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Abstract—This paper presents a measurement-based method
to determine distributed energy resource (DER) active- and
reactive-power setpoints that minimize bus voltage deviations
from prescribed reference values, bus active- and reactive-power
deviations from desired setpoints, as well as cost of DER outputs.
Central to the proposed method is the estimation of a linear
sensitivity model from synchronized voltage and power-injection
data collected from distribution-level phasor measurement units
installed at only a subset of buses in the distribution system. As
new measurements become available, the linear sensitivity model
is updated via the recursive weighted partial least-squares estima-
tion method. The estimated sensitivity model is then embedded
as an equality constraint in a convex quadratic optimization
problem, which can be solved via, e.g., the alternating direction
method of multipliers. Numerical simulations involving the IEEE
33-bus distribution test system illustrate key benefits of the
proposed method, including (i) eliminating the need for an
accurate offline system model, (ii) adapting to online network-
topology and operating-point changes, and (iii) being robust
against delays potentially attributed to communication, compu-
tation, and actuation. Additional numerical simulations involving
larger test systems demonstrate computational scalability.

Index Terms—Distributed energy resources, measurement-
based method, model estimation, optimal DER dispatch, partial
least-squares estimation.

I. INTRODUCTION

INTEGRATION of distributed energy resources (DERs),
such as rooftop solar-photovoltaic and battery-storage sys-

tems, helps to alleviate environmental concerns of conven-
tional fossil fuel-based generation. Moreover, DERs can help
to regulate voltages at the distribution level by providing
reactive-power support, and their active-power outputs can
be coordinated toward frequency regulation for the transmis-
sion system [1], [2]. Reliable and efficient operation of the
integrated power grid has motivated recent research into de-
veloping DER management systems. These generally involve
repeated solutions of optimization problems constrained by the
nonlinear network power balance, DER capacity limits, and
other operational limits. Such methods may be computation-
ally burdensome in practical field implementation, especially
with rapidly varying operating point [3]. Moreover, many
require an accurate and up-to-date network model that may
not be available in real time, resulting in DER setpoints that
lead to unexpected or undesired system behaviour [4].

In this work, we use synchronized bus-voltage and power-
injection measurements collected from distribution-level pha-
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sor measurement units (D-PMUs) installed at a subset of
the buses in the distribution system to estimate a linear
sensitivity model that approximates the relationship between
voltages and power injections at measured buses. The D-
PMUs provide time-synchronized voltage- and current-phasor
measurements with phase-angle accuracy of 0.01◦; and they
stream the phasor data through a standard communication
interface (e.g., IEEE C37.118) at intervals in the sub-second
range [4]. These properties are sufficient to ensure that the
estimated sensitivity model reflects up-to-date system at-
tributes [5]. We then embed the estimated model in an optimal
DER dispatch problem as a linear constraint, replacing the
nonlinear power-balance equations. In so doing, the proposed
approach is amenable to real-world implementation of DER
management systems because, compared to versions of the op-
timization problem with nonlinear constraints, it incurs lower
computational burden to obtain sufficiently accurate optimal
DER dispatch solutions. Moreover, the proposed approach
does not rely on any prior knowledge about a network model,
and the resulting DER dispatch adapts to the system’s evolving
operating point and network topology.

With the above in mind, we focus our review of relevant
literature squarely on measurement-based methods for (i) on-
line model estimation, and (ii) optimal DER dispatch, both in
distribution systems. (A review of other applications, such as
state estimation, event detection, and phase identification, can
be found in [4]). Several lines of research infer the distribution
network topology by recovering the admittance matrix with
graph theoretical approaches [6], using maximum-likelihood
estimation with error-in-variable models [7], actively probing
smart inverters to estimate the grid Laplacian [8], develop-
ing low-complexity algorithms [9], and leveraging convex-
optimization techniques [10]. Prior art has also tackled online
estimation of other system attributes, including injection shift
factors [11], the power-flow Jacobian [12], linearized power-
flow models [5], and power-to-voltage sensitivities [13], [14].

Shifting attention to methods for measurement-based DER
dispatch, [15] leverages estimated power-to-voltage sensitiv-
ities to determine DER setpoints that regulate the voltage
profile across a distribution network. In order to reduce the
number of samples needed to estimate the sensitivities, [15]
assumes prior knowledge of feasible topology configurations
and line resistance-to-reactance ratios. Voltage regulation is
also the objective in [16], where rule- and optimization-based
control schemes are deployed in conjunction with an estimated
second-order power-flow sensitivity model. Furthermore, [17]
optimizes DER setpoints to regulate the active-power injection
from the distribution feeder into the transmission grid while
relying on prior knowledge of network topology. Another
line of related work solves the optimal power flow problem
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via quasi-Newton methods aided by real-time measurements
of values and constraints of decision variables [18]. Also,
feedback optimization is used to synthesize controllers to
achieve distribution-level voltage regulation in centralized
fashion [19], [20] and distributed manner [21]–[23]. Combined
control of system voltages and substation power setpoints
is accomplished via primal-dual gradient methods to solve
a saddle-point problem in a distributed fashion in [3], and
the framework is extended to include aggregations of DERs,
multi-phase systems, and discrete DER setpoints through a
bilevel optimization formulation in [24]. However, the afore-
mentioned feedback optimization methods all rely on some
(albeit possibly limited) knowledge of the underlying power
network structure to compute relevant gradients and Hessians.
Model-free combined voltage and active-power control via an
extremum seeking approach is developed in [25], and it is
extended to unbalanced systems to regulate line flows in [26].

