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Abstract—This paper proposes a self-synchronizing synchron-
verter controller design that leverages the addition of a virtual
resistance (along with a suitable coordinate transformation) to
compute feedback signals during self synchronization prior to
grid connection. With respect to analysis, we exploit separation-
of-time-scales arguments and develop appropriate reduced-order
models, which are well-suited for studying phase-angle and
voltage-magnitude self-synchronization dynamics independently.
Our work provides analytical justification for the effects of perti-
nent controller parameters and system initial conditions on self-
synchronization dynamics observed empirically in time-domain
simulations. As such, it offers practical guidance on favourable
parameter-value settings to achieve fast self synchronization,
and it yields accurate estimates for self-synchronization times
with well-tuned parameters. Through numerical simulations and
experiments, we illustrate the efficacy of the proposed controller
design and verify the validity of subsequent analyses.

Index Terms—Damping correction loop, dynamics, model-
order reduction, self synchronization, synchronverter, virtual
resistance, virtual synchronous generator.

I. INTRODUCTION

DRIVEN by environmental considerations, renewable en-
ergy sources (RESs) are expected to displace a size-

able portion of conventional fossil fuel-based synchronous
generators. Compared with these, converter-interfaced RESs
have little or no inertia, so their large-scale integration signif-
icantly reduces total grid-wide inertia [1]. Also, conventional
control strategies of RES converters rely on phase-locked
loops (PLLs), which may cause instability, especially under
weak-grid conditions [2]. To address these problems, the
concept of the virtual synchronous generator (VSG) has been
proposed, which enables the RES converter and its dc-side
storage device to emulate synchronous-generator dynamics
(see, e.g., [3]–[7]). Main advantages of VSGs are that they
contribute more inertia to the grid, and because they are
independent of PLLs during normal operation, they avoid PLL-
related instability and enhance overall system performance.

A highly desirable property for the VSG to have is the
so-called self-synchronization capability, which refers to the
ability for the VSG to automatically synchronize its inner volt-
age to the grid-side voltage without PLLs before closing the
breaker, as shown in Fig. 1 [8]. This capability helps to avoid
potentially large start-up currents when physically connecting
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Fig. 1. Illustrative diagram of self synchronization. For t < ts, the breaker
is open, and the VSG automatically synchronizes its inner voltage eg(t) to
the grid voltage u∞(t) = ut(t) without PLLs. For t ≥ ts, eg(t) and ut(t)
are synchronized, and the breaker may close without causing large start-up
currents after grid connection.

the VSG to the grid, and in turn, protects the power-electronic
devices in the VSG. Moreover, if the VSG is not endowed
with the self-synchronization capability, then a PLL is required
to measure the grid-side voltage phase angle in order to
synchronize the VSG voltage to that of the grid before physical
connection [5], [6]. The self-synchronizing VSG completely
obviates the need for a PLL in the controller and significantly
simplifies the overall design. Specifically, compelling argu-
ments for bypassing the PLL include past observations that
PLL-based designs are associated with greater computational
burden and more complex parameter tuning [8]–[12].

Owing to the value of self synchronization without relying
on PLLs, numerous self-synchronizing VSG designs have been
proposed in the literature [8], [13]–[15]. They typically adopt
a virtual impedance, which is used to generate active- and
reactive-power feedback signals during self synchronization.
However, the virtual impedance requires simultaneous tuning
of two parameters, i.e., resistance and reactance, which may
be difficult. For example, [13] requires tuning of two sets of
virtual-impedance values, a large one during self synchroniza-
tion to reduce start-up currents and a small one for normal
operation afterwards. Furthermore, in the method proposed
in [16], the virtual-impedance value requires the solution of
a system of inequality constraints constructed from a set of
performance requirements. The designs in [8], [14], [15] use
the virtual impedance during self synchronization and then
bypass it immediately after grid connection. Improperly tuned
impedance parameters may lead to slow or even unsuccessful
self synchronization [17].

Our recent work in [18] proposes a self-synchronizing syn-
chronverter1 design that addresses the shortcomings above. In-
stead of the virtual impedance, [18] adopts a virtual resistance

1The synchronverter is a representative VSG design with concise struc-
ture [3].
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with only one parameter (along with a suitable coordinate
transformation) to provide the controller with active- and
reactive-power feedback signals during self synchronization.
Also, [18] uses the damping correction loop first proposed
in [15] to adjust the system damping freely with only one
additional parameter. These features enable the controller to
be more easily tuned to achieve faster self synchronization
than existing designs. However, self-synchronization dynamics
are not thoroughly analyzed in [15] and [18]. They report
only numerical results that demonstrate the effects of vary-
ing pertinent controller parameters on self-synchronization
dynamics, but not those of different initial conditions. To
the best of our knowledge, there are few existing analytical
studies on self-synchronization dynamics. For example, [8]
contains only qualitative descriptions for how certain param-
eters influence self synchronization, and [11] studies self-
synchronization dynamics under various initial conditions but
does not provide detailed system-theoretic analysis. Moreover,
typically, previous studies (e.g., [8], [13]–[15], [18]) only
evaluate self-synchronization time via numerical simulations
instead of analysis for a general setting. In this work, analysis
of self-synchronization dynamics yields convergence guaran-
tees, facilitates parameter tuning, and reveals minimum time
required to achieve synchronization.

This paper builds on the self-synchronizing controller design
in [18] and provides extensions in several directions. First, via
time-domain simulations, we empirically observe the impacts
of controller parameters as well as system initial conditions
on self-synchronization dynamics. Then we develop suitable
reduced-order models to analyze the faster phase-angle self-
synchronization dynamics and slower voltage-magnitude ones
separately. These perspectives offer analytical justification for
the effects of controller parameters and initial conditions
on self-synchronization dynamics. They also provide accu-
rate estimates for phase-angle and voltage-magnitude self-
synchronization times. Moreover, building on the aforemen-
tioned analyses, we recommend practical parameter settings
to achieve fast self synchronization. Finally, we validate the
analyses performed based on the reduced-order models and
verify parameter-value settings via numerical case studies and
experiments.

The remainder of this paper is organized as follows. Sec-
tion II describes the proposed synchronverter design and
motivates the need to study self-synchronization dynamics. In
Section III, we develop reduced-order models to analyze these
dynamics in detail and further recommend parameter values
to achieve fast synchronization. Then, Sections IV and V
validate our self-synchronization dynamic analyses via time-
domain simulations and experiments, respectively. Finally,
concluding remarks and directions for future work are offered
in Section VI.

II. SELF-SYNCHRONIZING SYNCHRONVERTER DESIGN

In this section, we describe the proposed synchronverter
design, which was first reported in [18], and then motivate
the need to analyze self-synchronization dynamics.

Fig. 2. Proposed self-synchronizing synchronverter [18], which has few
parameters that require tuning. Highlighted in red colour are aspects of
particular relevance to the proposed design. (a) Grid interface. (b) Power
computation block. (c) Active-power loop. (d) Reactive-power loop.

