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Abstract—This paper proposes an optimal strategy for reg-
ulating active-power flows in electric power systems based
on sparsity-promoting linear-quadratic-Gaussian (LQG) control.
The proposed method relies on the mapping of nodal active-
and reactive-power injections to line flows which are obtained
via a measurement-based approach. Building on this, we outline
a combined sparsity-promoting linear-quadratic regulator and
Kalman-filter design. The optimal controller sparsity is identified
using the alternating direction method of multipliers, which
strikes a balance between feedback controller sparsity and
the closed-loop dynamic performance. With this, we optimally
dispatch generators and controllable loads to achieve desired
line flows while ensuring zero steady-state frequency offset. We
demonstrate the utility of the proposed LQG controller via a
representative congestion-management application deployed on
the New England 10-machine 39-bus test system.

Index Terms—Alternating direction method of multipliers
(ADMM), injection shift factors, linear-quadratic-Gaussian con-
trol, line-flow control, optimization, sparsity-promoting control.

I. INTRODUCTION

W ITH rapidly growing global electricity demand, there is
impetus to expand existing transmission infrastructure,

but this may be hindered by economic and environmental
constraints [1], and in turn, transmission lines may become
overloaded (i.e., operate above their thermal limits) or nearly
so [2]. Thus, it is necessary to develop effective line-flow
control methods that optimally utilize existing and expected
infrastructure resources, such as conventional power plants,
controllable loads, and distributed energy resources1 (DERs),
while maintaining reliable and secure system operation. In
such a setting, dispatchable loads and DERs, e.g., rooftop
solar photovoltaics and energy storage devices, provide the
necessary flexibility as active-power injection control inputs to
achieve desired line active-power flows and system frequency
in a timely fashion. However, controlling a large number of
geographically dispersed loads and injections in a centralized
manner requires sizeable communication networks and wide-
area actuation capabilities. To effectively regulate line flows in
large-scale electric power systems, local-area decision-making
offers a practical and attractive alternative, which embeds sev-
eral advantages, including (i) active participation of consumers
via, e.g., demand response, (ii) optimized utilization of existing
assets, and (iii) accommodating and utilizing all generation
and storage technologies [3], [4]. To this end, we propose a
strategy to regulate transmission-line active-power flows and
system frequency to desired reference values using a sparsity-
promoting linear-quadratic-Gaussian (LQG) controller.

1A list of abbreviated terms used in this paper appears in Appendix A.

Line-flow control is potentially useful in a variety of op-
erational tasks, such as congestion management, automatic
generation control (AGC), and eliminating redundant loop
flows [5], [6]. In this paper, we propose a method that regulates
line-flow and system-frequency trajectories to asymptotically
converge to their desired reference values, by optimally dis-
patching active-power injections at electrically nearby buses.
The proposed control strategy is novel from several perspec-
tives. First, by leveraging a sparsity-promoting control design,
the resulting feedback structure requires only local actuation
capabilities to achieve desired line flows. As illustrated via
extensive numerical case studies, desired control aims are
achieved with sufficient accuracy while the controller syn-
thesis effort is significantly reduced by constructing suitably
simplified power-system models. For example, the line-flow
dynamical model relies on linear mappings of nodal injec-
tions to line active-power flows, and generator dynamics are
captured by the swing equation along with a governor. Finally,
the injections-to-flows mapping can be obtained by using only
real-time measurements without relying on an offline system
network model, which enables the controller to be adaptive to
system-topology or operating-point changes.

Existing methods to accomplish line-flow control can be
categorized into (i) centralized, (ii) distributed, and (iii) de-
centralized. Centralized line-flow control is performed as part
of the AGC system, which maintains scheduled inter-area tie-
line flows and ensures that each balancing area serves its own
net load [7], [8]. However, this requires a central decision
maker and a substantial communication infrastructure. On the
other hand, distributed consensus-based controllers arrive at
actuation decisions collectively. This process may necessitate
numerous instances of information exchange amongst nodes in
the system, which may result in longer convergence times [9].
Finally, decentralized line-flow control has been realized
through hardware-based control using, e.g., distributed static
series compensators [10], phase shifting transformers [11],
flexible AC transmission system controllers [2], and unified
power flow controllers [1]. While these solutions require little
to no communication, they necessitate additional infrastructure
investment and installing them ubiquitously may be economi-
cally prohibitive. Furthermore, they do not adapt to contingen-
cies and system modifications, nor do they guarantee global
optimality [12]. Distinct from prior work mentioned above, our
proposed control strategy leverages existing resources, requires
only local actuation signals, and adapts to potential operating-
point and topology changes. This is accomplished by incor-
porating real-time measurements and dispatching electrically
nearby synchronous generators and controllable loads in order
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to optimally regulate line flows and system frequency.
This paper builds on our preliminary work reported in [13]

