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Abstract—This letter presents an analytical closed-form ex-
pression that quantifies the contributions of nodal active- and
reactive-power injections to total loss in a power system operating
at sinusoidal steady state. We term this as the loss divider, since it
is derived by leveraging the ubiquitous current divider law. The
proposed loss divider innately embeds the dependence of system
loss on both the network topology and the operating point, i.e.,
voltage profile. The derivation does not rely on any simplifying
assumptions, and so the resulting expression delineates the exact
quadratic relationship between the system loss and nodal active-
and reactive-power injections.

Index Terms—Ancillary services, current injection sensitivities,
loss coefficients, transmission loss allocation.

I. INTRODUCTION

MODERN electric power systems are undergoing dra-
matic changes due to deregulation and increased pen-

etration of distributed and renewable generation [1]. Con-
sequently, it is necessary to quantify and allocate the cost
associated with system loss among market participants in a
fair manner [2], [3]. In this paper, we explicitly demonstrate
how system loss can be attributed to nodal active- and reactive-
power injections exactly (i.e., without resorting to approxima-
tions) as a quadratic function, which we term loss divider.
Then, as an application, we leverage the loss divider for
transmission-loss allocation.

There are conceivably many ways to allocate loss amongst
producers and consumers of electricity in a power network.
Existing methods for loss allocation can be categorized into
(i) pro rata, (ii) incremental transmission loss, (iii) proportional
sharing, and (iv) loss allocation formulas. Pro rata methods
do not consider the network topology [4]. Incremental trans-
mission loss methods depend on the slack bus location [5].
Proportional sharing methods assume that inflows are propor-
tional to the outflows at each bus [6]. Due to the nonlinearity of
the problem, simplifying assumptions that may lead to errors
are generally utilized in loss formula methods, such as Taylor
series expansion of power flow equations [1], quadratic loss
expressions [7], and B-coefficients [8]. On the other hand,
exact loss formulas are either based on individual power trans-
actions [3] or do not differentiate between loss contributions
arising from active- and reactive-power injections [2].

The proposed loss divider outlines the nonlinear dependence
of system loss to nodal active- and reactive-power injections
while accounting for the electrical distance between partici-
pants, and it does not depend on the location of the slack bus or
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any simplifying assumptions. The key benefit of this character-
istic is that we can penalize (or reward) reactive-power demand
(or support) from, e.g., loads and distributed energy resources,
which may be responsible for total system loss increase (or
decrease). Moreover, the loss divider is applicable to both
mesh and radial network configurations, as well as those where
transmission lines are modelled without ground connecting
shunt elements. We demonstrate these aspects via numerical
simulations involving standard distribution- and transmission-
level test systems.

II. SYSTEM MODEL

Consider an electric power network with N buses collected
in the set N . Transmission lines are modelled using the
lumped-element equivalent Π-circuit model and collected in
the set of E edges E := {(m,n)} ⊂ N × N . Collect nodal
voltages and current injections in vectors V ∈ CN and I ∈ CN

respectively. 1 The branch and shunt currents, respectively, in
line (m,n) ∈ E can be expressed as

I(m,n) = ymn(Vm − Vn) = ymne
T
mnV, (1)

Ish(m,n) = yshmnVm = yshmne
T
mV, (2)

where ymn, y
sh
mn ∈ C are, respectively, the series and shunt

admittances of line (m,n). Kirchhoff’s current law can be
compactly represented in matrix-vector form as

I = Y V, (3)

where Y ∈ CN×N is the network admittance matrix. Since the
admittance matrix is invertible, bus voltages can be expressed
as V = Y −1I =: ZI , where Z is the network impedance
matrix [9]. Then, (1) and (2) can be written as

I(m,n) = ymne
T
mnZI =: κT(m,n)I, (4)

Ish(m,n) = yshmne
T
mZI =: (κsh(m,n))

T
I, (5)

where κ(m,n), κ
sh
(m,n) ∈ CN . The entries of κ(m,n) and κsh(m,n)

are referred to as the current injection sensitivity factors of
line (m,n) with respect to the bus current injections. The

1Notation: The matrix transpose is denoted by (·)T, magnitude of a
complex number by | · |; complex conjugate by (·)∗, complex-conjugate
transposition by (·)H, real and imaginary parts of a complex number or vector
by Re{·} and Im{·}, respectively, and j :=

