ent of − ln

(
π̃(P̃ c(st−1) | st−1, θ)

)
Â(st−1, a(st−1), ϑ, θ)

in state st−1. ECC n approximates Â(st−1, a(st−1), ϑ, θ)
by the TD error δn(ϑn,t−1) in (10) for the local DNNs of
household n. Moreover, the decision making of the households
are independent. Hence, we have

π̃(P̃ c(st−1) | st−1, θ) =
∏

n∈N−
π̃(P̃ c

n(st−1) | st−1, θ). (17)

ECC n observes π̃(P̃ c
n(st−1) | st−1, θn). We replace the right-

hand side of (17) by π̃(P̃ c
n(st−1) | st−1, θn)N−1. We have

ln
(
π̃(P̃ c

n(st−1) | st−1, θn)N−1
)

= (N − 1) ln
(
π̃(P̃ c

n(st−1) | st−1, θn)
)
. (18)

Using (17) and (18), ECC n can use (12) to obtain θn,t. By
taking the average of the local network parameters in (13b),
the global network parameters are updated in the stochastic
gradient direction of the objective function f actor(ϑ, θ). �
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