and provides extensions in several directions. First, in addition
to tracking line flows in [13], we incorporate synchronous-
machine dynamics into the modelling framework to enable
optimal regulation of system frequency. Second, we utilize a
measurement-based method to obtain the up-to-date injections-
to-flows mapping and illustrate via numerical case studies
that, compared to the model-based alternative, the improved
controller is adaptive to changes in network topology and
system operating point. Additionally, in order to develop a
controller that requires only local-area actuation capability, we
tailor the continuous-time sparsity-promoting optimal control
framework in [14] to our discrete-time problem setting and
assess the trade-off between controller sparsity and corre-
sponding dynamic performance. Worth mentioning here are
prior efforts that use sparsity-promoting methods for a va-
riety of other power-system applications, such as wide-area
control [15] and damping inter-area oscillations [16], [17].
A review of additional pertinent applications is available
in [18]. Finally, we illustrate the efficacy of the controller
via numerical case studies involving the Western Electricity
Coordinating Council (WECC) and the New England (NE)
test systems.

The remainder of this manuscript is organized as follows.
In Section II, we establish mathematical notation and de-
scribe the system and pertinent dynamical models. Section III
outlines design aspects of an LQG controller to achieve
optimal tracking of line active-power flows while maintaining
nominal system frequency. The sparsity-promoting optimal
control problem and optimization algorithm for its synthesis
are outlined in Section IV. In Section V, we demonstrate the
utility of the sparsity-promoting optimal controller via case
studies involving the WECC and NE test systems. Finally,
concluding remarks and directions for future work are pro-
vided in Section VI.

II. PRELIMINARIES

This section establishes mathematical notation, describes the
power system network, and outlines the mapping of nodal
active- and reactive-power injections to line active-power
flows. Furthermore, we present the system dynamical models
required for controller design.

A. Mathematical Notation

The matrix inverse is denoted by (·)−1, transpose by (·)T,
trace by Tr {·}, and Frobenius norm by ‖ · ‖F. The mag-
nitude of a complex-valued scalar and cardinality of a set
are denoted by | · |. A diagonal matrix formed with entries
of the vector x stacked on the main diagonal is denoted by
diag(x); and diag(x/y) forms a diagonal matrix with the ith
diagonal entry given by xi/yi, where xi and yi are the ith
entries of vectors x and y, respectively. For column vectors
x = [x1, . . . , xM ]T and y = [y1, . . . , yM ]T, x ◦ y denotes the
entry-wise product. The spaces of M -dimensional real- and
complex-valued column vectors are denoted by RM and CM ,
respectively; the spaces of L ×M real- and complex-valued

matrices are denoted by RL×M and CL×M , respectively. The
N × N identity matrix is denoted by IN . The standard
inner product of matrices A and B is denoted by 〈A,B〉 =
Tr(ATB). The M -dimensional vectors with all 0’s and 1’s
are denoted by 0M and 1M , respectively; ei denotes a column
vector with all 0’s except with the ith entry equal to 1, and
eij := ei − ej . For a vector θ = [θ1, . . . , θM ]T, θi ∈ [−π, π]
∀ i = 1, . . . ,M , cos(θ) := [cos(θ1), . . . , cos(θM )]T and
sin(θ) := [sin(θ1), . . . , sin(θM )]T.

