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Abstract—This paper proposes an approach to obtain dynamic
versions of static distribution factors, such as power-transfer,
line-outage, and outage-transfer distribution factors. With the
proposed dynamic distribution factors (DDFs), one can predict
line flows over the post-contingency transient period with the
same computational effort as obtaining static distribution factors.
Our development centres on deriving closed-form expressions
that approximate generator outputs through the post-contingency
transient period with a reduced-order aggregate dynamical model
to recover dynamic generator participation factors. The full
suite of DDFs can then be derived by combining these dynamic
generator participation factors with injection shift factors, i.e.,
static linear sensitivities of line active-power flows with respect to
nodal active-power injections, computed at the pre-disturbance
steady-state operating point. We illustrate the accuracy and
computational benefits of the proposed DDFs via numerical case
studies involving the New England test system.

Index Terms—Contingency analysis, distribution factors, in-
jection shift factors, line-outage distribution factors, outage-
transfer distribution factors, participation factors, power-transfer
distribution factors, reduced-order models.

I. INTRODUCTION

THIS paper introduces the notion of and derives ana-
lytical closed-form expressions for dynamic distribution

factors (DDFs): time-domain functions that approximate tran-
sients in post-contingency transmission-line flows synthesized
with information collected from a pre-disturbance operating
point and a reduced-order aggregate model for generator
dynamics. The proposed DDFs acknowledge transients in
injections (loads or renewable generation modelled as negative
loads), and they improve upon conventional static distribution
factors (DFs) that are applicable only at a single point in time.
Furthermore, DDFs offer line-flow predictions with accuracy
on par with running repeated time-domain simulations without
the corresponding computational burden. In this work, without
loss of generality, we derive dynamic counterparts of three
commonly used static DFs [1]:
• Power-transfer distribution factor (PTDF), which approx-

imates the post-disturbance steady-state sensitivity of the
active-power flow in a line due to an active-power transfer
between two buses.

• Line-outage distribution factor (LODF), which approxi-
mates the active-power flow change in a line due to the
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Fig. 1: Illustrating the dynamic PTDF. For the system in (a), consider time-
varying injections at bus 3, P3(t), and at bus 4, P4(t), shown in the bottom
pane of (b). This paper proposes a strategy with which one can predict
line flows over the entire transient period while acknowledging load and
synchronous-generator dynamics. As an example, the actual and predicted
flows on line (2, 4), P(2,4)(t), are shown in the top pane of (b). Previous
methods only acknowledge steady-state load changes (i.e., ∆Pss) and yield
estimates for a snapshot pertaining to inertial or governor response (dashed
horizontal traces in top pane of (b)).

outage of another line as a percentage of its pre-outage
active-power flow.

• Outage-transfer distribution factor (OTDF), which ap-
proximates the sensitivity of the active-power flow in a
line with respect to an active-power transfer between two
buses after the outage of another line.

(See Fig. 1 for an illustration of how a dynamic PTDF allows
one to capture transient line flows over a longer time horizon
compared to its static counterpart.)

Static DFs are integral to a variety of power-system opera-
tions and control tasks such as contingency analysis, genera-
tion re-dispatch, and dynamic security assessment [1], and are
therefore commonplace in commercial software packages such
as Powerworld [2]. While static DFs provide fast contingency
screening at the post-disturbance steady state, they only reveal
point-in-time estimates and do not offer any insights on
whether or not transmission-line flow limits would be violated
during the transient period [1]. Performing repeated simula-
tions with a detailed system dynamical model is the obvious
alternative to gain more insight, but this is computationally
expensive and therefore not suitable for online applications [3].
While we do not advocate or envision DDFs as a replacement
for time-domain simulations, they may indeed prove useful
in fast contingency screening. Furthermore, DDFs can replace
their static counterparts in applications such as continuous-
time economic dispatch (ED) for pricing of electricity and
security-constrained ED. Approaches to approximate line-flow
dynamics without excessive computational burden will be
particularly relevant in operations and control tasks for next-
generation power networks given that the retirement of fossil-
fuel generation and integration of low-inertia electronics-
interfaced generation will likely result in larger, faster, and
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Fig. 2: Approach to obtain proposed DDFs. Conventional static DFs are
obtained from generator participation factors that are valid for a single
snapshot in time. In this work, we derive dynamic participation factors, fPg (t),
that extend the notion of static DFs through the post-contingency transient.

more frequent transient excursions away from steady-state
operating points [4], [5].

We place subsequent discussions within the context of
the flowchart in Fig. 2. There are two ingredients to obtain
any (static or dynamic) DF: i) injection shift factors (ISFs)
and ii) generator participation factors. The ISFs quantify the
sensitivity of line flows with respect to variations in the active-
power injection (generation or load) at a particular bus [1]. (In
Fig. 2, the ISF capturing the sensitivity of change in injection
at bus k on the flow in line (m,n) is denoted by Γk(m,n).)
These are computed at the pre-disturbance steady-state op-
erating point with a power-flow solution. In addition to the
sensitivities, predicting line flows requires an estimate of how
synchronous generators respond in restoring the system-wide
generation-load balance. This is accomplished with so-called
generator participation factors. Typically, participation factors
are obtained by approximating generator outputs over time
scales corresponding to inertial response, governor response,
or economic dispatch [6]. Thus, they are valid for only a
single snapshot in time. Unsurprisingly, DFs derived with such
participation factors inherit their static nature [1], [7]–[9].