In this paper, we propose a measurement-based approach,
which does not rely on any prior knowledge of or even regard
for the underlying network topology, to determine DER active-
and reactive-power setpoints aimed at regulating bus voltages
and injections as well as minimizing DER costs. The proposed
framework consists of two successive and iterative stages:
(i) sensitivity model estimation, and (ii) optimal DER dispatch.
This paper builds on preliminary work reported in [27] and
provides extensions in several directions. For the estimation
stage, we remove the requirement of equipping D-PMUs at
all buses in the distribution system for estimating the linear
voltage-to-power sensitivity model with online measurements
of bus voltage phasors and active- and reactive-power injec-
tions. We also leverage the recursive weighted partial least-
squares (RWPLS) algorithm to improve (i) the practicality of
the proposed approach by performing recursive updates, and
(ii) its adaptability to network-topology and operating-point
changes by placing more weight on recent measurements and
less on past ones. The resulting estimated model contains key
sensitivity characteristics amongst measured quantities without
explicitly recovering the grid topology or power-flow model
as in [5]–[10]. It is worth noting that while non-recursive
variants of least-squares estimation have been used to compute
linearized power-flow models [5], the power-flow Jacobian
matrix [12], and power-to-voltage sensitivities [13], to the best
of our knowledge, the RWPLS algorithm has not been utilized
for applications in the power systems domain.

In the DER dispatch stage, we incorporate the estimated
linear sensitivity model into a convex quadratic optimiza-
tion problem. As a direct consequence, the optimal dispatch
is solved without any offline knowledge of the underlying
network, distinct from methods in [3], [19]–[24]. Also, un-
like [15]–[17], [19]–[23], our proposed formulation achieves
combined objectives of minimizing (i) DER active- and
reactive-power costs and (ii) deviations of bus voltages and
injections from their respective reference values. Moreover,
compared with [25], [26], our proposed method uses lower
temporal measurement resolution and smaller injection per-
turbations. Extensive numerical simulations demonstrate that
the proposed measurement-based optimal DER dispatch adapts
to unexpected operating-point and network-topology changes

and closely matches the model-based optimal dispatch solved
with accurate system model. Also via numerical simulations,
we evaluate the impact of DER dynamics, delays potentially
attributed to communication, computation, and actuation, and
RWPLS parameters on the performance of the proposed
method. Furthermore, we illustrate the flexibility of the pro-
posed framework by accommodating typical constraints on
DER active- and reactive-power outputs. Finally, we report
execution times involved with the model estimation and opti-
mal dispatch stages of the proposed framework.

The remainder of this paper is organized as follows. In
Section II, we describe the network and power-flow model,
present the model-based formulation of the optimal DER
dispatch problem, and motivate the need for a measurement-
based approach. Section III outlines the estimation of the
measurement-based sensitivity model. Section IV formulates
the optimal DER dispatch problem with the estimated sensi-
tivity model and presents the alternating direction method of
multipliers (ADMM) solution approach. In Section V, we offer
numerical case studies to demonstrate the effectiveness of the
proposed measurement-based optimal DER dispatch frame-
work. Finally, we provide concluding remarks and directions
for future research in Section VI.

II. PRELIMINARIES

In this section, we establish the system model and formulate
the standard model-based optimal DER dispatch problem. We
also motivate the need for a measurement-based approach.

A. Network and Power-flow Models

Consider a distribution system with N buses collected
in the set N = {1, . . . , N}. Suppose pertinent system
variables are sampled at time t = k∆t, k = 0, 1, . . . ,
where ∆t is the sampling interval. Let Vi,[k] and θi,[k]

denote, respectively, the voltage magnitude and phase-angle
at bus i and discrete time step k. Also let Pi,[k] and
Qi,[k] denote, respectively, the net active- and reactive-
power injections at bus i and time step k. Furthermore,
collect voltage phase-angles and magnitudes at time step k
in vector x[k] = [θ1,[k], . . . , θN,[k], V1,[k], . . . , VN,[k]]

T. Also
collect net active- and reactive-power injections in vector
y[k] = [P1,[k], . . . , PN,[k], Q1,[k], . . . , QN,[k]]

T. Then, power-
flow equations at time step k can be compactly expressed as

y[k] = g(x[k]), (1)

where g : R2N → R2N . In (1), the dependence on network
parameters (such as circuit breaker status and line impedances)
is implicitly considered in the function g(·).

B. Optimal DER Dispatch Problem

We introduce an optimization problem to solve for DER
setpoints that minimize a desired cost function (e.g., cost of
DER generation, deviations from references, etc.) subject to
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the nonlinear power balance (1) and other operational con-
straints.1 To this end, let P gen

i,[k] and Qgen
i,[k] denote, respectively,

the controllable components of active- and reactive-power
injections at bus i and time step k; and collect these in vec-
tor ygen

[k] = [P gen
1,[k], . . . , P

gen
N,[k], Q

gen
1,[k], . . . , Q

gen
N,[k]]

T. Similarly,
collect the uncontrollable active- and reactive-power loads at
all buses into vector yload

[k] ∈ R2N , so that y[k] = ygen
[k] − y

load
[k] .

The optimal DER dispatch problem can be formulated as

minimize
x[k], y[k], y

gen
[k]

f(x[k], y[k], y
gen
[k] ), (2a)

subject to y[k] = g(x[k]) = ygen
[k] − y

load
[k] , (2b)

xmin ≤ x[k] ≤ xmax, (2c)
ygen

[k] ∈ Y
gen, (2d)

where f : R2N×R2N×R2N → R is the objective function to be
minimized; xmin and xmax denote, respectively, minimum and
maximum limits of voltage phase-angles and magnitudes; and
Ygen represents the (typically convex) space of allowable DER
active- and reactive-power outputs [2]. In addition to minimum
and maximum active- and reactive-power limits, typically DER
outputs are constrained by the inverter apparent-power rating
(more details are provided in [3]). The optimization problem
in (2) is, in general, nonconvex and NP-hard (see, e.g., [28]).

C. Problem Statement

Repeatedly solving the optimization problem in (2) may
pose significant computational hurdles for the utility operator
in real time, especially with rapidly varying operating point.
Furthermore, accurate solutions of (2) rely on an offline
system model that represents the up-to-date network topology,
parameters, and operating point, which may not be available
due to insufficient telemetry from, e.g., all circuit breakers
and load variations. Thus, aimed at practical field deployment,
we use online measurements of nodal voltages and injections
obtained at a subset of buses to estimate linear sensitivities
and construct a linear voltage-to-power sensitivity model. We
then incorporate the estimated linear sensitivity model as a
proxy for the nonlinear power-balance constraint in a modified
optimal DER dispatch problem based on (2). The proposed
method accomplishes the objectives of (i) eliminating the re-
liance on an accurate offline model, (ii) removing requirement
of a fully observable distribution system, and (iii) reducing the
computational burden in solving the optimal DER setpoints.