A. Proposed Self-synchronizing Synchronverter Design

A voltage source converter (VSC), which is controlled
via a synchronverter, is connected to the point of common
coupling (PCC) with voltage ut via an L-type filter Rs+ jXs

and a breaker, as shown in Fig. 2(a). The external grid,
which is connected to the PCC, is modelled as a voltage
source u∞ behind impedance Re + jXe. The proposed con-
troller comprises the power computation block, the active-
power loop (APL), and the reactive-power loop (RPL), as
shown in Figs. 2(b)–2(d), respectively. Below, we first focus on
the power computation block, which includes the key design
point, i.e., the virtual resistance, for self synchronization.
Then, for completeness, we briefly describe the APL and
RPL dynamical models. Note that the synchronverter inner
voltage eg is obtained by combining the rotating speed ωg and
rotor angle θg from the APL, as well as the excitation flux ψf
from the RPL, and its corresponding voltage line-to-line RMS
value is Eg =

√
3/2ωgψf [15].

1) Power Computation Block: In the power computation
block, as shown in Fig. 2(b), we adopt a virtual resistance Rv
instead of the typical virtual impedance L̃vs + R̃v . Un-
like L̃vs+ R̃v , which has two parameters that require tuning,
Rv has only one. During self synchronization, the breaker in
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Fig. 2(a) is open, and the actual synchronverter active- and
reactive-power outputs, P t and Qt, are both zero. The goal
of self synchronization is to ensure that the inner voltage eg
closely tracks ut, the measured PCC voltage, which is equal
to the grid voltage u∞ when the breaker is open. To achieve
this, the power computation block provides the APL and
RPL with feedback signals Pt and Qt that result from their
virtual analogues Pv and Qv . By setting Switch 1 in Fig. 2(b)
to position 2, we obtain virtual current iv flowing through
the virtual resistance Rv according to iv = (eg − ut)/Rv .
With iv and ut in place, we compute the virtual active and
reactive powers, i.e., Pv and Qv [18]. Let U∞ and θ∞ denote,
respectively, the line-to-line RMS value and the phase angle
of u∞; and define θg∞ :=θg−θ∞ as the phase-angle difference
between eg and u∞, then Pv and Qv are given by

Pv =
EgU∞
Rv

cos θg∞ −
U2
∞
Rv

, Qv = −EgU∞
Rv

sin θg∞, (1)

respectively. Note that since we adopt a virtual resistance only,
Pv and Qv are, respectively, closely related to Eg and θg∞.
However, the APL and RPL are designed for predominantly
inductive grid conditions. In other words, the APL input Pt and
RPL input Qt are, respectively, regulated by the rotor angle θg
and the inner voltage magnitude Eg (or the excitation flux ψf ).
Thus, during self synchronization, we cannot directly use Pv
and Qv as the APL and RPL inputs. In fact, linearization of a
self-synchronization design that uses only the virtual resistance
reveals a pair of eigenvalues in the right half-plane, so such a
design is unstable. In view of this, we leverage the following
coordinate transformation:[

P v
Qv

]
=

[
0 −1
1 0

] [
Pv
Qv

]
, (2)

and instead use the post-transformation variables P v and Qv
as the APL and RPL inputs, respectively, so that

Pt = P v =
EgU∞
Rv

sin θg∞, (3)

Qt = Qv =
EgU∞
Rv

cos θg∞ −
U2
∞
Rv

. (4)

In this way, the APL and RPL regulate, respectively, Pt and Qt
using θg and Eg (or ψf ) during self synchronization. As shown
in Fig. 3, via the coordinate transformation in (2), the virtual
resistance Rv acts equivalently as a reactance for the purpose
of computing virtual power feedback signals [18]. We also
note that the proposed virtual-resistance design (together with
the coordinate transformation in (2)) cannot be replaced by a
virtual inductance L̃vs only (i.e., by setting R̃v to be zero in a
virtual impedance branch L̃vs+R̃v). Via small-signal analysis,
we find that the inductor dynamics introduced by L̃vs present
a pair of unstable eigenvalues that lead to unsuccessful self
synchronization. These undesirable dynamics are bypassed in
the proposed design via the algebraic coordinate transforma-
tion in (2).

2) Active- and Reactive-power Loops: During self synchro-
nization, the APL (Fig. 2(c)) and RPL (Fig. 2(d)), respectively,
synchronize the phase angle and the voltage magnitude of eg
to those of u∞ by setting Pt and Qt to zero. The APL

Fig. 3. Equivalent representation of proposed synchronverter design in
Fig. 2 during self synchronization (Switch 1 in Fig. 2(b) is in position 2).
(a) Equivalent grid interface corresponding to Figs. 2(a) and 2(b), in which Rv
acts as virtual reactance jRv due to the algebraic coordinate transformation
in (2). (b) Active- and reactive-power feedback signals. (c)(d) APL and RPL.

regulates θg∞ to zero (phase-angle self synchronization), and
the RPL regulates Eg to be U∞ (voltage-magnitude self syn-
chronization). Let Si represent the state of Switch i, i = 2, 3, 4,
i.e., Si = 1 if Switch i is closed and Si = 0 if Switch i is
open. Then, the APL and RPL dynamics are described by

Jg
dωg
dt

=
P ?t
ωN
−Tef −S2Dp(ωg−ω?g)−Df

d

dt

(
Tef

ψff

)
, (5)

Kg
dψf
dt

= S3(Q?t −Qtf ) + S4

√
2

3
Dq(U

?
t − Utf ). (6)

In (5), Jg denotes the inertia constant, ω?g the reference value
of ωg , P ?t the active-power reference, and ωN the rated
rotating speed. The term S2Dp(ωg − ω?g) is the switchable

power-frequency droop control; and the term Df
d
dt

(
Tef

ψff

)
represents the damping correction loop, which adjusts the
APL damping freely [15]. Furthermore, by integrating ωg
over time, we get the rotor angle, i.e., θg(t) =

∫ t
0
ωg(τ)dτ .

In (6), Kg is a tuneable parameter, which determines the RPL
response speed; Q?t and U?t are, respectively, the reference
value of Qt and the line-to-line RMS value Ut of ut; and the
term S4

√
2
3Dq(U

?
t − Utf ) represents the switchable voltage-

droop control. In (5) and (6), Tef , ψff , Qtf , and Utf are filtered
signals obtained from

τf
dTef

dt
= −Tef + Te, τf

dψff

dt
= −ψff + ψf , (7)

τf
dQtf

dt
= −Qtf +Qt, τf

dUtf

dt
= −Utf + Ut, (8)

where τf is the time constant of low-pass filters (LPFs),
and Te = Pt/ωN is the electromagnetic torque. Since ψff is in
the denominator in (5), we also include a limiter on ψff , ensur-
ing that ψff > 0. During self synchronization, we set S2 = 0
and P ?t = 0, so that Pt = P v regulates to zero. Then,
according to (3), we get θg∞ = 0 and thus achieve phase-
angle self synchronization. Also, we close Switch 3 (S3 = 1),
open Switch 4 (S4 = 0), and set Q?t = 0. In this way, we
regulate Qt = Qv to be zero, as desired.