√
−1. A diagonal matrix formed

with entries of the vector x is denoted by diag(x); and diag(x/y) forms a
diagonal matrix with the m-th entry given by xm/ym, where xm and ym
are the m-th entries of vectors x and y, respectively. For column vectors
x = [x1, . . . , xM ]T and y = [y1, . . . , yM ]T, x ◦ y denotes the entry-wise
product of vectors x and y. The spaces of N × 1 real- and complex-valued
vectors are denoted by RN and CN , respectively. The spaces of M × N
real- and complex-valued matrices are denoted by RM×N and CM×N ,
respectively. The entry in the m-th row and n-th column of the matrix X is
denoted by [X]mn. The N×1 vectors with all ones and all zeros are denoted
by 1N and 0N , respectively; em denotes a column vector of all zeros except
with the m-th entry equal to 1; and emn := em − en.
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current injection sensitivity factors in (4)–(5) uncover the
impact of bus current injections on the current in line (m,n);
in this sense, they serve as a measure of electrical distance
between each bus and line (m,n) [9]. We will also find
the decomposition of the network admittance and impedance
matrices into real and imaginary components, i.e., Y = G+jB
and Z = R+ jX , useful later.

Finally, denote the vector of bus complex-power injections
by S = P +jQ ∈ CN . (By convention, Pi and Qi are positive
for generation and negative for load.) Then, bus complex-
power injections can be compactly written as

S = diag (V ) I∗. (6)

Remark 1 (Noninvertible Network Admittance Matrix): Sup-
pose that Y is not invertible, i.e., there are no ground-
connecting shunt elements in the transmission-line model
so that Ish(m,n) = 0, ∀ (m,n) ∈ E in (2). Here, we can
premultiply (3) by the pseudoinverse of the admittance matrix,
Y †, to get

V = Y †I +
1

N
1N1T

NV, (7)

which follows by recognizing that

Y †Y = diag(1N )− 1

N
1N1T

N . (8)

Substituting (7) into (1), we find that the current injection
sensitivity factors in this case are given by

κT(m,n) = ymne
T
mnY

†, (9)

where we have used the fact that eTmn1N1T
N = 0T

N . In sum-
mary, if Y is not invertible, we define the network impedance
matrix Z := Y † for the derivation in Section III. �

III. DERIVATION OF EXACT QUADRATIC LOSS MODEL

The system loss, denoted by L, can be expressed as the sum
of losses on all lines, as follows:

L =
∑

(m,n)∈E

|I(m,n)|2Re{y−1mn}+|Ish(m,n)|
2Re{(yshmn)−1}. (10)

Collect all line branch and shunt currents in vectors Iline ∈ CE

and Ishline ∈ CE , respectively. Similarly, collect the line series
and shunt admittances into vectors yline ∈ CE and yshline ∈ CE ,
respectively. Recognizing that |I(m,n)|2 = I(m,n)I

∗
(m,n), and

|Ish(m,n)|
2 = Ish(m,n)(I

sh
(m,n))

∗ we can rewrite (10) as

L = ITlinediag (Re{1E/yline}) I∗line
+
(
Ishline

)T
diag

(
Re{1E/y

sh
line}

) (
Ishline

)∗
. (11)

A. System Loss and Current Injections

Stack up instances of (4) and (5), respectively, into matrix-
vector form as Iline = KTI and Ishline = KT

shI , and further
substitute them into (11) to yield

L = ITKdiag (Re{1E/yline})KHI∗

+ ITKshdiag
(
Re{1E/y

sh
line}

)
KH

shI
∗ =: ITΓI∗. (12)

In the above, the current injection sensitivity matrices K ∈
CE×N and Ksh ∈ CE×N are defined as

K := (diag(yline)AZ)
T

= ZTATdiag(yline), (13)

Ksh :=
(
diag(yshline)AshZ

)T
= ZTAT

shdiag(yshline), (14)

where the network incidence matrices A ∈ RE×N , Ash ∈
RE×N are formed by stacking up row vectors eTmn and eTm,
respectively, analogous to the way Iline, Ishline, yline, and yshline
are constructed in (11).

The expression in (12) uncovers the quadratic relationship
between the system loss and current injections. Entries of
Γ ∈ CN×N can be interpreted as complex-valued second-
order sensitivities of loss with respect to bus current injections.
Assuming that the network admittance matrix is invertible and
transmission-line shunt conductances in the Π-circuit model
are negligibly small (which is the case for overhead transmis-
sion lines [10]), straightforward algebraic manipulations allow
us to simplify Γ defined in (12) as

Γ = R. (15)

See Appendix A for the derivation of (15).