III. ESTIMATION OF SENSITIVITY MODEL

In this section, we estimate the linear sensitivity model
relating measured bus voltages and power injections via the
RWPLS method without relying on an offline system model.

1In the remainder of the paper, quantities associated with power generation
are marked by superscript “gen”, and those associated with demand by
superscript “load”. Furthermore, measured or estimated quantities are marked
by ·̂ , and decision variables associated with measured buses by · .

A. Problem Formulation

Let E ⊆ N represent the set of E buses equipped with D-
PMUs, including the substation bus (set as bus 1 without loss
of generality), where measurements of voltage phasors and
power injections are collected. Assume that the substation-bus
voltage is fixed and known, and let E− = E \{1}. Also denote
by D the set of D buses that are connected to DERs, whose
setpoints can be updated with each optimal dispatch solution.
We assume that D ⊆ E−, i.e., measurements are available
at all buses with controllable DERs. Denote the measured
voltage phase-angle and magnitude at bus i ∈ E− and time
step k as θ̂i,[k] and V̂i,[k], respectively. Similarly, let P̂i,[k]

and Q̂i,[k] denote the measured active- and reactive-power
injections at bus i ∈ E and time step k. Accordingly, collect
these quantities in vectors x̂[k] = [{θ̂i,[k]}i∈E− , {V̂i,[k]}i∈E− ]T

and ŷ[k] = [{P̂i,[k]}i∈E , {Q̂i,[k]}i∈E ]T. We hypothesize that
the active- and reactive-power injections are linearly related
to bus-voltage phase-angles and magnitudes, as follows:

ŷ[k] = J[k]x̂[k] + c[k], (3)

where J[k] and c[k] form the sensitivity model relating mea-
sured voltages to power injections at the same buses. Then,
there exists H[k] ∈ R(2E−1)×2E that satisfies the relationship:

ŷT
[k] =

[
x̂T

[k] 1
]
H[k], (4)

which is equivalent to (3) with H[k] = [J[k], c[k]]
T. In order to

eliminate the reliance on a known network model, we propose
to estimate the entries of H[k] using only online measurements
obtained from buses in E . To this end, suppose that M samples
of bus-voltage angles and magnitudes, x̂[k−M+1], . . . , x̂[k], and
active- and reactive-power injections, ŷ[k−M+1], . . . , ŷ[k], are
available. Further suppose that the operating point remains
approximately constant over the M measurement samples (we
will remove this assumption later). Then, with M > 2E,
we stack up M instances of (4) to yield the following over-
determined system:

Y[k] = X[k]H[k], (5)

where X[k] ∈ RM×(2E−1) and Y[k] ∈ RM×2E are given by

X[k] =

x̂
T
[k−M+1] 1

...
...

x̂T
[k] 1

 , Y[k] =

ŷ
T
[k−M+1]

...
ŷT

[k]

 . (6)

Since (5) is over-determined, we can obtain the ordinary least-
squares (OLS) estimate for H[k] as

Ĥ[k] ≈ (XT
[k]X[k])

−1XT
[k]Y[k]. (7)

However, in practice, OLS estimation is challenged by the ob-
servation that voltage phase-angles and magnitudes at different
buses may be highly correlated because they evolve similarly
with variations in operating point [29], which results in an ill-
conditioned regressor matrix XT

[k]X[k] in (7). Furthermore, in
order to capture changing operating conditions, it is desirable
to update Ĥ[k] recursively while reducing computational bur-
den. Also advantageous is to place greater emphasis on more
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recent measurements than earlier ones that may become out of
date over time. In light of these circumstances, we propose to
use the RWPLS algorithm to compute Ĥ[k], as it offers several
benefits over OLS estimation.

B. RWPLS-based Estimation

The potentially high collinearity in X[k] makes matrix
inversion in (7) numerically challenging. A suitable solution
approach in such a setting is the partial least-squares (PLS)
method. The central idea in PLS is to project so-called latent
features or key components in X[k] and Y[k] onto lower-
dimensional latent matrices, which best model the relationship
in (5). Then the least-squares regression is performed on the
latent matrices. Particularly, given matrices constructed from
online measurements X[k] and Y[k], the PLS algorithm returns

{X[k], Y[k]}
PLS−−→ {Γ[k], G[k], L[k]}, (8)

where G[k] and L[k] are lower-dimensional loading matrices
corresponding to X[k] and Y[k], respectively, and Γ[k] is a
diagonal matrix with regression coefficients from the PLS
decomposition. Then, the PLS estimate is given by

Ĥ[k] = (G[k]G
T
[k])
−1G[k]Γ[k]L

T
[k]. (9)

The PLS method is summarized in Appendix A, and more
details can be found in [30].

Now, suppose that at time step k + 1, a new set of
measurements, x̂[k+1] and ŷ[k+1], becomes available, so that

X[k+1] =

[
X[k]

x̂T
[k+1] 1

]
, Y[k+1] =

[
Y[k]

ŷT
[k+1]

]
. (10)

Then, following (8), the PLS method yields{
X[k+1], Y[k+1]

} PLS−−→{Γ[k+1], G[k+1], L[k+1]}. (11)

In other words, the PLS method solves the full regression
problem by decomposing X[k+1] and Y[k+1] at the next
time step k + 1, but these repeated decompositions may be
computationally burdensome in online implementation. A less
computationally expensive, and indeed equivalent, alternative
is to recursively update the estimated sensitivities by perform-
ing the PLS algorithm in (11) with (see, e.g., [30, Th. 1])

X[k+1] =

[
GT

[k]

x̂T
[k+1] 1

]
, Y[k+1] =

[
Γ[k]L

T
[k]

ŷT
[k+1]

]
, (12)

leading to a lower-dimensional PLS decomposition problem.
Furthermore, we can embed weight factors that prioritize
more recent measurements over earlier ones. Particularly, the
RWPLS method updates Ĥ[k] with the so-called forgetting
factor σ ∈ (0, 1] by making use of the procedure represented
by (11), except with [30]