Remark 1. By examining (3) and (4), we note that phase-
angle self synchronization ought to be achieved earlier than
that of the voltage magnitude. Only after the APL regu-
lates θg∞ to be zero (or 2kπ, k ∈ Z) can we get Eg = U∞
when Qt = 0. Otherwise, according to (4), the RPL would
regulate Eg to be U∞/ cos θg∞, which would not be desired. �
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Once eg synchronizes with u∞, we close the breaker and
set Switch 1 to position 1. At this point, the synchronverter is
connected to the grid and operates normally. During normal
operation, the feedback active and reactive powers are the
actual converter outputs P t and Qt, as shown in Fig. 2(b).

3) Full-order Dynamical Model: Suitable algebraic ma-
nipulation of (3)–(8), along with appropriate switch settings,
result in the following sixth-order nonlinear model describing
system dynamics during self synchronization:

dθg∞
dt

= ωg∞, (9)

dωg∞
dt

= −Df

√
3

2

(ω∞ + ωg∞)ψfU∞
JgτfωNRvψff

sin θg∞

+

(
Df

ψf
τfψ2

ff

− 1

)
Tef

Jg
, (10)

dTef

dt
=

√
3

2

(ω∞ + ωg∞)ψfU∞
τfωNRv

sin θg∞ −
1

τf
Tef , (11)

dψf
dt

= − 1

Kg
Qtf , (12)

dQtf

dt
=

√
3

2

(ω∞ + ωg∞)ψfU∞
τfRv

cos θg∞ −
U2
∞

τfRv
− Qtf

τf
,

(13)
dψff

dt
=

1

τf
(ψf − ψff ) , (14)

where ω∞ is the angular-speed of u∞, and ωg∞ := ωg−ω∞ is
the angular speed difference between eg and u∞. In the model
described by (9)–(14), (10) is obtained by substituting (3)
and (7) into (5), (11) is obtained by substituting (3) into the
first expression in (7), (12) is obtained by setting S3 = 1
and S4 = 0 in (6), and (13) is obtained by substituting (4) into
the first expression in (8). To simplify notation, let x denote
the state vector, i.e., x = [θg∞, ωg∞, Tef , ψf , Qtf , ψff ]T.

By setting (9)–(14) to zero and solving them (recall
that ψff > 0), we find that the system has a family of
equilibrium points x◦, as follows:

x◦ =

[
2kπ, 0, 0,

√
2

3

U∞
ω∞

, 0,

√
2

3

U∞
ω∞

]T
=: [θ◦g∞, ω

◦
g∞, T

◦
ef , ψ

◦
f , Q

◦
tf , ψ

◦
ff ]T, (15)

where k ∈ Z. Thus, self synchronization is achieved when x
converges to x◦. With regard to initial conditions, since the
grid-voltage phase angle θ∞ is unknown to the controller, the
initial phase-angle difference θg∞(0) ∈ (−π, π) rad. Remain-
ing state variables in x can be initialized within the controller,
e.g., we set ωg(0) = ωN ≈ ω∞, so that ωg∞(0) ≈ 0. Under
these initial conditions, θg∞(t) indeed converges to zero upon
successful self synchronization, as desired.

B. Dynamic Response of Self Synchronization

The controller design described above is able to synchro-
nize eg to u∞ before physical grid connection. In [18], we
observe that tuning parameters Df and Kg , respectively, af-
fects phase-angle and voltage-magnitude self-synchronization

Fig. 4. Impacts of Df on phase-angle self-synchronization dynamics.
We find that: (i) increasing Df accelerates the APL response speed and
enables θg∞(t) to converge to θ◦g∞ more quickly, but there is an upper
bound to phase-angle self-synchronization speed, (ii) reduced phase-angle
self-synchronization speed results in slower voltage-magnitude self synchro-
nization. (a)(b) Self-synchronization dynamics with θg∞(0) = 3.14 rad.
(c)(d) Self-synchronization dynamics with θg∞(0) = −3.14 rad.

dynamics. Next, via a numerical example, we show that while
increasing Df accelerates phase-angle self synchronization,
there exists an upper bound to the θg∞(t)-convergence speed.
We also show that while decreasing Kg accelerates voltage-
magnitude self synchronization, sufficiently small Kg values
result in undesirable transient overshoots.

Example 1 (Impacts of Df and Kg on Self Synchronization).
In this example, we simulate the synchronverter-connected
system in Fig. 2 and observe the impacts of Df and Kg on
self-synchronization dynamics in three scenarios (Cases I–III).
Other relevant parameter values are fixed as follows: Rs =
0.741 Ω, Ls = 20 mH, Re = 0 Ω, Le = 38.5 mH, S2 = 0,
S3 = 1, S4 = 0, τf = 0.01 s, Rv = 5 Ω, Jg = 11.2 kg·m2,
ωN = ω?g = ω∞ = 376.99 rad/s, U∞ = 6.60 kV,
udc = 13 kV, rated ac side voltage UN = 6.60 kV, and
rated synchronverter capacity SN = 1 MVA. All simulations
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Fig. 5. Impacts of Kg on voltage-magnitude self-synchronization dynamics
with θg∞(0) = 3.14 ∈ (0, π) rad. We find that decreasing Kg accelerates
the RPL response speed so that ψf (t) converges to 1 p.u. more quickly, but
sufficiently small Kg results in transient overshoots in ψf (t).

are initialized at ωg∞(0) = 0 rad/s, Tef (0) = 0 N ·m,
Qtf (0) = 0 Var, and ψf (0) = ψff (0) = 0.01 Wb.

In Cases I and II, we observe effects of vary-
ing Df on self-synchronization dynamics by setting Df =
4.38, 127, 239 V · s2/rad, as shown in Fig. 4 by traces
marked as (i), (ii), and (iii), respectively. Furthermore, in order
to discern the impacts of θg∞(0) on self synchronization,
we set θg∞(0) to be 3.14 and −3.14 rad, respectively, in
Cases I (shown in Figs. 4(a)–4(b)) and II (shown in Figs. 4(c)–
4(d)). Here, we make two key observations. First, in both
Cases I and II, increasing Df from 4.38 to 127 V · s/rad
results in θg∞(t) converging to zero more quickly. This is
because larger Df corresponds to greater APL damping, which
helps to accelerate the θg∞(t)-convergence rate. However,
further increasing Df to 239 V · s/rad does not lead to even
faster phase-angle self synchronization. In fact, we find that
with Df > 127 V · s/rad, if θg∞(0) = 3.14 rad, θg∞(t)
converges to zero with speed near −ω∞; and if θg∞(0) =
−3.14 rad, θg∞(t) first jumps to a positive value, and then
also converges to zero with speed near −ω∞. Moreover, by
comparing traces (i), (ii), and (iii) in Figs. 4(b) and 4(d),
we observe that ψf (t) converges to 1 p.u. more slowly with
much lower rate of θg∞(t) convergence. This is consistent with
Remark 1, as the RPL cannot track Eg(t) to U∞ (or ψf (t)
to 1 p.u.) until the APL has regulated θg∞(t) to zero.