B. Network Description

Consider an AC network with nodes collected in the set
N = G ∪ L, where G and L denote the sets of generator and
load buses, respectively. Transmission lines (each represented
by two directed edges) are collected in the set of edges
E := {(m,n)} ⊆ N × N . Each transmission line connecting
buses m and n is modelled using the lumped-parameter Π-
model with series admittance ymn ∈ C and shunt admittance
yshmn ∈ C. Then, the entry in the mth row and nth column of
the network admittance matrix, denoted by Y , is specified as

[Y ]mn :=


ym +

∑
(m,k)∈E ymk, if m = n,

−ymn, if (m,n) ∈ E ,
0, otherwise,

(1)

where
ym = gm + jbm := ymm +

∑
k∈Nm

yshmk (2)

denotes the total shunt admittance connected to node m,
Nm ⊆ N represents the set of neighbours of node m, and
ymm ∈ C captures any passive shunt elements connected to
node m. Let Vi,[k] = |Vi,[k]|∠θi,[k] ∈ C represent the voltage
phasor at node i at discrete time instant k = 0, 1, . . . ; and let
Ii,[k] ∈ C denote the current injected into node i at time instant
k. Furthermore, collect steady-state nodal voltage phasors into
the vector V[k] = [V1,[k], . . . , V|N |,[k]]

T and current injections
into I[k] = [I1,[k], . . . , I|N |,[k]]

T. Then, at time instant k,
applying Kirchhoff’s current law at each node and stacking
them into matrix-vector form, the current balance can be
compactly expressed as

I[k] = Y V[k]. (3)

Denote the vector of complex-power nodal injections at
time instant k by S[k] = [S1,[k], . . . , S|N |,[k]]

T = P[k] +
jQ[k], with P[k] = [P1,[k], . . . , P|N |,[k]]

T and Q[k] =
[Q1,[k], . . . , Q|N |,[k]]

T. (By convention, Pi,[k] and Qi,[k] are
positive for generation and negative for loads.) Then, complex-
power nodal injections can be compactly written as

S[k] = diag
(
V[k]
)
I∗[k]. (4)

C. Model- and Measurement-based Line-flow Sensitivities

Recall that our goal is to regulate line active-power flows
to desired values by optimally modulating active-power in-
jections. To this end, consider variations in the active power
flowing across line (m,n), denoted by ∆P(m,n),[k], resulting



3

from nodal active-power injections ∆P[k] = P[k+1] − P[k],
which are approximated by

∆P(m,n),[k] ≈ Φ(m,n),[k]∆P[k] + ζ(m,n),[k], (5)

where ζ(m,n),[k] represents a bounded disturbance due to
variations in reactive-power injections and errors in the linear
approximation. In practice, ζ(m,n),[k] is small for transmission-
level lines where the active- and reactive-power decoupling as-
sumptions are valid [19]. The injections-to-flow mapping in (5)
will be useful to uncover discrete-time line-flow dynamics in
Section II-D. The sensitivities Φ(m,n),[k] can be computed via
model- and measurement-based approaches, described below.
Note that while they can be computed at each time instant k,
in practical implementation, we envision that they would be
updated periodically as the operating point sufficiently deviates
from the previous one at which they were obtained.

1) Model-based Sensitivities: Express the current flowing
in line (m,n) ∈ E at time instant k as

I(m,n),[k] =
(
ymne

T
mn + yshmne

T
m

)
Y −1I[k]

=: (αT
(m,n) + jβT

(m,n))I[k], (6)

where αT
(m,n) +jβT

(m,n) ∈ C|N | are the current injection sensi-
tivity factors. Denote, by S(m,n),[k] = P(m,n),[k] + jQ(m,n),[k],
the complex power flowing across line (m,n). We can write

S(m,n),[k] = Vm,[k]I
∗
(m,n),[k]. (7)

Substituting the current injection sensitivity factors from (6)
into (7), and defining θm := θm1|N | − θ, we obtain [20]

P(m,n),[k] = Φ(m,n),[k]P[k] + ε(m,n),[k], (8)

where

Φ(m,n),[k] = |Vm|uT(m,n), ε(m,n),[k] = −|Vm|vT(m,n)Q[k],
(9)

with u(m,n), v(m,n) ∈ R|N | given by

u(m,n) = diag

(
cos(θm)

|V |

)
α(m,n) + diag

(
sin(θm)

|V |

)
β(m,n),

(10)

v(m,n) = diag

(
sin(θm)

|V |

)
α(m,n) − diag

(
cos(θm)

|V |

)
β(m,n).