In this work, with a reduced-order model to describe system
dynamics, we obtain dynamic generator participation factors
which are valid over the entire post-disturbance transient
period. (In Fig. 2, fPg(t) denotes the dynamic participation
factor for generator g.) Elementary algebraic operations on
ISFs and dynamic generator participation factors then yield
so-called dynamic injection shift factors (DISFs): time-domain
functions that map a generation-load imbalance to the active-
power flow on a line in the network. (In Fig. 2, the DISF
capturing the sensitivity of change in injection at bus k on the
flow in line (m,n) is denoted by γk(m,n)(t).) Finally, algebraic
manipulations and combinations of DISFs yield a suite of
DDFs such as PTDFs, LODFs, and OTDFs, all of which—
it must be emphasized—are valid over the transient period
capturing the evolution of post-disturbance dynamics to the
new steady-state operating point.

Central to the procedure discussed above in obtaining DDFs
are analytical closed-form expressions for dynamic generator
participation factors fPg(t). Essentially, these correspond to
generator power outputs in response to net-load changes,
but it is not possible to derive them from exact (e.g., two-
axis) machine models. Instead, we leverage a second-order
system-frequency-response model that maps load changes to

aggregate-frequency dynamics in closed form [10]–[13]. Then,
using the aggregate frequency as a proxy for the individual-
machine frequencies, we derive closed-form expressions that
approximate individual generator power outputs. This enables
us to obtain dynamic participation factors for any load-
variation signals that are locally integrable. Without loss of
generality, we focus on step and exponential-ramp changes for
illustrative purposes. In fact, using the dynamic participation
factors we derive for step changes in load, we recover static
inertial-based DFs with fPg(0) and governor-based DFs with
limt→∞ fPg(t). This is a notable contribution since static
inertial- and governor-based DFs have been utilized with
limited analytical justification in the literature [6].

This paper builds on our preliminary work in [14] and pro-
vides several extensions. First, while [14] focused exclusively
on DISFs, here, we formulate and derive dynamic counterparts
to well-known static DFs, including PTDFs, LODFs, and
OTDFs. Also, while we previously only modelled step load-
change disturbances, we extend the theoretical development
to incorporate any general load-change signal that is lo-
cally integrable. Finally, we showcase the scalability of the
proposed approach via numerical case studies involving the
New England test system through an exhaustive simulation
of 342 bilateral transactions. The proposed approach yields
less than 1% average prediction error for 15732 simulated line
flows (over the post-contingency transient period). The time-
domain simulations required 9 hours to execute on a personal
computer. On the other hand, the only computationally inten-
sive part of our approach is the one-time task of computing
the pre-disturbance power-flow solution to obtain the injection
shift factors.

The remainder of this paper is organized as follows. In Sec-
tion II, we define the proposed DISFs and discuss how DDFs
are derived from these. Section III outlines the derivation of
the dynamic generator participation factors. In Section IV, we
focus on the derivation of the DDFs for the particular cases of
step and exponential-ramp changes in load. We then demon-
strate the utility of the proposed DDFs via numerical case
studies involving the New England test system in Section V.
Finally, concluding remarks and directions for future work are
provided in Section VI.

II. PRELIMINARIES AND DEFINITIONS

In this section, we formally define the DISFs and introduce
a suite of DDFs that can be obtained with them. (See Fig. 2.)

A. Dynamic Injection Shift Factors

Consider an AC network with nodes collected in the set N ,
and let G ⊂ N and L ⊂ N denote the sets of generator and
load buses, respectively. Transmission lines are collected in
the set of edges E := {(m,n)} ⊆ N × N . We adopt the
classical swing model augmented with a governor for genera-
tors, and loads are modelled as constant-power negative nodal
injections. (A positive injection can be used to model, e.g.,
renewable generation.)



3

Denote the active-power load at bus ` ∈ L by P`(t), and
suppose that it changes as follows for time t ≥ 0:

∆P`(t) = fP`
(t)∆P`,ss, (1)

where ∆P`,ss denotes the new steady-state value of the
load, i.e., limt→∞∆P`(t) = ∆P`,ss, which implies that
limt→∞ fP`

(t) = 1. We assume that fP`
(t) is a continuously

differentiable function that is known in analytical closed form.
The formulation in (1) captures dynamics related to loads,
which are dynamical systems in their own right [15], and
renewable generation, which frequently exhibits ramp-like
behaviour [16].

The total change in the active-power flow on line (m,n) ∈ E
can be expressed as

∆P(m,n)(t) = γ`(m,n)(t)∆P`,ss, (2)

where γ`(m,n)(t) denotes the DISF of line (m,n) with respect
to bus `, and it is given by

γ`(m,n)(t) :=
∑
g∈G

Γg
(m,n)fPg(t)− Γ`(m,n)fP`

(t). (3)

See Appendix A for a derivation of (3). Above, {fPg(t)}g∈G
are dynamic generator participation factors that capture how
generators respond to the load change at bus `. Particularly,
with ∆Pg(t) denoting the change in the active-power output
of generator g in response to the load change ∆P`(t) given
in (1), we define

fPg(t) :=
∆Pg(t)

∆P`,ss
. (4)

Furthermore, in (3), Γk(m,n) is the linear sensitivity of the
active-power flow in line (m,n) with respect to the active-
power injection at bus k computed at the pre-disturbance
steady state.