In Case III, we observe the impacts of Kg on self synchro-
nization by setting Kg = 5.00 × 104, 1.00 × 104, 0.300 ×
104 Var · rad/V. Additionally, we set Df = 32.1 V · s2/rad
and θg∞(0) = 3.14 rad. Here, we make another im-
portant observation. As shown in Fig. 5, decreasing Kg

from 5.00 × 104 to 1.00 × 104 Var · rad/V causes ψf (t)
to converge to 1.00 p.u. more quickly, and thus accelerates
voltage-magnitude self synchronization. However, choosing
even smaller Kg = 0.300 × 104 Var · rad/V does not
further improve voltage-magnitude self-synchronization speed;
instead, it causes undesirable transient overshoots in ψf (t).
Furthermore, setting θg∞(0) to any other value gives rise to
nearly identical simulation results as those shown in Fig. 5. �

As highlighted via Example 1, for the self-synchronizing
synchronverter controller described in Section II-A, we can
accelerate phase-angle and voltage-magnitude self synchro-
nization by increasing Df and decreasing Kg , respectively, but
only up to a certain limit. Next, we offer analytical justification
for the empirical observations made in Example 1.

III. ANALYSIS OF SELF-SYNCHRONIZATION DYNAMICS

This section provides analytical insight into self-
synchronization dynamics by studying the system in (9)–(14).
Key to our analysis is the observation that, in practical settings
and with well-tuned parameters Df and Kg , phase-angle
self synchronization is much faster than that of the voltage
magnitude (see, e.g., Remark 1 and Fig. 4). This phenomenon
uncovers a natural separation of time scales, which we
leverage to construct two different reduced-order models that
can be used to study phase-angle and voltage-magnitude
self-synchronization dynamics independently. Then, based
on our analyses, we recommend practical parameter settings
that achieve fast self synchronization under various initial
conditions.

A. Phase-angle Self-synchronization Dynamics

In order to approximate APL dynamics with a reduced-
order model, we note that phase-angle self synchronization
is achieved more quickly than voltage-magnitude self syn-
chronization. Critical to the development of this reduced-order
model are the following assumptions.

Assumption 1. We assume that Df � τfψ
◦
f for a well-tuned

self-synchronizing synchronverter. This assumption rests upon
the fact that, if Df > τfψ

◦
f , the equilibrium points in (15)

are exponentially stable for the linear system obtained by
linearizing (9)–(14) around x◦. We deduce this by applying
the Routh-Hurwitz criterion (see, e.g., [19]) on the linearized
system characteristic equation, which is given by(

λ3 +
1

τf
λ2 +

√
3

2

Dfω∞U∞
JgRvτfωN

λ+
U∞

2

JgRvτfωN

)

·
(
λ+

1

τf

)
·

(
λ2 +

1

τf
λ+

√
3

2

ω∞U∞
KgRvτf

)
= 0. (16)

Since x◦ is an exponentially stable equilibrium point for
the linearized system under the condition that Df > τfψ

◦
f ,

this also guarantees that x◦ is exponentially stable for the
nonlinear system in (9)–(14) near x◦ (see, e.g., Theorem 4.13
in [20]). Moreover, numerical results obtained in Example 1
indicate that larger Df values would speed up phase-angle
self synchronization, hence Df � τfψ

◦
f for a well-tuned

synchronverter is a reasonable assumption. �

Assumption 2. Since state variables ψf and ψff are associated
with slower voltage-magnitude self-synchronization dynamics,
we assume that ψf (t)

ψff (t) = c is a constant during time scales that
are relevant to phase-angle self synchronization. �

With the above assumptions in place, we approximate APL
dynamics in (9)–(11) by a reduced second-order nonlinear
model (a derivation is provided in Appendix A), which consists
of (9) and

dωg∞
dt

= − c

τf
(α(ω∞ + ωg∞) sin θg∞ + ωg∞) , (17)

where c and α are, respectively, given by

c =
ψf
ψff

, α =

√
3

2
· Df

Jg
· U∞
ωNRv

. (18)
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Fig. 6. Phase portrait of the reduced-order APL model consisting of (9) and (17). Trajectories marked as (i) and (ii) approach but do not cross the boundary
delineated by ωg∞ = −ω∞ (traces marked as (iii)), so dθg∞

dt
> −ω∞ during phase-angle self synchronization. (a) Df = 4.38. (b) Df = 20.0.

Note that tuneable parameters Df and Jg both appear in the
expression for α. For ease of parameter tuning, we set Jg to be
the value tuned for normal operation and only vary Df [18].
In this reduced-order model, state variables may take initial
values θg∞(0) ∈ (−π, π) rad and ωg∞(0) = 0. We construct
phase portraits of dynamic trajectories arising from all possible
initial conditions in Fig. 6.

Via visual inspection of Fig. 6, we note that with θg∞(0) ∈
(0, π) rad, as Df increases from 4.38 (Fig. 6(a))
to 20.0 V · s/rad (Fig. 6(b)), the corresponding phase trajec-
tories (see, e.g., trace (i) corresponding to θg∞(0) = 3.14 rad
at the point A) get closer to, but remain above, the boundary
delineated by trace (iii) corresponding to ωg∞ = −ω∞.
This offers analytical justification for the first observation
in Example 1, where we note that increasing Df amplifies
the rate of convergence of θg∞(t) to zero, up to an upper
limit. Particularly, during phase-angle self synchronization,
dθg∞(t)
dt = ωg∞(t) > −ω∞, for all t > 0. This is evident

by checking that for all points along trace (iii) in Fig. 6, i.e.,
ωg∞ = −ω∞, (17) can be simplified as

dωg∞
dt

∣∣∣
ωg∞=−ω∞

=
c

τf
· ω∞ > 0. (19)

Treating c > 0 as a constant based on Assumption 2 and
Appendix A, for all points along trace (iii), ωg∞ grows
larger, i.e., trajectories do not cross boundary (iii) from above.
Furthermore, since Df does not appear in (19), we find that
as observed in Example 1, regardless of how large a value Df

takes, the rate of θg∞(t) convergence approaches but does not
exceed −ω∞.