X[k+1] =

[
σGT

[k]

x̂T
[k+1] 1

]
, Y[k+1] =

[
σΓ[k]L

T
[k]

ŷT
[k+1]

]
. (13)

In the above, if σ < 1 , then earlier measurements would not
contribute as much to the final estimate as more recent ones,
i.e., weights of earlier measurements decrease exponentially
as more data is acquired. This is especially useful for the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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DER
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Fig. 1. IEEE 33-bus test system with DERs at buses 6, 12, 18, 25, and 33;
measurements are collected at bus 1 and all DER buses. Switches SW1 and
SW2 are normally open, and switches SW3 and SW4 are normally closed.

case where the system experiences a change in operating
point during the time window in which measurements are
obtained. For online implementation, the initial estimate of
the sensitivity model Ĥ[k] can be obtained using the standard
PLS estimation (8)–(9) once a sufficient number of samples
has been acquired. Then at each subsequent time step when
a new set of measurements becomes available, the estimated
model can be updated via (11) in conjunction with (13).

Example 1 (Comparing OLS and PLS). We present the
numerical advantages of the PLS algorithm over OLS es-
timation via an example involving the IEEE 33-bus test
system (see, e.g., [31]). The single-line diagram of the test
system is shown in Fig. 1. We collect 25 sets of measure-
ments of bus-voltage phase-angles and magnitudes as well as
active- and reactive-power injections from D-PMUs installed
at buses in the set E = {1, 6, 12, 18, 25, 33}. Suppose that
the active- and reactive-power components of loads at buses
in E− = E \ {1} vary randomly around their nominal values
as Gaussian distributed random variables with zero mean and
0.1% standard deviation relative to the respective nominal load
values. We compare condition numbers of matrices that need
to be inverted to obtain OLS and PLS estimates in (7) and (9),
respectively. In OLS, the condition number of matrix XT

[k]X[k]

is 1.2245× 1015, indicating that it is nearly singular. In con-
trast, the condition number of matrix G[k]G

T
[k] is 6.5973, which

leads to a numerically meaningful inverse and consequently an
accurate linear sensitivity model relating measured voltages
and injections. �

IV. DER DISPATCH PROBLEM WITH ESTIMATED MODEL

Instead of relying on an accurate offline model to solve
the problem in (2), we leverage online measurements to
estimate linear sensitivities and construct the sensitivity-based
power-balance model in (3). In this section, we formulate an
optimal DER dispatch problem that incorporates the estimated
linear sensitivity model as a constraint and outline a tractable
solution approach using the ADMM.

A. Problem Formulation

Let x[k+1] = [{θi,[k+1]}i∈E− , {Vi,[k+1]}i∈E− ]T comprise
nodal voltage phase-angles and magnitudes at buses equipped
with D-PMUs and time step k + 1. Note that the substation
voltage is assumed to be fixed to its known reference value,
so it is not included as a variable. In our problem, we
determine optimal DER active- and reactive-power outputs
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ygen
[k+1] = [{P gen

i,[k+1]}i∈D, {Q
gen
i,[k+1]}i∈D]T and, in turn, net

injections y[k+1] = [{Pi,[k+1]}i∈E , {Qi,[k+1]}i∈E ]T while sat-
isfying operational constraints on x[k+1], y[k+1], and ygen

[k+1].
Note that y[k+1] includes the substation injections so that we
can achieve feeder-level active- and reactive-power regulation.
With the above notation in place, we propose to solve the
following optimization problem:

minimize
x[k+1],y[k+1],y

gen
[k+1]

f(x[k+1], y[k+1], y
gen
[k+1]), (14a)

subject to y[k+1] = J[k]x[k+1] + c[k], (14b)

y[k+1] = y[k] + C(ygen
[k+1] − y

gen
[k] ), (14c)

xmin ≤ x[k+1] ≤ xmax, (14d)

ygen
[k+1] ∈ Y

gen
, (14e)

where xmin and xmax represent, respectively, the minimum
and maximum limits of voltage phase-angles and magnitudes
at buses that are measured, and Ygen

represents the allowable
space of DER outputs. Under typical DER control schemes
(including, e.g., active-power control, reactive-power control,
and joint active- and reactive-power control), Ygen

is con-
vex [3]. Furthermore, in (14c), C ∈ R2E×2D is the matrix that
maps the DER bus indices to buses from which measurements
are obtained. Particularly, the entry in the ith row and jth
column of C is 1 if the jth element of ygen

[k+1] is measured as
the ith element of y[k+1], and it is 0 otherwise. The constraint
in (14c) results by recognizing that, at time steps k and k+ 1,
respectively,

y[k] = Cygen
[k] − y

load
[k] , (15)

y[k+1] = Cygen
[k+1] − y

load
[k+1]. (16)

Assuming that the loads at the measured buses do not change
significantly between time steps k and k + 1, (16) can be
expressed as

y[k+1] = Cygen
[k+1] − y

load
[k] . (17)

Suitably rearranging (15) and substituting the resultant into the
above, we get the constraint in (14c). The entries of J[k] and
c[k] may be computed from a model if one is at hand, or they
can be estimated from online measurements, as discussed in
Section III. In either case, the underlying assumption is that
J[k] and c[k] computed or estimated at time step k model the
relationship between y[k+1] and x[k+1] at time step k+1 with
sufficient accuracy.

In (14), we utilize a quadratic cost function that comprises a
weighted combination of (i) deviations of voltage phase-angles
and magnitudes from their reference values, (ii) deviations
of nodal active- and reactive-power injections from their
setpoints, and (iii) cost of DER active- and reactive-power
outputs. Thus, the cost function in (14) can be expressed as

f(x[k+1], y[k+1], y
gen
[k+1]) = (x[k+1] − x◦)TΨ(x[k+1] − x◦)

+ (y[k+1] − y◦)TΦ(y[k+1] − y◦)
+ (ygen

[k+1])
TΥygen

[k+1], (18)

where x◦ and y◦, respectively, denote the desired voltage
setpoints for DER buses and desired setpoints for power injec-
tions at measured buses. In (18), Ψ = diag(ψ1, . . . , ψ2E−2),

Φ = diag(ϕ1, . . . , ϕ2E), and Υ = diag(υ1, . . . , υ2D) are di-
agonal matrices with non-negative entries, i.e., ψi, ϕi, υi ≥ 0.
The cost function in (18) is general in the sense that weight
matrices Ψ, Φ, and Υ, respectively, enforce minimization in
the cost of voltage-phasor deviations, power-injection devia-
tions, and DER outputs.