While {Γk(m,n)}k∈N ,(m,n)∈E can be obtained from suit-
able manipulations of the power-flow equations around the
pre-disturbance operating point, it is not straightforward to
quantify the change in generator outputs, ∆Pg(t), in an-
alytical closed form. Thus, it has been common practice
to obtain fPg(t) based on insights gleaned from economic
dispatch, governor control, or synchronous-generator inertia
characteristics [17]. For example, inertia-based participation
factors are given by

fPg =
Mg∑
k∈GMk

, (5)

with Mg denoting the inertia constant for generator g; and
governor-based participation factors are given by

fPg =
R−1

g∑
k∈G R

−1
k

, (6)

with Rg denoting the droop constant for generator g [6].
Note that these static participation factors are only valid at a
particular snapshot in time. Furthermore, while governor-based
participation factors can be recovered through a steady-state
analysis of the generator dynamics, inertia-based participation
factors have been proposed in the literature with limited
analytical justification [6].

B. Common Dynamic Distribution Factors

With the DISFs defined above, we can obtain closed-form
expressions for a suite of DDFs. We refer readers to [1], [18]
for definitions of the corresponding static DFs.

1) Power-transfer Distribution Factor: Consider the sce-
nario in which a time-varying injection at bus i,

Pi(t) = Pi(0) + ∆Pi(t) = Pi(0) + fPi(t)∆Pi,ss,

is matched by a time-varying withdrawal at bus j,

Pj(t) = Pj(0) + ∆Pj(t) = Pj(0) + fPj
(t)∆Pj,ss,

with the steady-state constraint ∆Pi,ss = −∆Pj,ss = ∆Pss.
The dynamic PTDF approximates the post-disturbance sensi-
tivity of the active-power flow in line (m,n) with respect to
an active-power transfer of ∆Pss from bus i to j. Particularly,
the change in line (m,n) flow is approximated as

∆P(m,n)(t) = Φij(m,n)(t)∆Pss, (7)

where the dynamic PTDF, denoted by Φij(m,n)(t), is given by

Φij(m,n)(t) := γi(m,n)(t)− γj(m,n)(t). (8)

In the above,

γi(m,n)(t) =
∑
g∈G

Γg
(m,n)fPg(t)− Γi(m,n)fPi

(t),

γj(m,n)(t) =
∑
g∈G

Γg
(m,n)fPg(t)− Γj(m,n)fPj (t),

are the DISFs of line (m,n) with respect to injections at
buses i and j, respectively. Note that the dynamic participation
factors in expressions for γi(m,n)(t) and γj(m,n)(t) are not the
same, but we persist with this slight abuse of notation.

2) Line-outage Distribution Factor: Consider the scenario
in which line (k, l) experiences an outage. The dynamic LODF
approximates the active-power flow change in line (m,n) due
to the outage of line (k, l) as a percentage of pre-outage
active-power flow through line (k, l). Particularly, the change
in line (m,n) flow can be approximated as

∆P(m,n)(t) = Ξ
(k,l)
(m,n)(t)P(k,l)(0), (9)

where the dynamic LODF, denoted by Ξ
(k,l)
(m,n)(t), is given by

Ξ
(k,l)
(m,n)(t) :=

Φkl(m,n)(t)

1− Φkl(k,l)(t)
=

γk(m,n)(t)− γl(m,n)(t)

1− γk(k,l)(t) + γl(k,l)(t)
. (10)

3) Outage-transfer Distribution Factor: Consider the sce-
nario in which after the outage of line (k, l), a time-varying
injection at bus i of Pi(t) = Pi(0) + ∆Pi(t) is matched by a
time-varying withdrawal at bus j of Pj(t) = Pj(0) + ∆Pj(t)
where ∆Pi,ss = −∆Pj,ss = ∆Pss. The dynamic OTDF
approximates the post-disturbance sensitivity of the active-
power flow in line (m,n) with respect to an active-power
transfer from bus i to bus j after the outage of line (k, l).
In particular, the flow on line (m,n) can be expressed as

∆P(m,n)(t) = Ψij
(m,n),(k,l)(t)∆Pss, (11)
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where the dynamic OTDF, Ψij
(m,n),(k,l)(t), is given by

Ψij
(m,n),(k,l)(t) := Φij(m,n)(t) + Ξ

(k,l)
(m,n)(t)Φ

ij
(k,l)(t), (12)

with Ξ
(k,l)
(m,n)(t) denoting the dynamic LODF of line (m,n)

with respect to an outage in line (k, l), and Φij(k,l)(t) denoting
the dynamic PTDF of line (k, l) with respect to a power
transfer from bus i to j.

C. Problem Statement

A suite of DDFs can be derived from the basic DISFs as
defined in (3). Since DISFs are independent of the steady-state
load change ∆P`,ss, given a particular type of imbalance (e.g.,
step change, ramp change), our formulation yields line-flow
estimates without any additional analytical or computational
burden for different magnitudes of ∆P`,ss. The enabling, and
indeed novel, components in (3) are the dynamic participation
factors for the generators, {fPg(t)}g∈G . Motivated by the
single-snapshot participation factors in (5)–(6), we seek time-
varying functions that delineate how generation-load mismatch
is allocated among generators over the post-contingency tran-
sient period.

III. DYNAMIC GENERATOR PARTICIPATION FACTORS

This section introduces the synchronous-generator model
and a corresponding second-order model with aggregate fre-
quency and mechanical power inputs serving as states. With
these models, we outline how generator power outputs can be
approximated to yield dynamic generator participation factors.