With initial conditions θg∞(0) ∈ (−π, 0) rad, the phase
portraits in Fig. 6 first reveal large positive ωg∞ values before
trajectories eventually converge to the origin. As an example,
consider trace (ii) in Fig. 6(a), which corresponds to the phase
trajectory arising from initial condition θg∞(0) = −3.14 rad,
i.e., point B. The trajectory first climbs to point C corre-

sponding to large positive ωg∞ value, then reaches point D
with positive phase-angle value, before finally converging to
the origin in a similar fashion as the trajectory marked by
trace (i). By comparing traces marked as (ii) in Figs. 6(a)
and 6(b), we note that increasing Df causes larger initial
excursions in ωg∞(t). This explains the phenomenon observed
in Example 1 (specifically in Fig. 4(c)), where θg∞(t) jumps
to a positive value before converging to zero with the choice
of large Df . Via numerical fitting, we can express the phase-
angle self-synchronization time TA with sufficiently large Df

as

TA =
|θg∞(0)|
ω∞

+ ε, (20)

where ε represents an approximation error, which decreases
as Df increases.

B. Voltage-magnitude Self-synchronization Dynamics

To analyze voltage-magnitude self-synchronization dynam-
ics, we assume that the faster phase-angle self-synchronization
dynamics have reached steady state. Accordingly, we
set ωg∞ = 0 and θg∞ = 0 in (13) to get

dQtf

dt
=

√
3

2

ω∞ψfU∞
τfRv

− U2
∞

τfRv
− Qtf

τf
. (21)

The system consisting of (12) and (21) represents an approxi-
mate reduced-order RPL model, which is decoupled from the
faster APL dynamics. This RPL model is a linear system that
can be analyzed via its transfer function. To this end, we take
the Laplace transformation of (12) and (21), and solve the
resultant for ψf (s) as

ψf (s) =
ω2
n

s2 + 2ζωns+ ω2
n

· ψ?f =: Gψ(s) · ψ?f , (22)
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where natural frequency ωn and damping ratio ζ are given by

ωn =

√√
3

2

ω∞U∞
KgτfRv

, ζ =

√√
6

12

KgRv
ω∞U∞τf

, (23)

respectively, and ψ?f =
√

2/3U∞/ω∞ = 1 p.u. According
to (23), decreasing Kg reduces the RPL damping ratio ζ.
Indeed, as shown in Fig. 5, decreasing Kg from 5.00 × 104

(trace (i)) to 1.00×104 Var · rad/V (trace (ii)) causes voltage-
magnitude synchronization to take less time. However, further
decreasing Kg to 0.300× 104 Var · rad/V (trace (iii)) results
in an underdamped system, which would lead to transient over-
shoots in the ψf (t) trajectory. We also note that the transfer
function Gψ(s) is independent of initial condition θg∞(0).
This explains the final observation in Example 1 that θg∞(0)
has little to no influence on the dynamic response of ψf (t).

C. Parameter Values to Achieve Fast Self Synchronization

To begin, we tune the virtual resistance Rv in the power
computation block to a value with similar magnitude as the
total reactance Xt := Xs+Xe. Particularly, we choose Rv as

Rv = 0.15 · U
2
N

SN
, (24)

where UN and SN , respectively, denote the rated voltage and
capacity of the synchronverter. Next, recall that as observed in
Example 1, significantly slower phase-angle self synchroniza-
tion causes delays in voltage-magnitude self synchronization.
In order to achieve fast phase-angle self synchronization, we
recommend the following value of Df :

Df = η · Jg
ωNUN
SN

, (25)

where Jg is tuned for normal operation (i.e., after grid connec-
tion) using the method proposed in [21] and η is a tuneable co-
efficient. The choice of η ≥ 0.4 ensures that Df is sufficiently
large to achieve fast phase-angle self synchronization, so as to
satisfy Assumption 1 and justify the separation-of-time-scales
arguments that led to the development of the reduced-order
APL and RPL models in Sections III-A and III-B. This aspect
is detailed in Appendix B. At the other extreme with η = 6,
ε ≈ 0.002 s in (20), which is reasonably small. Although
larger Df leads to faster APL synchronization, the practical
choice of Df is limited by the processor sampling time Ts.
As shown in Appendix C, setting Df to be too large leads to
instability when the synchronverter is implemented in discrete
time, and the maximum allowable Df depends on Ts. In
typical implementations with Ts = 50 µs, we recommend
setting η = 0.6 to strike a balance between ensuring system
stability and achieving reasonably fast APL synchronization.
If the sampling time is smaller, we may increase η to further
accelerate the phase-angle self synchronization. Next, based
on the analysis in Section III-B, we set the desired damping
ratio in (23) to be ζ = 1/

√
2, so that short settling time is

achieved while avoiding large transient overshoots. Then, we
compute Kg as

Kg =

√
6τfω∞U∞
Rv

. (26)

With the choices outlined in (24) and (26), along with
setting τf = 0.01 s to guarantee the LPFs’ noise rejection
ability [15], the expected RPL settling time is [19]

TR =
4

ζωn
= 8τf = 0.08 s, (27)

where the second equality above results by substituting (23). In
fact, with the parameter settings in (24)–(26), we can prove the
self-synchronization capability of the proposed controller via
stability analysis of the reduced-order APL and RPL models.
Interested readers may refer to Appendix D for details.

IV. SIMULATION VERIFICATION

Via computer simulations in PSCAD/EMTDC, we verify
the analyses and the recommended parameter settings from
Section III. We also validate that the reduced second-order
nonlinear APL model accurately reflects phase-angle self-
synchronization dynamics. Since the ideas presented in Sec-
tion III can be readily validated for the system used in
Example 1 by examining Figs. 4 and 5, here, we opt for a
different set of system parameters, as follows: Rs = 1.62 Ω,
Ls = 43 mH, Re = 1.51 Ω, Le = 40 mH, ωN = ω?g =
ω∞ = 376.99 rad/s, UN = U∞ = 13.8 kV, udc = 25 kV,
and SN = 2 MVA.

A. Verification of Self-synchronization Analysis

Using the parameter tuning method in [21] customized
for normal operation (i.e., after grid connection), we first
choose Jg = 34.0 kg ·m2. Then, according to (24), (25),
and (26), we compute synchronverter parameters during
self synchronization (i.e., before grid connection) and ob-
tain Rv = 14.3 Ω, Df = 531 V · s2/rad, and Kg =
8.92 × 103 Var · rad/V. In our simulations, the solution
time step (which is analogous to controller sampling time
in practice) is very small (1 µs), so setting η = 6 does
not destabilize the system. With the above parameter values,
we simulate the synchronverter-connected system in Fig. 2 in
PSCAD/EMTDC with initial phase-angle difference θg∞(0) =
−3.14, 0, 3.14 rad. In all cases, the synchronverter begins
self synchronization at t = 0 s and reaches steady state
before t = 0.15 s. At this point, we close the breaker, set
Switch 1 from position 2 to 1, and fix Df = 2.17 V · s2/rad
to begin normal operation.