(11)

The expression in (8) reveals the contribution of each nodal
injection to the net active-power flow in line (m,n). The
parametrization of voltage magnitudes and phases with respect
to k is dropped in (9)–(11) to contain notational burden. Note
that while P(m,n),[k] is linearly related to nodal active- and
reactive-power injections P[k] and Q[k], (8) is nonlinear in
|V | and θ. The expression in (5) follows straightforwardly by
linearizing (8) around the operating point at time instant k.
We refer readers to [21] for more details on this derivation.

2) Measurement-based Sensitivities: In the above, the com-
putation of line-flow sensitivity factors Φ(m,n),[k] requires
accurate and up-to-date network topology, parameters, and
operating point information, which may not be available in
real time. On the other hand, phasor measurement units
(PMUs), which provide synchronized voltage, current, and

frequency measurements as many as 60 times per second [22],
enable one to estimate the line-flow sensitivities without
an up-to-date system network model. To this end, assume
measurements of P(m,n),[k] are available from PMUs, and
collect incremental variations ∆P(m,n),[k] = P(m,n),[k+1] −
P(m,n),[k], k = 1, . . . , η + 1, into vector ∆Π(m,n) ∈ Rη ,
i.e., ∆Π(m,n) = [∆P(m,n),[1], · · · ,∆P(m,n),[η]]

T. Similarly,
collect PMU measurements of variations in active-power in-
jections ∆P[k], k = 1, . . . , η, into matrix ∆Π ∈ Rη×|N|, i.e.,
∆Π = [∆P[1], · · · ,∆P[η]]

T. Then, it follows that [23]

∆Π(m,n) = ∆ΠΦT
(m,n) + e(m,n), (12)

where e(m,n) accounts for mismatches resulting from the
active- and reactive-power decoupling assumption as well as
measurement errors. If η > |N |, then (12) is an overdeter-
mined system. With weighted least-squares (WLS) estimation,
the solution for Φ(m,n) can be solved as [23]

ΦT
(m,n) = (∆ΠTW∆Π)−1∆ΠTW∆Π(m,n), (13)

where W ∈ Rη×η is a weighing matrix. In the generic WLS
method with uncorrelated measurement errors, W is a diagonal
matrix, and the more recent measurements are preferentially
weighted by setting [W ]ii = ϕη−i for some fixed “forgetting”
factor ϕ ∈ (0, 1] [24]. The formulation in (13) implies that
all buses are equipped with PMUs. To relax this, consider the
intuition that most line flows are significantly affected by only
a small set of electrically nearby buses [25]. In Section V, this
intuition is verified via simulations when the desired control
objective is achieved by using only measurements from buses
selected in a sparsity-promoting controller structure (which is
detailed in Section IV). In these cases, the number of columns
in ∆Π is less than |N |. As a result, fewer sets of measurements
would be needed to solve the WLS problem in (13), thereby
reducing its computational burden.

D. System Dynamical Models

As mentioned in Section II-C, we are interested in con-
trolling the active-power flows on E transmission lines of
interest, while ensuring zero steady-state frequency offset.
We first consider dynamics arising from frequency deviations
of synchronous generators, and then unwrap (5) to obtain
synthetic line-flow dynamics.

1) Synchronous Generator Dynamics: For generator i, let
ωi and Pm

i denote the rotor electrical angular speed and
the mechanical power, respectively. Pertinent dynamics of
generator i are given by

Miω̇i = Pm
i − P e

i −Di (ωi − ωs) , (14)

τiṖ
m
i = −Pm

i + P r
i −R−1i (ωi − ωs) , (15)

where Mi, Di, and P e
i are, respectively, the inertia constant,

damping coefficient, and electrical power output of generator i;
τi, P r

i , and Ri denote the governor time constant, reference
power input, and droop constant, respectively; and ωs repre-
sents the synchronous rotating speed.