A. Synchronous-generator Model

For each generator g ∈ G, let ωg(t), Pm
g (t), and Pg(t)

denote the electrical angular frequency, turbine mechanical
power, and electrical-power output, respectively. Assume each
generator initially operates at the steady-state equilibrium
point with ωg(0) = ωs = 2π60 rad/s, the synchronous
frequency. Defining ∆ωg := ωg − ωs, pertinent dynamics of
generator g ∈ G can be described by [19]

Mg∆ω̇g(t) = Pm
g (t)−Dg∆ωg(t)− Pg(t), (13)

τgṖ
m
g (t) = P r

g − Pm
g (t)−R−1

g ∆ωg(t), (14)

where Mg and Dg denote, respectively, its inertia and damping
constants, and τg, P r

g , and Rg denote its governor time con-
stant, reference power input, and droop constant, respectively.
The generator dynamical model in (13)–(14) does not include
dynamical models for the generator terminal voltage, auto-
matic voltage regulators, or power-system stabilizers. Given
the time-scales of interest, we find that the model in (13)–
(14) is sufficiently accurate to capture the impact generator-
frequency dynamics on line-flow transients. Furthermore, we
do not consider nonlinearities, e.g., saturation limits. This
is because we ultimately seek closed-form expressions for
generator dynamic participation factors, a task that would be
rendered intractable with the inclusion of nonlinearities.

B. Aggregate System Dynamical Model

Assume that the electrical distances between geographically
different parts of the network are negligible, so that all
generator frequencies follow the same transient behaviour [20],
i.e., ∆ωg = ∆ω in (13)–(14), ∀g ∈ G. Then, the dynamics of
each generator g can be expressed as

Mg∆ω̇(t) = Pm
g (t)−Dg∆ω(t)− Pg(t), (15)

τgṖ
m
g (t) = P r

g − Pm
g (t)−R−1

g ∆ω(t). (16)

If, further, the turbine time constants τg were equal for all
generators, i.e., τg = τ,∀g ∈ G, then one could sum (15)
and (16) over all g ∈ G, define an aggregate mechanical power
Pm =

∑
g∈G P

m
g , and get the following reduced second-order

system dynamical model:

Meff∆ω̇(t) = Pm(t)−Deff∆ω(t)− Pload(t), (17)

τṖm(t) = P r − Pm(t)−R−1
eff ∆ω(t), (18)

where, the effective inertia constant, Meff , the effective damp-
ing constant Deff , the effective droop constant, R−1

eff , the
aggregate reference power, P r, and the total electrical load,
Pload, are given by:

Meff :=
∑
g∈G

Mg, Deff :=
∑
g∈G

Dg, R−1
eff :=

∑
g∈G

R−1
g ,

P r :=
∑
g∈G

P r
g , Pload :=

∑
g∈G

Pg. (19)

In practice, while the turbine-governor time constants are (ob-
viously) not all equal, they are quite similar in value for
generators of the same type [21]. This has motivated several
lines of work seeking suitable values of some common value
of τ to yield the reduced-order model in (17)–(18). For
instance, the average of τg’s, for all g ∈ G, is utilized in [10],
[11]. More recently, the choice

τ =

∑
g∈G(R−2

g + 1)∑
g∈G(R−2

g + 1)τ−1
g

(20)

is shown to minimize the Frobenius norm (an upper bound
to the spectral norm) of the difference between pertinent
matrices corresponding to the full- and reduced-order state-
space models [12], [13].

C. Frequency-domain Analysis

The transfer function from load to aggregate frequency as
derived from the state-space model in (17)–(18) is given by

∆ω(s)

Pload(s)
= − k(s+ ξ)

s2 + 2ζωns+ ω2
n

, (21)

where parameters k, ξ, ωn, and ζ are, respectively,

k := M−1
eff , ξ := τ−1, (22)

ωn :=

√
R−1

eff +Deff

τMeff
, ζ :=

1

2

Meff + τDeff√
τMeff(R−1

eff +Deff)
.
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Suppose the load at bus ` ∈ L changes by ∆P`(t) =
fP`

(t)∆P`,ss, as suggested in (1). The total load in the system
can then be expressed as

Pload(t) = Pload(0) + ∆P`(t)

= Pload(0) + fP`
(t)∆P`,ss.

(23)

With this generic load function, application of inverse Laplace
transform of (21) yields the time-varying function f∆ω(t) in
analytical closed form so that one can express:

∆ω(t) = f∆ω(t)∆P`,ss. (24)

Differentiating (24), we get

∆ω̇(t) =
d

dt
f∆ω(t)∆P`,ss =: f∆ω̇(t)∆P`,ss, (25)

where, clearly, f∆ω̇(t) is also known in closed form.

D. Approximating Generator Outputs

We now shift focus to approximating the generator power
outputs using (13)–(14) to derive the dynamic generator par-
ticipation factors. First, approximating ∆ωg(t) ≈ ∆ω(t) and
further substituting ∆ω(t) = f∆ω(t)∆P`,ss in (14), we get

τgṖ
m
g (t) = P r

g − Pm
g (t)−R−1

g f∆ω(t)∆P`,ss. (26)

Notice that this is a first-order differential equation in Pm
g , with

a time-varying input f∆ω(t)∆P`,ss that is known in analytical
closed form. Therefore, we can obtain function fPm

g
(t) in

analytical closed form, such that

Pm
g (t) = Pm

g (0) + fPm
g

(t)∆P`,ss. (27)

Next, rearranging terms in (13) while persisting with the
approximation ∆ωg(t) ≈ ∆ω(t), we get

Pg(t) = Pm
g (t)−Dg∆ω(t)−Mg∆ω̇(t). (28)

Expressions for ∆ω(t), ∆ω̇(t), and Pm
g (t) in (24), (25), and

(27), respectively, can be substituted into (28) to yield:

Pg(t) = Pm
g (0) + fPm

g
(t)∆P`,ss

−Dgf∆ω(t)∆P`,ss −Mgf∆ω̇(t)∆P`,ss.
(29)

Finally, recognizing that Pm
g (0) = Pg(0) at the initial pre-

disturbance steady-state operating point, we can express (29)
as Pg(t) = Pg(0) + ∆Pg(t), where

∆Pg(t) = fPg(t)∆P`,ss, (30)

and the dynamic generator participation factor, fPg(t), is

fPg(t) := fPm
g

(t)−Dgf∆ω(t)−Mgf∆ω̇(t). (31)

A closer inspection of (31) reveals that fPm
g

(t) is derived using
individual-governor time constants τg and droop constants Rg,
while f∆ω(t) and f∆ω̇(t) are related to the reduced-order
model. Although the reduced-order model leverages an aggre-
gated governor with a systematically determined time constant
in (20), we preserve individual governor time constants and
droop constants in approximating the generator outputs.

The dynamic participation factors, fPg(t), can be computed
for all generators g ∈ G and then substituted into (3) to
yield closed-form expressions for DISFs. One can then obtain

dynamic PTDFs, LODFs, and OTDFs with (8), (10), and (12),
respectively. We derive dynamic generator participation factors
for two typical instantiations of the time-domain load-change
signal ∆P`(t) next.

IV. DYNAMIC GENERATOR PARTICIPATION FACTORS FOR
TYPICAL LOAD-CHANGE SIGNALS

In this section, we derive dynamic generator participation
factors for step and ramp changes in the load. Indeed, with
the approach outlined in Section III, one can consider count-
less different load changes. Our focus on step changes is
motivated by uncovering inertial- and governor-based partici-
pation factors through an asymptotic analysis. Furthermore,
step changes can be used to model generator outages, in
which case dynamic participation factors for the remaining
generators are derived for the post-contingency system. On
the other hand, ramp changes are of interest as they can
model fluctuations in renewable generation output [16]. More
general time-domain functions that capture the outputs of
solar-photovoltaic and wind-energy conversion systems could
be similarly incorporated into the analytical framework.

A. Step Load Disturbance

Consider that the load at bus ` undergoes a step change at
time t = 0 by ∆P`,ss. From (23), for time t > 0, one can
express the total system load, Pload(t), as

Pload(t) = Pload(0) + ∆P`(t) = Pload(0) + ∆P`,ss. (32)

We substitute Pload(s) = ∆P`,ss/s into (21), and follow the
development in Sections III-C–III-D assuming the system is
underdamped, i.e., 0 < ζ < 1, to get

f step
∆ω (t) =

−1

R−1
eff +Deff

(
1 +

ωn

ωd
e−ζωnt·(

ωn

ξ
sin(ωdt)− sin(ωdt+ ϕ)

))
, (33)

f step
Pm

g
(t) =

R−1
g

R−1
eff +Deff

(
1−

τ−1
g ωn

ω2
d + θ2

g
e−ζωnt·(

ωn

ξ
cos(ωdt)− cos(ωdt+ ϕ)

+
θg

ωd
sin(ωdt+ ϕ)− θg

ωd

ωn

ξ
sin(ωdt)

))
, (34)

where the parameters ωd, ϕ, and θg are given by

ωd := ωn

√
1− ζ2, ϕ := cos−1(ζ), θg := τ−1

g − ζωn. (35)

Furthermore, we take the time derivative of (33) to obtain
a closed-form expression for f step

∆ω̇ (t). We substitute this
resultant expression, along with f step

∆ω (t) and f step
Pm

g
(t) in (33)

and (34), respectively, into (31) to obtain dynamic generator
participation factors, f step

Pg
(t), ∀g ∈ G.

With the dynamic participation factors for step-load changes
in place, we now derive the inertial- and governor-based
participation factors in (5) and (6), respectively.
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1) Revisiting Inertial-based Participation Factors: Inertial
response occurs immediately after the load disturbance, so we
recover the inertial-based generator participation factors by
evaluating f step

Pg
(0). Substituting for f step

∆ω (0), f step
∆ω̇ (0), and

f step
Pm

g
(0) in (31), we get:

f step
Pg

(0) =
Mg

Meff
+

R−1
g

R−1
eff +Deff

· (τg − τ)R−1
eff

τgR
−1
eff + ( ττg

− 1)Meff

.

The inertial-based participation factors in (5) can be recovered
from above under the assumption that all the governor time
constants, τg, are equal.

2) Revisiting Governor-based Participation Factors:
Governor-based participation factors are obtained at the
post-disturbance steady state, so one can recover the
governor-based generator participation factors by evalu-
ating limt→∞ f step

Pg
(t). Substituting for limt→∞ f step

∆ω (t),
limt→∞ f step

∆ω̇ (t), and limt→∞ f step
Pm

g
(t) in (31), we get:

lim
t→∞

f step
Pg

(t) =
R−1

g +Dg

R−1
eff +Deff

.

If the damping constants are ignored, i.e., Dg = 0, ∀g ∈ G,
we recover the governor-based participation factors in (6).

B. Exponential-ramp Load Disturbance

Suppose that, starting at time t = 0, the load at bus ` follows
an exponential ramp. Then, in accordance with (23), for t > 0,
the total system load can be expressed as

Pload(t) = Pload(0) + ∆P`(t)

= Pload(0) + (1− e−at)∆P`,ss,
(36)

where a ≥ 0 is a constant. In the Laplace domain, the
exponential-ramp load disturbance in (36) is given by

Pload(s) =

(
1

s
− 1

s+ a

)
∆P`,ss.