With positive semidefinite weight matrices, (14) is a convex
quadratic optimization problem that can be solved in polyno-
mial time [32]. Particularly, by collecting decision variables
in χ[k+1] = [xT

[k+1], y
T
[k+1], (y

gen
[k+1])

T]T ∈ R4E+2D−2, the
problem in (14) can be rewritten in the standard form of a
convex quadratic program as follows:

minimize
χ[k+1]

1

2
χT

[k+1]Πχ[k+1] + πTχ[k+1] + κ, (19a)

subject to A[k]χ[k+1] = b[k], (19b)
χ[k+1] ∈ X . (19c)

Entries in and structures of Π, π, κ, A[k], b[k], and X are
detailed in Appendix B. Subsequently, we remove the constant
term κ from (19a) as it does not affect the solution of the
optimization problem.

B. ADMM-based Solution Approach

The problem in (19) can be solved using ADMM, which
is a tractable method as each subproblem in the ADMM
admits a closed-form solution in our setting. Also, the ADMM
converges in linear time in our problem setting [33]. To
begin, define an auxiliary variable ω[k+1] so that the equal-
ity constraint and the bound constraint in (19b) and (19c),
respectively, are associated with different variables. Then the
problem in (19) can be reformulated as follows:

minimize
χ[k+1], ω[k+1]

1

2
χT

[k+1]Πχ[k+1] + πTχ[k+1], (20a)

subject to A[k]χ[k+1] = b[k], (20b)
ω[k+1] ∈ X , (20c)
χ[k+1] = ω[k+1]. (20d)

In (20), the equality and inequality constraints involve different
variables, coupled by the constraint in (20d). The ADMM
alternates between solving an equality-constrained quadratic
program with decision variable χ[k+1] and a projection onto
bound constraints with decision variable ω[k+1]. The aug-
mented Lagrangian associated with (20) is given by [32]

Lρ(χ[k+1], ω[k+1], µ[k+1]) =
1

2
χT

[k+1]Πχ[k+1] + πTχ[k+1]

+
ρ[k]

2

∥∥χ[k+1]−ω[k+1]−µ[k+1]

∥∥2

2

−
ρ[k]

2

∥∥µ[k+1]

∥∥2

2
, (21)

where ρ[k] is a positive scalar and µ[k+1] is the scaled dual
variable for the coupling constraint in (20d). The value of the
ADMM parameter ρ[k] for optimal convergence is given by

ρ[k] =
√
λmin(ZT

[k]ΠZ[k])λmax(ZT
[k]ΠZ[k]), (22)

where λmin(·) and λmax(·), respectively, represent the min-
imum and the maximum eigenvalues of their arguments,
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and Z[k] an orthonormal basis for the null space of A[k] [32].
Interested readers are referred to [32] for further background
on ADMM and its convergence properties. Below, we briefly
summarize the iterative solution procedure used in numerical
case studies presented in Section V.

The ADMM uses a sequence of iterations indexed by ` to
search for the minimizer of (20), as follows:

χ`+1
[k+1] = arg minimize

χ[k+1]

Lρ(χ[k+1], ω
`
[k+1], µ

`
[k+1]),

subject to A[k]χ[k+1] = b[k], (23)

ω`+1
[k+1] = arg minimize

ω[k+1]

Lρ(χ`+1
[k+1], ω[k+1], µ

`
[k+1]),

subject to ω[k+1] ∈ X , (24)

µ`+1
[k+1] = µ`[k+1] + ω`+1

[k+1] − χ
`+1
[k+1], (25)

until ||χ`[k+1]−ω
`
[k+1]||2 < ε and ||ρ[k](ω

`
[k+1]−ω

`−1
[k+1])||2 < ε,

for some predefined tolerance ε > 0, along with initial
conditions χ0

[k+1] = 0, ω0
[k+1] = 0, and µ0

[k+1] = 0. The
first step in each ADMM iteration is to update χ[k+1] by
solving (23), which has a closed-form solution (see, e.g., [32]).
Next, with the updated χ`+1

[k+1], ω
`+1
[k+1] is obtained by projecting

χ`+1
[k+1] − µ

`
[k+1] onto the feasible set X . Hence, the ω`+1

[k+1]-
update in (24) equivalently recovers the following:

ω`+1
[k+1] =arg minimize

ω[k+1]∈X

1

2

∥∥∥χ`+1
[k+1] − ω[k+1] − µ`[k+1]

∥∥∥2

2
, (26)

which also admits a closed-form solution for voltage bounds
and typical constraints on DER outputs [3]. As a specific
example, projections onto box constraints can be obtained as
follows:

ω`+1
[k+1] =min(χmax,max(χmin, χ

`+1
[k+1] − µ

`
[k+1])), (27)

where χmin and χmax comprise, respectively, the entry-wise
lower and upper bounds of χ[k+1]. The update in (27) can be
computed for each entry of ω`+1

[k+1] independently. We refer in-
terested readers to [3] for closed-form solutions to projections
onto other typical allowable spaces of DER outputs. Finally, in
each iteration, µ`+1

[k+1] is obtained via (25) with updated values
of χ`+1

[k+1] and ω`+1
[k+1]. The ADMM iterations continue until the

stopping criteria are satisfied with optimizers given by χ?[k+1],
ω?[k+1], and µ?[k+1], from which optimal DER dispatch ygen?

[k+1]

(i.e., P gen?
i,[k+1] and Qgen?

i,[k+1], i ∈ D) can be extracted.