Key simulation results are plotted in Fig. 7. As shown
in Fig. 7(a) by traces (i) and (iii) respectively, θg∞(t) con-
verges to nearly zero at TA ≈ 0.01 s for both θg∞(0) =
−3.14, 3.14 rad. This agrees well with the phase-angle self-
synchronization time predicted in (20), and it also validates the
effectiveness of the choice of Df recommended in (25). More-
over, as shown in Fig. 7(b), the actual ψf (t) trajectories arising
from all phase-angle initial conditions (traces (i)–(iii)) nearly
overlap with the step response of Gψ(s) in (22) (trace (iv)).
The settling time for all ψf (t) trajectories shown as traces (i)–
(iii) in Fig. 7(b) is TR ≈ 0.08 s, as predicted in (27). Moreover,
varying the initial condition θg∞(0) does not significantly
affect ψf (t), as expected from the analysis performed in
Section III-B. Thus, simulation results shown in Fig. 7(b)
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Fig. 7. Self-synchronization simulation results using the proposed controller
design. These verify our analyses of self-synchronization dynamics, which
leverage two suitable reduced-order models to study phase-angle and voltage-
magnitude dynamics independently, as detailed in Section III.

verify the reduced-order RPL model and subsequent analysis
for voltage-magnitude self-synchronization dynamics, as well
as the parameter settings given by (24) and (26). By com-
paring Figs. 7(a) and 7(b), we note that there indeed exists
a separation of time scales between phase-angle and voltage-
magnitude dynamics. Particularly, θg∞(t) converges to zero
very quickly, followed by ψf (t) to 1 p.u. by t = 0.15 s.
This ensures synchronization of ega(t) to u∞a, as shown in
Fig. 7(c). Furthermore, no significant start-up currents are
observed after the synchronverter is physically connected to
the grid at t = 0.15 s, as shown in Fig. 7(d).

Remark 2 (Acknowledging processor sampling time). Sup-
pose that the processor that implements the proposed controller
samples at Ts = 50 µs, as is the case for the experimental
setup in Section V. To emulate this in our simulation, we
set the solution time step to be 50 µ s in PSCAD/EMTDC.
Here, the synchronverter cannot achieve self synchronization
if we adopt Df = 531 V · s2/rad as before, since this

Fig. 8. Self-synchronization simulation results of the proposed controller
design. Assuming that the processor sampling time is 50 µs, Df is computed
with η = 0.6.

value is computed with the assumption that Ts is much
smaller. Instead, we set η = 0.6, recompute Df according
to (25) to get Df = 53.1 V · s2/rad. Again, we simulate the
synchronverter-connected system in Fig. 2 with initial phase-
angle difference θg∞(0) = −3.14, 0, 3.14 rad. Key results are
shown in Fig. 8, where the phase-angle difference θg∞(t) and
the excitation flux ψf (t), respectively, converge to 0 and 1 p.u.
before t = 0.15 s, and we can safely close the breaker
after that. Based on a visual inspection of Fig. 8(a), θg∞(t)
converges to nearly zero at approximately 0.03 s, which is
expectedly greater than that observed in Fig. 7 obtained using
larger value of Df . On the other hand, note that the RPL
settling time is still 0.08 s, as shown in Fig. 8(b). Thus, the
use of a practical sampling time does not affect the total time
needed to achieve self synchronization, which is limited by
the RPL. �

Remark 3 (Self-synchronization dynamics with LCL filter).
Since an LCL filter is commonly used in the synchronverter,
we further validate the effectiveness of our proposed design
on the LCL-filter-based synchronization design. As shown
in Fig. 9, the LCL filter consists of a converter-side induc-
tance L1 = 25 mH with parasitic resistance R1 = 1.40 Ω,
a grid-side inductance L2 = 6.7 mH with parasitic resis-
tance R2 = 0.38 Ω, and a filter capacitor Cf = 1.4 µF
with damping resistance Rf = 7.70 Ω. Other system pa-
rameters remain unchanged, and the synchronverter param-
eters during self synchronization are recomputed as follows:
Jg = 42.0 kg ·m2, Rv = 14.3 Ω, Df = 661 V · s2/rad,
and Kg = 8.92 × 103 Var · rad/V. We consider initial
condition θg∞(0) = −3.14 rad, and plot the a-phase grid
voltage uta, LCL-filter output voltage eCa, and synchron-
verter inner voltage ega in Fig. 10. Via visual inspection, we
find that both eCa (trace (i)) and ega (trace (ii)) converge
to uta (trace (iii)) before t = 0.15 s. Adopting the LCL filter
does not impede successful self synchronization because the
synchronverter controller tracks eg to ut and, for well tuned
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Fig. 9. Grid interface of the LCL-filter-based synchronverter.

Fig. 10. Self-synchronization simulation results of the proposed controller
design with an LCL filter.

LCL filter, eC ≈ eg (for the fundamental-frequency compo-
nent) before connection. Moreover, by comparing ega of the
L-filter-based synchronverter (trace (i) in Fig. 7) and that of the
LCL-filter-based synchronverter (trace (ii) in Fig. 10), we find
that the two traces are nearly identical. In fact, the L- and the
LCL-filter-based synchronverters achieve self synchronization
with nearly identical dynamics. This is because during self
synchronization, the two synchronverters can be modelled by
the same full-order dynamical system, i.e., (9)–(14). As such,
our analysis for self synchronization dynamics via model-order
reduction and the resultant parameters to achieve fast self
synchronization are valid for both L- and LCL-filter-based
synchronverter designs. �

B. Verification of Reduced Second-order APL Model

Here, we verify the suitability of the reduced second-
order APL model described by (9) and (17) (Model A)
developed in Section III-A as well as pertinent assump-
tions that lead to it. We do so by comparing the dynam-
ics of Model A with those of the full-order synchronverter
model (9)–(14) (Model B) and the full-order Model B ex-
cept with (10) replaced by (29) (Model C). Note that the
constant c = 3.4 is found via trial and error.

Simulations are conducted using Models A, B, and C
with initial phase-angle difference θg∞(0) = 3.14 rad. The
resulting time-domain trajectories of θg∞(t) and phase por-
traits (ωg∞-θg∞ plots) are depicted in Fig. 11. As shown in
Fig. 11(a), the dynamics resulting from Models A (trace (i)),
B (trace (ii)), and C (trace (iii)) are nearly identical. This is
also observed in their respective phase portraits, as shown in
Fig. 11(b). These numerical results verify that with sufficiently
large Df , replacing (10) with (29) and making Assumption 2
do not cause large modelling errors in the resultant APL
dynamics, as assumed in Appendix A. Thus, the reduced
second-order APL model indeed accurately captures the actual
phase-angle self-synchronization dynamics.

Fig. 11. Verification of the reduced second-order APL model (Model A)
via comparisons with the full-order self-synchronizing synchronverter model
in (9)–(14) (Model B) and Model B with (10) replaced by (29) (Model C).
(a) θg∞(t) dynamics. (b) Phase portraits (ωg∞-θg∞ plots).

Fig. 12. Schematic diagram of self-synchronizing synchronverter experimen-
tal setup.