Substituting this Laplace transform into (21), taking the inverse
Laplace transform of the resultant, and following the procedure
described in Section III-C–III-D, we obtain:

f ramp
∆ω (t) = f step

∆ω (t)− 1

R−1
eff +Deff

ω2
n

a2 − 2ζωna+ ω2
n

(37)(
υe−at − e−ζωnt (υ cos(ωdt) + (ρ+ η) sin(ωdt))

)
,

f ramp
Pm

g
(t) = f step

Pm
g

(t) +
R−1

g

R−1
eff +Deff

τ−1
g ω2

n

a2 − 2ζωna+ ω2
n(

υ

τ−1
g − ae−at − ωdυ + θg(ρ+ η)

ω2
d + θ2

g
e−ζωnt sin(ωdt)

− θgυ − ωd(ρ+ η)

ω2
d + θ2

g
e−ζωnt cos(ωdt)

)
, (38)

where parameters υ, ρ, and η are given by

υ :=
a

ξ
− 1, ρ :=

a− ζωn

ωd
, η :=

ωn(ωn − aζ)

ξωd
. (39)

Unsurprisingly, since the load change in (36) represents the
summation of a step change and an exponential-decay signal,
the resulting time-domain solutions of f ramp

∆ω (t) and f ramp
Pm

g
(t)

in (37) and (38), respectively, consist of the step response
described in Section IV-A as well as dynamics arising from the
exponential-decay input. Finally, similar to the procedure in
Section IV-A, we substitute expressions for f ramp

∆ω (t) in (37),
its time derivative f ramp

∆ω̇ (t), and f ramp
Pm

g
(t) in (38) into (31)

to arrive at dynamic generator participation factors for an
exponential-ramp load change at bus ` ∈ L.

Remark 1 (Ramp Load Disturbance): In this remark, we
note that the exponential-ramp load change in (36) can be used
to approximate a ramp change in load. To see this, consider
a ramp change in load at bus ` that initiates at time t = 0, so
that the total system load can be expressed as

Pload(t) =

{
Pload(0) +

∆P`,ss

tr
t, 0 ≤ t < tr,

Pload(0) + ∆P`,ss, t ≥ tr,
(40)

where tr > 0 is the ramp time. The Laplace transform of (40)
is given by

Pload(s) =

∫ tr

t=0

∆P`,ss
tr

te−stdt+

∫ ∞
t=tr

∆P`,sse
−stdt

=
∆P`,ss
s2tr

(1− e−str). (41)

Similar to the derivation presented in Section IV-A, we can
substitute the Laplace-domain load-disturbance signal in (41)
into (21), take the inverse Laplace transform of the resul-
tant, and apply suitable algebraic manipulations to obtain
the corresponding dynamic generator participation factors. It
turns out that this derivation is tedious and resulting closed-
form expressions are lengthy and unwieldy. Thus, without
loss of illustrative value and while limiting complexity, we
approximate the ramp signal in (40) with the one in (36).
Particularly, given the ramp time tr, we can obtain an optimal
value of the time constant a that minimizes the 2-norm of
the error between signals described by (40) and (36) via the
solution to the following unconstrained optimization problem:

minimize
a∈R

∫ tr

t=0

(
∆P`,ss
tr

t−∆P`,ss
(
1− e−at

))2

dt

+

∫ ∞
t=tr

(
∆P`,ss −∆P`,ss

(
1− e−at

))2
dt. (42)

As detailed in Appendix B, the minimizer of (42) can be
obtained by numerically solving

3atr − 8
(
1− e−atr

)
+ 4atre

−atr = 0, (43)

given a particular ramp time tr. Substitution of the optimal
value of a, i.e., the solution of (43), into (36) yields an accurate
approximation to the ramp-change signal in (40). We validate
this through numerical results in Section V. �

V. NUMERICAL SIMULATIONS

We illustrate concepts presented thus far with numerical
case studies involving the New England (NE) 10-machine
39-bus test system. The topology of the network is shown
in Fig. 3. Synchronous generators are connected to buses
collected in G = {30, . . . , 39}, loads are connected to buses in
L = {1, 3, 4, 7, 8, 9, 12, 15, 16, 18, 20, 21, 23, . . . , 29}, and the
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system contains |E| = 46 transmission lines. Although our an-
alytical development is grounded in a simplified synchronous-
generator model and leverages several approximations (e.g.,
common frequency deviation, no losses, etc.), we compare the
line-flow predictions recovered from the proposed DDFs with
time-domain simulations for a detailed, lossy, and nonlinear
differential-algebraic model of the power network that includes
dynamics from the two-axis synchronous generator, exciter,
and governor. Simulations are performed using PSAT [22].

A. Illustrating Dynamic PTDFs, LODFs, and OTDFs

Here, we display a sample of results that can be obtained
with the proposed DDFs for power-transfer and line-outage
related contingencies. We simulate the following three sce-
narios: (a) the load at bus 8 increases via the ramp in (40)
with ∆P8,ss = 0.5 p.u. and tr = 1 s, balanced by a step
load decrease at bus 1 in steady state, i.e., as in (32) with
∆P1,ss = −0.5 p.u. (illustrated with ramp and step signals
in red dashed lines in Fig. 3); (b) an outage on line (16, 21)
occurs at t = 0 s (encircled with a red dashed line in Fig. 3);
and (c) scenarios (a) and (b) simultaneously.