V. CASE STUDIES

In this section, we demonstrate the effectiveness of the
measurement-based optimal DER dispatch framework pro-
posed in Sections III–IV via numerical case studies involving
the IEEE 33-bus test system introduced in Example 1 (see
Fig. 1 for its one-line diagram), in which the power base is
set to 10 MVA. Through the case studies, we show that the pro-
posed measurement-based optimal DER dispatch (i) adapts to
changes in topology and operating point, (ii) closely matches
results obtained from model-based optimization approach with
accurate system model, and (iii) outperforms model-based
approach with outdated system model. We further evaluate
the impact of DER dynamics, dispatch delays, and RWPLS

parameters on the performance of the proposed method via
simulations. In addition, we illustrate the flexibility of the
proposed framework by considering typical constraints on
DER outputs. Finally, we report execution times involved
with the model estimation and optimal dispatch stages of the
proposed framework.

A. Simulation Setup

Assume that DERs are connected to D = 5 buses in
the set D = {6, 12, 18, 25, 33}, as annotated in Fig. 1.
Their active- and reactive-power outputs are, respectively,
constrained within P gen

i ∈ [−0.25, 0.25] p.u. and Qgen
i ∈

[−0.25, 0.25] p.u. For all other buses j ∈ N \ D, P gen
j =

Qgen
j = 0. Although our simulations (for now) focus on box

constraints for the DER active- and reactive-power outputs,
the problem formulation and the ADMM solution method
outlined in Section IV can, in general, accommodate con-
straints delineated by typical DER operational limits (as we
will demonstrate in Section V-E). Assume that voltage phasors
and active- and reactive-power injections at E = 6 buses
in E = D ∪ {1} are sampled at 1-second intervals. With each
new set of measurements, the sensitivity model is updated via
RWPLS by performing PLS with (13). Optimal dispatch is
solved at 1-second intervals when DERs are active. In the
proposed measurement-based method, the optimal dispatch is
obtained via the ADMM solution to (20) immediately after an
updated sensitivity model is estimated.

We dispatch DER active- and reactive-power setpoints to si-
multaneously (i) minimize voltage-magnitude deviations from
reference levels (1 p.u. in our case studies), (ii) regulate the
active-power injections at the substation bus 1 and at bus
33, and (iii) minimize cost of DER active- and reactive-
power outputs. To realize the above objectives, we set the
diagonal entries in weight matrix Ψ as ψi = 0 for i =
1, . . . , D (corresponding to voltage phase-angles) and ψi = 10
for i = D+1, . . . , 2D (corresponding to voltage magnitudes).
Furthermore, we set appropriate entries in x◦ to reference
voltage magnitude 1 p.u., i.e., x◦ = [0T

D, 1
T
D]T, where 0D and

1D denote the length-D vectors of all 0s and 1s, respectively.
Diagonal entries in weight matrix Υ corresponding to costs of
DER outputs are set to various values between 0.04 and 0.1 to
reflect potentially different costs of distinct DER technologies.
Finally, to demonstrate the ability for the proposed method to
regulate the net power injection at a measured bus, the first en-
try (corresponding to bus 1) in y◦ is set to the substation active-
power reference of 0.3 p.u. and the Eth entry (corresponding
to bus 33) is set to the active-power reference of 0.1 p.u.;
accordingly, in Φ, ϕ1 and ϕE are set to 10 while ϕi = 0
for i = 2, . . . , E − 1, E + 1, . . . 2E. The parameter values
for our simulations are chosen in a fairly arbitrary manner,
and the proposed optimal DER dispatch method can easily
accommodate a different cost function of the form in (18).

B. Adaptability to Topology and Operating-point Changes

Suppose that the system initially operates without DER con-
tribution, and the DERs are activated at time tstart = 5 s (time
step kstart = 5). Subsequently, at time t∆ = 10 s (time step
k∆ = 10), the system topology is reconfigured by closing
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Fig. 2. Time-domain simulation via proposed measurement-based optimal
DER dispatch. DERs are activated at time tstart = 5 s and the network
topology and operating point are changed at time t∆ = 10 s. Top pane: bus
voltage magnitudes Vi at measured buses; Middle pane: bus active-power
injections Pi at measured buses; Bottom pane: substation reactive-power
injection Q1 and DER reactive-power outputs Qgen

i at controllable buses.

switches SW1 and SW2 and opening switches SW3 and SW4,
and simultaneously, active- and reactive-power loads at all
buses in the system grow by 25%. Simulations run until time
tend = 16 s (time step kend = 16). The RWPLS forgetting
factor is set to σ = 0.6.

1) Simulation Results: Time evolution of bus voltage mag-
nitudes, as well as bus active-power injections and DER
reactive-power outputs resulting from simulating the scenario
described above with the proposed measurement-based DER
dispatch method are plotted in Fig. 2. Indeed, once DERs
are activated at time tstart = 5 s, we observe that the
proposed measurement-based dispatch effectively achieves the
weighted objectives of minimizing voltage-magnitude devia-
tions from 1 p.u., and regulating the active-power injections
at the substation bus 1 and at bus 33 to 0.3 p.u. and 0.1 p.u.,
respectively. Upon activation of DERs, the substation reactive-
power injection decreases sharply since DERs collectively
provide voltage support by injecting reactive power, as shown
in the bottom pane of Fig. 2. Also, after network-topology
and operating-point changes at time t∆ = 10 s, the proposed
method updates the linear sensitivity model and adjusts the
DER dispatch to achieve the same objectives. Our choices for
Υ, Φ, and Ψ as described earlier optimize for a weighted
objective. With different settings of Υ, Φ, and Ψ, other
objectives, such as voltage control only, can be easily realized.

2) Comparisons to Model-based DER Dispatch: We bench-
mark the measurement-based optimal dispatch results pre-
sented above against the one obtained from the model-based
problem in (2), which is solved with the MATPOWER Interior
Point Solver (MIPS) [34]. We record the voltage profiles and
bus active- and reactive-power injections, at tend = 16 s,

1 5 10 15 20 25 30 33

0.98

1

1.02

Fig. 3. Bus voltage magnitudes Vi at t = 16 s obtained via (i) model-based
method with accurate system model, (ii) model-based method with inaccurate
system model, and (iii) proposed measurement-based method. Voltage profile
resulting from the proposed measurement-based method matches that from
model-based benchmark with accurate system model, and it outperforms the
model-based approach when the system model is not updated.