V. EXPERIMENTAL VERIFICATION

We implement the proposed self-synchronization synchron-
verter design experimentally via the setup shown in Fig. 12.
The synchronverter is instantiated in a three-phase two-level
voltage source inverter with an LC filter. The inverter switch-
ing frequency is 10 kHz. The proposed control algorithm is
implemented in the dSPACE DS1103 processor board with
a fixed sampling frequency 20 kHz, and the grid voltage
is emulated by the Chroma 61830 grid simulator. Relevant
signals are measured using the Tektronic MDO 3034 oscil-
loscope. System parameters are as follows: R3 = 0.25 Ω,
L3 = 8.0 mH, Cf3 = 5.6 µF, Rf3 = 0.5 Ω, Re = 0, Le = 0,
ωN = ω?g = ω∞ = 314.16 rad/s, UN = U∞ = 380 V,
udc = 650 V, and SN = 3.0 kW. Note that due to safety
considerations, we adopt a low-voltage synchronverter exper-
imentally, but this is sufficient to validate the effectiveness of
the proposed self-synchronization design.

Based on the method in [21] and (24)–(26), we choose
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Fig. 13. Experimental results of the self-synchronization dynamics using the proposed controller design when (a)–(d) θg∞(0) = −3.14 rad, (e)–(h) θg∞(0) =
0, and (i)–(l) θg∞(0) = 3.14 rad/s.

tuneable parameters relevant to self synchronization as fol-
lows: Jg = 0.672 kg ·m2, Rv = 7.22 Ω, Df =
16.0 V · s2/rad, and Kg = 405 Var · rad/V. Similar to
the simulation conducted in Remark 2, the actual sampling
time Ts = 50 µs, so Df is computed using (25) with η = 0.6.
With the experimental setup in conjunction with the parame-
ters above, we consider three cases in which the initial phase-
angle difference θg∞(0) is −3.14, 0, and 3.14 rad. Experimen-
tal results are shown in Fig. 13, with the self synchronization
process beginning at t = 0.04 s, at which point the phase-angle
differences θg∞(t) in Figs. 13(b)(f)(j) start to be measured. We
find that in all three cases, the proposed controller achieves
self synchronization and all trajectories reach steady state
within 0.15 s, similar to the simulation results in Section IV-A.
Moreover, as shown in Figs. 13(c)(g)(k), ψf (t) trajectories in
all cases reach 1 p.u. with settling time 0.08 s. Also, ψf (t)
trajectories with different initial phase-angle differences are
similar to each other. These observations verify our analysis in
Sections III-B and III-C. Furthermore, upon closer inspection
of Figs. 13(a)(b) and (i)(j), we find that θg∞(t) converges to
nearly zero approximately 0.03 s after self synchronization

begins for both θg∞(0) = −3.14, 3.14 rad. This matches
well with the simulations and discussion in Remark 2. We
note that our observations here do not contradict those made
in Example 1, since the speed of θg∞(t) converging to zero
is only slightly delayed and this small delay has little effect
on the RPL response speed. In summary, the experimental
results echo simulations in Section IV, and they verify the
proposed self-synchronization controller, our analysis of self-
synchronization dynamics, and the recommended parameter
settings in (24)–(26).

VI. CONCLUDING REMARKS

This paper analyzes self-synchronization dynamics for a
synchronverter design that uses only a virtual resistance (in-
stead of both resistance and reactance) to provide active-
and reactive-power feedback signals prior to grid connec-
tion. Our analyses leverage suitable reduced-order models,
which are developed based on separation-of-time-scales ar-
guments, to study the faster phase-angle and slower voltage-
magnitude self-synchronization dynamics independently. The
system-theoretic perspectives provide analytical justification
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for the effects of controller parameters and initial conditions
on self-synchronization dynamics, yield accurate estimates for
self-synchronization times, and offer guidance on parameter-
value settings. Compelling directions for future work in-
clude (i) adopting our proposed self-synchronization method
in other VSG designs (such as the ones in [4]–[7], [22],
[23]), and (ii) adopting similar model-order reduction ideas to
analyze dynamics of other self-synchronizing VSG designs.

APPENDIX

A. Derivation of Reduced Second-order APL Model

During time scales that are relevant to the faster phase-
angle self-synchronization dynamics, the following assertions
are valid: (i) 0 < ψf (t) < ψ◦f because ψf (t) increases
from ψf (0) > 0 but has not yet converged to ψ◦f (see
traces marked as (ii) in Figs. 4(b) and 4(d)), and (ii) 0 <
ψff (t) < ψf (t) as the filtered signal ψff (t) is delayed com-
pared with ψf (t). Combining the statements above, we have
that 0 < ψff (t) < ψf (t) < ψ◦f . Also recall that Df � τfψ

◦
f

from Assumption 1. With these in mind, we get that

Df
ψf
τfψ2

ff

=
Df

τfψ◦f
·
ψ◦f
ψff
· ψf
ψff
� 1. (28)

Thus, we can approximate (10) as

dωg∞
dt

= −Df

√
3

2

(ω∞ + ωg∞)ψfU∞
JgτfωNRvψff

sin θg∞

+Df
ψf
τfψ2

ff

· Tef

Jg
. (29)

Furthermore, by rearranging (11) and (14), we get that√
3

2

(ω∞ + ωg∞)ψfU∞
τfωNRv

sin θg∞ =
dTef

dt
+
Tef

τf
, (30)

ψf
τf

=
dψff

dt
+
ψff

τf
. (31)

Then, by substituting (30) and (31), respectively, into the first
and second terms on the right-hand side of (29), and further
simplifying the resultant expression, we get that

dωg∞
dt

= −Df

Jg
· d
dt

(
Tef

ψff

)
, (32)

where we make use of the quotient rule for derivatives. Next,
by assuming that ωg∞(0) ≈ 0 and Tef (0) = 0, we integrate
both sides of (32) to yield

Tef = −Jg ωg∞ψff

Df
. (33)

Finally, substituting (33) into (29) and bearing in mind As-
sumption 2, we obtain (17), as desired. The second-order
model consisting of (9) and (17) approximates the APL
dynamics during phase-angle self synchronization.

B. Verifying that (25) satisfies Df � τfψ
◦
f

According to [21] and also used in the present work, we set

Jg =

√
3
2ψ
◦
fU∞ cos θ◦g∞

ω?n
2Xt(1−2τfω?nζ

?)
, (34)

which is valid with Dp = 0 as switch 2 in Fig. 2 is open.
Also, by solving SN from (24), we have

SN = 0.15 · U
2
N

Rv
. (35)

Substituting (34) and (35) into (25), we get

Df = η ·

√
3
2ψ
◦
fU∞ cos θ◦g∞

ω?n
2Xt(1− 2τfω?nζ

?)
· ωNRv

0.15UN

≈
10
√

6 η ωNψ
◦
f

3ω?n
2(1− 2τfω?nζ

?)
, (36)

where the approximation above results by assuming that Rv ≈
Xt, U∞ ≈ UN , and cos θ◦g∞ ≈ 1. Further suppose that
the desired APL damping ratio ζ? = 0.707 and natural
frequency ω?n ∈ (0, 50). Then the choice of η ≥ 0.4 yields

Df > 1.38ψ◦f � τfψ
◦
f , (37)

as desired.