Transient line flows from the time-domain simulation re-
sulting from disturbance scenarios (a), (b), and (c) are plotted
in Fig. 4 with solid traces. Dashed traces in Fig. 4 correspond
to DDF-predicted transient line flows. To illustrate a sample
of results, we plot flows for lines (6, 7), (23, 24), and (3, 18)
without loss of generality. Furthermore, the dash-dot traces
represent transient line flows simulated with the exponential
ramp-load increase at bus 8. By comparing the solid and
dash-dot traces, we note that the dynamics arising from
the exponential-ramp load-change signal indeed sufficiently
approximate those from the exact-ramp load change. Closed-
form expressions for dynamic PTDFs and OTDFs used to pre-
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Fig. 3: Network topology for the New England system. Through simulations,
we: i) Demonstrate that dynamic PTDFs, LODFs, and OTDFs yield transient
line-flow predictions for contingencies involving an outage on line (16, 21),
ramp-load increase by 0.5 p.u. at bus 8, and step-load reduction by the same
amount at bus 1. (These are illustrated in red dashed lines.); ii) Compute errors
in line flows predicted with the proposed dynamic PTDFs for an exhaustive
set of bilateral transactions between all load-bus pairs. (A sample of these
transactions are illustrated with like-coloured ramps and steps in solid lines.)
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1.6

1.7

1.8

(a)

-0.5 0 0.5 1 1.5 2 2.5 3

2

2.5

3

(b)

-0.5 0 0.5 1 1.5 2 2.5 3

2.3

2.35

2.4
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Fig. 4: Simulations for the NE system: actual and predicted line flows
for a subset of lines due to (a) 0.5 p.u. power transfer between buses 8
and 1, (b) outage of line (16, 21), and (c) scenarios in (a) and (b) triggered
simultaneously.

dict transient line flows are derived with the less algebraically
tedious exponential-ramp signal. Notice that the DDFs capture
low-frequency dynamics in line flows in the transient period.
Higher-order effects are attributable to voltage variations that
our proposed approach does not capture.

B. Assessing Accuracy of the Proposed Approach

In this case study, we exhaustively implement the power-
transfer scenario (a) in Section V-A for each pair of load buses
in the NE system. Since there are 19 load buses and 46 lines,
this case study involves 19P2 = 342 time-domain simulations
for 342×46 = 15732 line flows. An illustration of a subset of
simulation scenarios involved is depicted with step-ramp pairs
(identical colours in solid lines alongside some load buses) in
Fig. 3.

1) Acknowledging different governor time constants: We
compare the actual and predicted line-flow dynamics and
compute the average absolute error in each simulation over
the entire simulation period of 3 s. These errors are visualized
in the histogram in Fig. 5, where the x-axis represents the
range of average line-flow errors and the y-axis displays
the number of lines with errors in a particular range. The
histogram coloured orange represents the case in which all
governor time constants are set as τg = 0.7 s, g ∈ G, while
the one coloured blue represents the case in which governor
time constants are modified as follows: τ30 = 0.5, τ31 = 0.6,
τ32 = 0.7, τ33 = 0.4, τ34 = 0.3, τ35 = 0.7, τ36 = 0.8,
τ37 = 0.7, τ38 = 0.4, τ39 = 0.5 s. The average error over all
lines and simulations is 0.0062 p.u. and the maximum error
is 0.0747 p.u. for the case where all governor time constants
are equal. By way of comparison, the average error over all
lines and simulations is 0.0116 p.u. and the maximum error
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Fig. 5: Prediction errors for the NE system: average absolute error in line-
flow predictions by dynamic PTDFs for an exhaustive set of step-ramp power
transfers between all pairs of load buses. The histogram coloured orange
represents the case in which all governor time constants are equal, while the
one coloured blue represents one in which they are different.

TABLE I: New England system: comparison of number of post-contingency
line-flow violations detected via time-domain simulations vs. the proposed
closed-form DDF solution. Line limits that are 110%, 115%, 130%, and 150%
of the pre-contingency line flows are examined.

Line Limit 110% 115% 130% 150%
Time-domain (PSAT) 983 603 277 113
Analytical (DDF) 950 603 277 112

is 0.078 p.u. with different governor time constants. In both
cases, we use the choice in (20) for the time constant of the
aggregate-governor dynamics. As expected, prediction errors
increase in the case of different governor time constants.
However, as we show next, the DDFs provide sufficiently
accurate estimates of line flows to be used in fast contingency
screening.

2) Fast contingency screening: While we do not advocate
employing DDFs in place of time-domain simulations, they of-
fer the ability to predict post-contingency line-flow violations
with accuracy on par with that of time-domain simulations.
To illustrate this, we list the number of violations for 110%,
115%, 130%, and 150% of the pre-contingency line flows that
are uncovered using time-domain simulations versus DDFs in
Table I. Note that governor time constants are modified so that
they are different from each other, as listed in Section V-B1.

C. Comparing Computation Times

We record the computation required to perform a time-
domain PSAT simulation of system dynamics in response
to a step change in load and that needed to compute the
corresponding closed-form DDF solution. The computation
times required to conduct 3-, 5-, and 10-second simulations on
a standard personal laptop are reported in Table II. We observe
significant computational benefits compared to performing
a detailed time-domain simulation, which suggests sizeable
improvement for contingency screening in practice for a large-
scale power system. In fact, the only computationally intensive
step in predicting the line flows with the proposed approach
relates to (the one-time task of) obtaining the pre-contingency
power-flow solution to obtain the ISFs Γk(m,n), ∀(m,n) ∈ E
and ∀k ∈ L.