TABLE I
COMPARISON OF RELATIVE ERRORS IN COST FUNCTION, VOLTAGE

MAGNITUDES, AND ACTIVE- AND REACTIVE-POWER DISPATCH AMONG
(I) MODEL-BASED DER DISPATCH WITH ACCURATE SYSTEM MODEL,

(II) MODEL-BASED DER DISPATCH WITH INACCURATE SYSTEM MODEL,
AND (III) PROPOSED MEASUREMENT-BASED DER DISPATCH.

Cost Cost Voltage- Active- Reactive-
function function magnitude power power

(p.u.) error (%) error (%) error (%) error (%)
Model-based (acc.) 0.0044 — — — —
Model-based (inacc.) 0.0668 1872.75 0.94 15.47 12.63
Meas-based 0.0047 6.17 0.17 3.22 7.34

resulting from optimal DER dispatch setpoints obtained via
(i) model-based approach assuming that the topology and
operating-point changes are accurately captured in the model,
(ii) model-based approach assuming that the model is not up-
dated after the system changes at t∆ = 10 s, and (iii) the pro-
posed measurement-based approach. Figure 3 plots bus voltage
magnitudes resulting from the three cases, and Table I summa-
rizes errors in cases (ii) and (iii) as compared to the benchmark
case (i). Results from the proposed method indeed match
very closely to those from model-based optimal dispatch with
accurate system model, with respect to the cost function value,
voltage magnitudes, as well as resulting active- and reactive-
power injections. Moreover, the measurement-based approach
outperforms the model-based one when the system model
is not updated to reflect the changes implemented at time
t∆ = 10 s. Although we consider topology and load changes in
this case study, the proposed framework is flexible in that the
optimal DER dispatch can easily adapt to other operating-point
changes resulting from conventional distribution-level control
mechanisms, including, e.g., switched capacitors and on-load
tap changing transformers for voltage regulation.

C. Effect of RWPLS Forgetting Factor

The performance of the measurement-based DER dispatch
method depends significantly on the value of the forgetting
factor σ in the RWPLS estimation. To see this, we compare
cost-function values obtained using (i) model-based dispatch
vs. (ii) measurement-based dispatch by evaluating their root-
mean-square-deviation (RMSD), given by

RMSD =

√√√√ 1

kend − k∆

kend∑
k=k∆+1

(fmodel
[k] − fmeas

[k] )2, (28)
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Fig. 4. Effect of forgetting factor in RWPLS algorithm on dispatch ac-
curacy. (a) Mean cost-function RMSDs among model-based dispatch and
measurement-based dispatch with different forgetting factors σ for 100
repeated simulations. (b) Histogram of RMSD values for the repeated simu-
lations, with best parameter choice (σ = 0.6).
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Fig. 5. Evaluation of cost function value over time for different DER time
constants τ with the measurement-based DER dispatch method, compared to
the model-based method with ideal DERs.

where k∆ = 10 is the time step when the network-topology
and operating-point changes occur, and kend = 16 is the
last time step of the simulation. We set the forgetting factor
ranging from 0.01 to 1, and for each, we conduct 100 repeated
simulations set up as described in Sections V-A and V-B with
random Gaussian-distributed load increases of (25 ± 1)% at
time step t∆ = 10 s and compute the average RMSD over
all 100 simulations. The average RMSD values for different
forgetting factors are plotted in Fig. 4a. We find that setting the
forgetting factor σ = 0.6 yields the lowest errors. Furthermore,
Fig. 4b shows a histogram representing the distribution of
RMSD values for the 100 repeated simulations with forgetting
factor σ = 0.6, with most scenarios centered around an RMSD
value of 6 × 10−4. Considering these observations, we set
σ = 0.6 for simulations presented in Section V-B.

D. Effect of DER Dynamics and Delays

In practice, DER outputs do not change immediately after
a new setpoint is dispatched. We adopt a first-order model
for the DERs, similar to [1]. Simulations are performed with
the setup described in Sections V-A and V-B along with
DER time constants of τ = 0.1, 0.5, 1 s. The evaluated cost
function at each time step are plotted in Fig. 5. We see that
the proposed method is robust against slow-responding DERs,
and the combined estimation/optimization routine converges
to the optimal value achieved by the model-based benchmark.

Furthermore, we evaluate the robustness of the proposed
method against delays between instants that measurements
are acquired and DER setpoints are actuated. In practice,
such delays may be attributed to communication, computation,

0.9

0.95

1

0 5 10 15 20 25

0

0.1

0.2

0.3

0.4

Fig. 6. Effect of delays between measurement acquisition and DER actuation.
DERs are activated at time tstart = 5 s and the network topology and
operating point are changed at time t∆ = 10 s. Top pane: evaluation of
cost function value over time for different DER dispatch delays ξ with
the measurement-based DER dispatch method, compared to the model-based
method without delay; Bottom pane: bus voltage magnitudes Vi at measured
buses in case DER actuation is delayed by ξ = 3 s.

and actuation. We adopt a similar simulation setup as in
Sections V-A and V-B, except the DER dispatch is artificially
delayed and simulations run until time tend = 25 s. We
evaluate the cost function value at each time step and plot
the resulting data points in the top pane of Fig. 6, where we
use the model-based optimal DER dispatch without delay as
a benchmark and compare it to the proposed measurement-
based dispatch with delay of ξ = 1, 2, 3 s. We observe that the
combined estimation and optimization routine converges to the
optimal value achieved by the model-based benchmark, albeit
with a delay as expected. In the bottom pane of Fig. 6, we plot
time evolution of bus-voltage magnitudes for ξ = 3 s. We note
that the significant network reconfiguration and network-wide
load changes do not cause voltage constraint violations in the
simulation. Moreover, the proposed method converges to the
new optimal operating point within a reasonable amount of
time even in the presence of delays.