B. System Loss and Complex-power Injections

We can express the system loss in (12) as the following
quadratic function of the complex-power injections:

L = SHdiag (Λ∗) · Γ · diag (Λ)S. (16)

The expression in (16) is obtained by rearranging (6) to get

I∗ = diag

(
1N

V

)
S =: diag (Λ)S, (17)

and further substituting (17) into (12). In order to isolate the
real component of (16) define diag(Λ) := Ξ + jΨ and recall
that S = P + jQ, so that we can rewrite (16) as

L = (P − jQ)
T

(Ξ− jΨ) Γ (Ξ + jΨ) (P + jQ)

=: (P − jQ)
T

(U + jW ) (P + jQ) , (18)

where (recognizing that Γ = R)

U = ΞRΞ + ΨRΨ, (19)
W = ΞRΨ−ΨRΞ. (20)

Finally, we decompose (18) into its real component

L = PTUP +QTUQ+ PT(WT −W )Q, (21)

and imaginary component

0 = PTWP +QTWQ+ PT(U − UT)Q. (22)

The above hold since system loss L is real valued by definition,
and indeed, numerical simulations verify (21) and (22). The
expression in (21) delineates the exact quadratic relationship
for how the nodal active- and reactive-power injections con-
tribute to system loss. We refer to (21) as the loss divider, since
it specifies how the system loss is divided amongst active- and
reactive-power injections at each bus. The derivation presented
in this section does not rely on any simplifying assumptions.
Effects of both the network topology and the operating point
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Fig. 1: Indian 22-Bus Power Distribution System: nodal injec-
tion contributions to system loss with and without DERs.

are embedded in the sensitivities U and W . In practice, when
nodal voltages are near unity, the entries of U are much larger
than those in W . Taking the limit where all voltages are
precisely unity leads to U = R and W = 0N×N in (21).

IV. TRANSMISSION-LOSS ALLOCATION

In this section, we present one particular application for
the exact quadratic expression for loss in (21) to decompose
system loss into an admittedly arbitrary sum of contributions
from nodal active- and reactive-power injections. We describe
how the decomposition is related to the transmission-loss
allocation method in [2]. From (21), we can express the system
loss as the following summation of 2N scalar terms:

L=

N∑
i=1

(PTUei+Q
TWei)Pi+

N∑
i=1

(QTUei−PTWei)Qi. (23)

With (23), for each bus i, we compute the contributions of its
active- and reactive-power injection components to the loss
respectively as(

PTUei +QTWei
)
Pi,

(
QTUei − PTWei

)
Qi. (24)

Note that, although (21) represents the exact relationship
between system loss and nodal active- and reactive-power
injections, the decomposition above represents one of many
ways that the sum in (23) can be divided into constituent parts,
each of which attributable to a particular active- or reactive-
power injection.

A. Connection to Z-bus Loss Allocation [2]

Although many other loss allocation schemes have been
proposed in the literature, we expand in particular on the
Z-bus method in [2] since it is circuit theoretic and is the
most closely related method to the proposed one. The Z-bus
allocation method extracts the real part of (12) and expresses
the total system loss as the following sum:

L = Re


N∑

k=1

I∗k

 N∑
j=1

[R]kjIj

 (25)

where the k-th term in the summation represents the contribu-
tion of the current injection at bus k to the total system loss.
Our proposed loss-allocation method also begins with (12),
but in addition, we explicitly uncover the exact quadratic
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Fig. 2: New England 39-Bus System: nodal injection contri-
butions to system loss with and without line shunt elements.

relationship with respect to nodal active- and reactive-power
injections. Thus, the results of the Z-bus allocation method
can be recovered as the sum of the two expressions in (24).

B. Numerical Comparisons

We apply the loss allocation scheme in (24) for benchmark
distribution and transmission test systems. Starting with a
power-flow solution that consists of all nodal voltages, we
compute the second-order sensitivities of loss with respect
to nodal active- and reactive-power injections, as specified
in (19)–(20).