C. Effect of Processor Sampling Time Ts on Df

In practical implementation, relevant signals are sampled by
the controller at fixed time period. We use the reduced-order
APL model in (9) and (17) to show that the choice of Df

depends on the processor sampling time Ts. Let θg∞[n] =
θg∞(nTs) and ωg∞[n] = ωg∞(nTs), n = 1, 2, . . . Then, the
system model in (9) and (17) can be discretized as

θg∞[n] = θg∞[n− 1] + Ts ωg∞[n− 1], (38)

ωg∞[n] =ωg∞[n− 1]− Tsc

τf
(α(ω∞ + ωg∞[n− 1])·

sin θg∞[n− 1] + ωg∞[n− 1]) , (39)

and successful self synchronization is achieved when its state
vector (θg∞[n], ωg∞[n]) converges to the equilibrium x◦d1 =
(2kπ, 0), k ∈ Z. Next, linearize the discrete APL model (38)
and (39) around x◦d1 to get[

θg∞[n]
ωg∞[n]

]
=

[
1 Ts

−αcTsωg∞
τf

1− cTs

τf

] [
θg∞[n− 1]
ωg∞[n− 1]

]
=: Ad

[
θg∞[n− 1]
ωg∞[n− 1]

]
, (40)

with the characteristic equation |λdI −Ad| = 0, i.e.,

λd
2 −

(
2− cTs

τf

)
λd +

(
1− cTs

τf
+
αcTs

2ω∞
τf

)
= 0, (41)

where λd denotes the eigenvalues of the system matrix Ad.
Then, we study the impact of Df on λd via the root locus
analysis. To do this, we express the characteristic equation
in (41) as follows:

1 +K
1

(λd − p1) (λd − p2)
= 0, (42)
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Fig. 14. Root loci patterns of the linearized discrete-time APL model in the
complex plane.

where K = αcTs
2ω∞
τf

, p1 = 1 − cTs

τf
and p2 = 1. We note

that K is proportional to α, and in turn Df as well, so
variations in K and Df produce the same trends in the root
loci of (42). By increasing K from 0 to +∞, and also bearing
in mind that cTs � τf in practice, we obtain the root loci as
shown in Fig. 14. The eigenvalues of Ad are within the unit
circle only if

Df <

√
2

3

JgωNRv
Tsω∞U∞

. (43)

In other words, though larger Df accelerates the phase-angle
self synchronization as the analysis in Section III-A shows,
making Df too large causes system instability. Moreover, ac-
cording to (43), the upper limit of Df is inversely proportional
to the sampling time Ts. Thus, in practical implementations
where Ts is larger, the maximum value that Df can take before
the discrete-time system becomes unstable is smaller.

D. Proof of Self-synchronization Capability

Analytical proof of successful self synchronization is nec-
essary, since repeated simulations and experiments are valid
only on a case-by-case basis and do not guarantee the self-
synchronization capability of the synchronverter under all
initial conditions. Here, via stability analysis, we show that the
proposed design successfully achieves self synchronization for
all θg∞(0) ∈ (−π, π) rad (the initial value for other state vari-
ables are ωg∞(0) = 0, Tef (0) = 0, ψf (0) = ψff (0) = 0.01,
Qtf (0) = 0, since they can be initialized in the controller).
Successful self synchronization is achieved when θg∞ and ψf ,
respectively, converge to θ◦g∞ = 2kπ, k ∈ Z (k = 0 in most

cases), and ψ◦f =
√

2
3
U∞
ω∞

.
Since studying the dynamics of the full-order system (9)–

(14) is analytically intractable, we resort to two reduced-order
models, i.e., the APL model in (9) and (17) and the RPL model
in (12) and (21), which capture phase-angle synchronization
dynamics in the APL and voltage-magnitude synchronization
dynamics in the RPL. As shown in Section III and verified in
Sections IV and V, these two reduced-order models are valid
for a well-tuned synchronverter.
Convergence of θg∞(t) to zero. The set of possible initial
conditions of the reduced second-order APL model in (9)
and (17) is given by

B = {(θg∞, ωg∞) | −π < θg∞ < π, and ωg∞ = 0} . (44)

Fig. 15. Lyapunov function V (θg∞, ωg∞) of the second-order APL model
in (9) and (17).

For the system in (9) and (17), consider the Lyapunov function
candidate

V (θg∞, ωg∞) =
τf
cα

(
ωg∞ + ω∞ ln

(
ω∞

ω∞ + ωg∞

))
+ (1− cos θg∞) . (45)

As shown in Fig. 15, let

D =

{
(θg∞, ωg∞)

∣∣∣∣ −π < θg∞ < π, ωg∞ > −ω∞,
and V (ωg∞, θg∞) < 2

}
,

so that B ⊂ D; V is positive definite in set D, and

V̇ (θg∞, ωg∞) = −
ω2
g∞

α(ω∞ + ωg∞)
≤ 0, (46)

for all (θg∞, ωg∞) ∈ D. Let S = {(θg∞, ωg∞) ∈ D |
V̇ (θg∞, ωg∞) = 0}. Note that V̇ (θg∞, ωg∞) = 0 only
if ωg∞ = 0. Hence, S = {(θg∞, ωg∞) ∈ D | ωg∞ = 0},
which contains only the trivial trajectory θg∞(t) = 0 and
ωg∞(t) = 0. To see this, consider ωg∞ = 0 and θg∞ 6= 0,
then dωg∞

dt 6= 0, so the trajectory will not remain within S.
Therefore, according to LaSalle’s theorem (see, e.g., [20]),
the origin is asymptotically stable and we conclude that all
trajectories starting from initial points in set B converge to
the origin. In other words, for a well-tuned self-synchronizing
synchronverter, both θg∞(t) and ωg∞(t) converge to zero
with initial phase-angle difference θg∞(0) ∈ (−π, π) rad, as
desired.
Convergence of ψf (t) to ψ◦f . The reduced-order RPL model
in (12) and (21) is linear. By defining ψf = ψf − ψ◦f , where

ψ◦f =
√

2
3
U∞
ω∞

, we get the following equivalent system:

d

dt

[
ψf
Qtf

]
=

[
0 − 1

Kg√
3
2
ω∞U∞
τfRv

− 1
τf

] [
ψf
Qtf

]
. (47)

Also, substituting (26) into (47), we find that the eigenvalues
of the system in (47) are

λ1 = − 1

2τf
+ j

1

2τf
, λ2 = − 1

2τf
− j 1

2τf
, (48)
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which have negative real parts. Thus, ψf (t) and Qtf (t) both

converge to zero. Equivalently, ψf converges to ψ◦f =
√

2
3
U∞
ω∞

,
as desired.
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