E. Consideration of Typical DER Constraints

Some DER technologies may have different operational
constraints than the independent active- and reactive-power
limits considered in the case studies thus far. In this case
study, we consider the DER dispatch resulting from scenarios
in which each DER i has (i) independent active- and reactive-
power limits, constrained within P gen

i ∈ [−0.1, 0.1] p.u. and
Qgen
i ∈ [−0.1, 0.1] p.u., respectively, and (ii) joint active-

and reactive-power limits, constrained by the apparent-power
limit, where

√
(P gen
i )2 + (Qgen

i )2 ≤ 0.1 p.u. The projection
step (26) in ADMM yields closed-form solutions under both
of these DER output limits. Specifically, we utilize (27) to
compute the projection onto box constraints, and we leverage a
closed-form solution similar to the one in [3] for the projection
onto the allowable region delineated by apparent-power limits.
As shown in Fig. 7a, the DER outputs are indeed within
the independent active- and reactive-power limits, whereas in
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Fig. 7. DER active- and reactive-power outputs obtained via the measurement-
based method when each DER is constrained by (a) independent active- and
reactive-power limits, (b) its maximum apparent power.

TABLE II
COMPUTATION TIMES FOR (I) SENSITIVITY MODEL ESTIMATION (test),

(II) OPTIMAL DER DISPATCH VIA ADMM (tADMM), AND (III) OPTIMAL
DER DISPATCH VIA MATLAB’S STANDARD SOLVER QUADPROG (tIP)

# DERs 5 10 20 40 60 80 100
test(s) 0.0015 0.0033 0.0086 0.0389 0.2130 0.3643 0.5570
tADMM(s) 0.0177 0.0263 0.0904 0.2025 0.4016 0.5954 1.0548
tIP(s) 0.0182 0.0252 0.0457 0.0609 0.1231 0.3711 1.2234

Fig. 7b, DER outputs are constrained by the apparent-power
limit of 0.1 p.u. We note that the more constrained scenario of
having apparent-power limits increases the resulting steady-
state cost function value from 0.0052 to 0.0095. This simu-
lation scenario illustrates that the proposed method using the
ADMM can accommodate typical constraints on DER outputs.

F. Execution Times

To assess the computational burden and the scalability
of the proposed measurement-based framework, we report
execution times involving the 874-bus test system from [35],
in which up to 100 DERs are installed at random locations. In
Table II, we report the execution times required to (i) update
the linear sensitivity model (test), and (ii) solve the convex
quadratic DER dispatch problem using ADMM (tADMM), and
(iii) solve the same problem using the interior-point solver
from MATLAB quadprog (tIP). All algorithms are run using
MATLAB R2018b on a personal computer with Intel Core
i5-8250U processor at 1.60 GHz, and 8 GB RAM. We find
that the method can be executed in near real time for up to
100 DERs with the relatively limited computational resources
available on a personal computer.

VI. CONCLUDING REMARKS

In this paper, we present a measurement-based framework
to dispatch optimal DER active- and reactive-power outputs
without relying on a system model. Optimal DER setpoints
are obtained by embedding a recursively estimated sensitivity
model as an equality constraint in a convex quadratic optimiza-
tion problem, which is solved via ADMM. As demonstrated by
numerical case studies, the main advantages of the proposed
method are (i) combined minimization of bus voltage and in-
jection deviations from prescribed references, as well as cost of
DER outputs, (ii) accuracy of resulting DER setpoints without

relying on a system model as compared to a model-based
benchmark, (iii) adaptability to operating-point and network-
topology changes, and (iv) modest computational burden.
Compelling directions for future work include extension to
unbalanced three-phase networks, distributed implementation,
and consideration of DER and load uncertainty. Furthermore,
incorporation of the estimated linear sensitivity model into
other model-based optimal DER dispatch problems (e.g., [3],
[19], [20]) is fertile grounds for future research.

APPENDIX

A. Deriving Partial Least-squares Estimate in (9)

The decompositions of X[k] and Y[k] are performed in a
way to satisfy an outer model given by [30]

X[k] = T[k]G
T
[k], (29)

Y[k] = U[k]L
T
[k], (30)

where T[k] = [t[k],1, . . . , t[k],r] (an orthonormal matrix) and
U[k] = [u[k],1, . . . , u[k],r] are latent matrices, each with r ≤
2E − 1 score vectors t[k],i and u[k],i, i = 1, . . . , r, extracted
from matrices X[k] and Y[k], G[k] = [g[k],1, . . . , g[k],r] and
L[k] = [l[k],1, . . . , l[k],r] are corresponding loading matrices,
with r loading vectors g[k],i and l[k],i, i = 1, . . . , r. Using the
nonlinear iterative partial least squares (NIPALS) algorithm,
T[k], U[k], G[k], and L[k] are populated in column-wise fash-
ion [30].

The NIPALS algorithm maximizes the covariance between
the score vectors u[k],i and t[k],i, for all i = 1, . . . , r, thereby
forming the following inner model:

U[k] = T[k]Γ[k], (31)

where Γ[k] = diag(γ[k],1, . . . , γ[k],r), with

γ[k],i =
uT

[k],it[k],i

tT[k],it[k],i

. (32)

The PLS regression is then performed on the over-determined
inner model (31) instead of the original data set in X[k] and
Y[k]. Specifically, by substituting (31) into (30), we get

Y[k] = T[k]Γ[k]L
T
[k]. (33)

Then, substitution of (29) and (33) into (7) while recognizing
that T[k] is orthonormal yields (9), as desired. Interested
readers may refer to [30] for background on the PLS method
and details of the NIPALS algorithm.

B. Reformulating (14) as Standard Quadratic Program

In (19a), Π ∈ R(4E+2D−2)×(4E+2D−2), π ∈ R4E+2D−2,
and κ ∈ R are obtained by suitable algebraic manipulations
of (18); and they are given by

Π = 2

Ψ 0 0
0 Φ 0
0 0 Υ

 , π = −2

Ψx◦

Φy◦

0

 , (34)

κ = (x◦)TΨx◦ + (y◦)TΦy◦, (35)
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where 0s are matrices or vectors of all zeros with appropriate
dimension. The linear constraints in (19b) is constructed by
combining (14b) and (14c) with

A[k] =

[
−J[k] I2E 0

0 I2E −C

]
, b[k] =

[
c[k]

y[k] − Cy
gen
[k]

]
, (36)

where I2E denotes the 2E × 2E identity matrix and 0s
represent matrices of all zeros with appropriate dimension. Fi-
nally, X represents the composition of set constraints in (14d)
and (14e).
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