1) Indian 22-Bus Power Distribution System [11]: The
contribution of each active- and reactive-power injection to
system loss is computed using (24). They are plotted as the
darker orange and blue bars, respectively, in Fig. 1. Next, we
assume that distributed energy resources (DERs) at buses 4, 8,
12, 16, and 20 inject additional ∆Q = 0.002 p.u. at each bus.
The updated active- and reactive-power contributions to loss
are plotted in lighter orange and blue colours, respectively,
in Fig. 1. For each bus k, adding active- and reactive-power
injection contributions in (24) yields the same numerical
value as the bus k current-injection contribution in the Z-
bus allocation method (i.e., the k-th term in (25)) from [2].
However, by being able to decompose the bus k contribution to
loss into components attributable to active- and reactive-power
injections, our method can reward a DER for reactive-power
support. As shown in Fig. 1, the reactive-power contributions
to loss decrease at all buses with additional ∆Q injections.

2) New England 39-Bus System: In Fig. 2, we plot nodal
active- and reactive-power injection contributions to system
loss as the darker orange and blue bars, respectively. In
this case, the nodal injections at buses 20–23 and 25–32
would, in fact, be rewarded for their negative contributions
to system loss. Next, we eliminate shunt admittances from
the Π-circuit model of all transmission lines, i.e., we set
yshmn = 0, ∀ (m,n) ∈ E , which renders the network admittance
matrix singular. Then, as described in Remark 1, we make use
of the pseudoinverse of Y for the derivation in Section III.
Resulting active- and reactive-power injection contributions to
system loss are plotted as the lighter orange and blue bars,
respectively, in Fig. 2. Although removing the shunts from
the Π-circuit model shifts the system operating point, using the
pseudoinverse yields a reasonable outcome for loss allocation
as compared with the original case with shunts.
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V. CONCLUDING REMARKS

In this letter, we derive an analytical closed-form expression
that attributes nodal active- and reactive-power injection con-
tributions to the system loss. The derived expression recovers
well-known loss allocation methods as special cases with
certain simplifications. The utility of the derived expression is
demonstrated via loss-allocation application studies involving
modified Indian 22-bus and New England 39-bus test sys-
tems. Future work includes perturbation analysis of (21) to
approximate incremental loss given nodal active- and reactive-
power variations. Furthermore, incorporation of (21) to model
system loss may be beneficial in a variety of problems, such as
economic dispatch, optimal power flow, and transactive energy.

APPENDIX

A. Derivation of (15)
We first note that since Z = Y −1, we have that

(G+ jB)(R+ jX) = (R+ jX)(G+ jB) = diag(1N ), (26)

which leads to the following set of relationships:

GR−BX = RG−XB = diag(1N ). (27)
GX +BR = XG+RB = 0N×N . (28)

Then, substitute (13) and (14) into (12) to get

Γ = ZTATdiag(yline◦Re{1E/yline}◦y∗line)AZ∗

+ZTAT
shdiag(yshline◦Re{1E/y

sh
line}◦(yshline)∗)AshZ

∗. (29)

Since yline ◦ y∗line and yshline ◦ (yshline)
∗ are real-valued vectors,

we can equivalently express (29) as

Γ =ZTATdiag (Re{yline◦1E/yline◦y∗line})AZ∗

+ZTAT
shdiag

(
Re{yshline◦1E/y

sh
line◦(yshline)∗}

)
AshZ

∗. (30)

Furthermore, since A and Ash are real-valued matrices,
Re{yline} = Re{y∗line}, and Re{yshline} = Re{(yshline)∗}, (30)
simplifies as

Γ = ZTRe{ATdiag (yline)A}Z∗

+ ZTRe{AT
shdiag

(
yshline

)
Ash}Z∗

=ZTRe{ATdiag (yline)A+AT
shdiag

(
yshline

)
Ash}Z∗. (31)

Recognizing in the above that, if the real part of yshline is small,
we get

Re{ATdiag(yline)A+AT
shdiag(yshline)Ash} ≈ Re{Y }, (32)

where the approximation would be exact if shunt admittances
were purely imaginary. We substitute (32) into (31) to get

Γ = ZTRe{Y }Z∗. (33)

Then, we expand (33) to get

Γ = (R+ jX)G(R− jX) = (R+ jX)(GR− jGX).

Recognizing that −GX = BR from (28), we get

Γ = (R+ jX)(GR+ jBR)

= (RG−XB)R+ j(RB +XG)R. (34)

Finally, substitution of (27) and (28) into (34) yields (15) as
desired.
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