TABLE II: New England system: comparison of computing time required to
estimate the post-contingency line flows for 3 s, 5 s, and 10 s due to a step
change in load via time-domain simulations vs. the proposed closed-form
DDF solution.

Duration of simulation [s] 3.00 5.00 10.0
Time-domain (PSAT) [s] 1.24 1.93 3.66
Analytical (DDF) [s] 0.0011 0.0013 0.0028

VI. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE WORK

We derived DDFs that are applicable throughout post-
contingency transient periods by leveraging injection shift
factors and dynamic generation participation factors. The
proposed DDFs provide more insights compared to static
distribution factors and present limited-to-no computational
effort compared to running repeated time-domain simulations.
The utility of the proposed expressions in accurately predicting
post-contingency active-power line flows was demonstrated
via numerical case studies involving the New England test
system. A compelling avenue for future work is to explore
how tasks pertaining to generation re-dispatch and dynamic
security assessment can be reimagined with the proposed
DDFs. Another avenue for future work is to extend the
system-frequency model from the current setting with one
coherent area to multiple coherent areas. Furthermore, closed-
form expressions for participation factors of inverter-connected
sources, such as solar photovoltaic and wind turbines, would
be beneficial in the future. Finally, exhaustive simulations for
different networks and contingencies may yield further insight
on the accuracy and limitations of the proposed DDFs.

APPENDIX

A. Derivation of (3)
Collect nodal voltages, current injections, and complex-

power injections in vectors V ∈ C|N |, I ∈ C|N |, and S ∈ C|N |

respectively, and let θ ∈ T|N | denote the vector of phase angles
of the voltage phasors. It follows that I = Y V , where Y is
the network admittance matrix, and S = diag(V )I∗. Express
the current flowing in line (m,n) ∈ E as

I(m,n) =
(
ymne

T
mn + ysh

mne
T
m

)
V, (44)

where ymn and ysh
mn are, respectively, the series and shunt

admittances of line (m,n). Substituting V = Y −1I above,

I(m,n) = (αT
(m,n) + jβT

(m,n))I, (45)

where αT
(m,n) + jβT

(m,n) :=
(
ymne

T
mn + ysh

mne
T
m

)
Y −1 ∈ C|N |.

Denote, by S(m,n) = P(m,n) + jQ(m,n), the complex power
flowing across line (m,n), and by Vm the voltage at bus m.
We can write

S(m,n) = VmI
∗
(m,n). (46)

Substituting (45) into (46) and making use of I∗ =
diag(V )−1S, we obtain

S(m,n) = Vm(αT
(m,n) − jβT

(m,n))diag(V )−1S. (47)

Taking the real part of (47), we get

P(m,n) = Γ(m,n)P + ε(m,n), (48)
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where Γ(m,n) ∈ R|N | and ε(m,n) ∈ R are given by

Γ(m,n) = |Vm|uT
(m,n), ε(m,n) = −|Vm|vT

(m,n)Q. (49)

Above, u(m,n), v(m,n) ∈ R|N | are given by

u(m,n) = diag

(
cos(θm)

|V |

)
α(m,n) + diag

(
sin(θm)

|V |

)
β(m,n),

v(m,n) = diag

(
sin(θm)

|V |

)
α(m,n) − diag

(
cos(θm)

|V |

)
β(m,n),

where |V | ∈ R|N | is the vector of nodal-voltage magnitudes;
cos(x) and sin(x) denote vectors with entries equal to the
cosine and sine of respective entries of x; diag(x/y) denotes
a diagonal matrix with diagonal entries composed of ratios of
entries of vectors x and y; and θm := θm1|N | − θ ∈ T|N |

with θm denoting the m-th entry of θ and 1|N | denoting a
length-|N | vector with all entries equal to 1. (Readers are
referred to [23] for more details.) In practice, ε(m,n) is small
for transmission-level lines where the active- and reactive-
power decoupling assumptions are valid [24], and it can be
neglected in (48).

The change in active-power flow in line (m,n), ∆P(m,n)(t),
due to variations in nodal active-power injections, denoted by
∆Pk(t), k ∈ N , can be approximated from (48) as

∆P(m,n)(t) =
∑
k∈N

Γk(m,n)∆Pk(t), (50)

where Γk(m,n) is the k-th entry of Γ(m,n) in (49). Now, consider
the particular setting where the active-power demand at load
bus ` ∈ L changes by ∆P`(t), and, in response, the changes
in generator outputs are denoted by ∆Pg(t), g ∈ G. In this
particular case, we get from (50) that the flow in line (m,n)
can be approximated as

∆P(m,n)(t) =
∑
g∈G

Γg
(m,n)∆Pg(t)− Γ`(m,n)∆P`(t). (51)

Substituting for ∆Pg(t) from (4) and for ∆P`(t) from (1)
in (51), we arrive at (3).

B. Derivation of Optimal Solution in (43)

We begin by expanding the objective function in (42) to get

minimize
a∈R

∆P 2
`,ss

(∫ tr

t=0

1

t2r
t2 − 2

tr
t
(
1− e−at

)
+ 1

−2e−at + e−2atdt+

∫ ∞
t=tr

e−2atdt

)
, (52)

which can be simplified as

minimize
a∈R

∆P 2
`,ss

(
tr
3
− 3

2a
+

2

a2tr

(
1− e−atr

))
. (53)

Then, applying the first-order necessary condition of optimal-
ity to (53) with respect to a, we get

0 =
3

2a2
− 4

a3tr
(1− e−atr) +

2

a2
e−atr . (54)

Multiplying both sides of (54) by 2a3tr yields (43).
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