Next, we consider perturbations in ωi and Pm
i away from

a steady-state operating point. For the set of synchronous
generators G, collect variations in the synchronous-generator
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Fig. 1: Time evolution of information exchange between actual system dynam-
ical response (generated via time-domain simulation of network differential-
algebraic model) and line-flow controller. At each time instant k, the line-flow
controller, which uses the system in (19), obtains measurements of states
x[k] and provides actuation signals ∆P[k]. Simultaneously, the controller
obtains updated sensitivities Φ[k] (using either model- or measurement-based
methods) to compute the next actuation signals ∆P[k+1].

frequencies and mechanical power state vectors into ∆ω =
[∆ω1, . . . ,∆ω|G|]

T and ∆Pm = [∆Pm
1 , . . . ,∆P

m
|G|]

T, respec-
tively. Similarly, collect the variations in generator electri-
cal power and reference power inputs into vectors ∆P e =
[∆P e

1 , . . . ,∆P
e
|G|]

T and ∆PG = [∆P r
1 , . . . ,∆P

r
|G|]

T, respec-
tively. Then, we can express the generator dynamics compactly
in matrix form as[

∆ω̇

∆Ṗm

]
=

[
−MD M
−τR −τ

] [
∆ω

∆Pm

]
+

[
0
τ

]
∆PG −

[
M
0

]
∆P e,

=: Σ

[
∆ω

∆Pm

]
+ Ω∆PG + Θ∆P e, (16)

with M , D, τ , and R given by

M = diag(M−11 , · · · ,M−1|G| ), D = diag(D1, · · · , D|G|),
τ = diag(τ−11 , · · · , τ−1|G| ), R = diag(R−11 , · · · , R−1|G|),

and 0s are matrices of all zeros with appropriate dimension.
Finally, we discretize the continuous-time synchronous gener-
ator dynamics in (16) and combine the resultant with line-flow
dynamics described next.

2) Line-flow Dynamics: Reorder entries of ∆P in (5) so
that ∆P = [∆PT

G ,∆P
T
L ]T, where ∆PL collects variations in

active-power injections at load buses; also reorder entries of
Φ(m,n),[k] in (5) accordingly. Then, collecting instances of (5)
for E lines of interest (out of a total of |E| lines in the system),
we obtain

∆F[k] = Φ[k]∆P[k] + ζ[k], (17)

where ∆F ∈ RE collects the flow variations in the lines
of interest, and Φ[k] ∈ RE×|N| is constructed appropriately
from (9) or (13). Now, by unwrapping (17), we arrive at the
following recurrence relation:

F[k+1] = F[k] + Φ[k]∆P[k] + ζ[k]. (18)

3) State-space Model: Define state, input, disturbance, and
output vectors as

x[k] = [FT
[k],∆ω

T
[k], (∆P

m
[k])

T]T, u[k] = ∆P[k],

z[k] = [ζT[k], (∆P
e
[k])

T]T, y[k] = [FT
[k],∆ω

T
[k]]

T,

respectively. The discrete-time system state-space model can
be expressed compactly as

x[k+1] = Ax[k] +B[k]u[k] +Bzz[k],

y[k] = Cx[k] + µ[k],
(19)

where µ[k] ∈ RE+|G| is a bounded vector that captures
measurement noise, and matrices A, B[k], Bz , and C are
expressed as

A =

[
IE 0
0 Σd

]
, B[k] =

[
Φ[k]

[Ωd,0]

]
,

Bz =

[
IE 0
0 Θd

]
, C =

[
IE+|G| 0

0 0

]
,

with Σd, Ωd, and Θd representing the discrete-time analogues
of Σ, Ω, and Θ, respectively, from (16), and 0s denote
matrices of all zeros with appropriate dimension. Note that
the control input u[k] = ∆P[k] adjusts the electrical active-
power injections for loads PL and the governor speed control
input PG for synchronous generators. Figure 1 illustrates
interactions between the actual system and the system model
in (19) to be used in the design and implementation of the
controller that achieves optimal tracking. Although the model
developed in (19) focuses on active-power flows, it is worth
noting that we can easily incorporate a recurrence relation
for reactive-power flows analogous to (18) into the system
model in (19). Appending ∆Q[k] into the control inputs, we
can adjust reactive-power injections for controllable loads in
order to regulate line reactive-power flows.

III. OPTIMAL CONTROLLER DESIGN

With the system description in (19) in place, we propose to
use a linear-quadratic-Gaussian (LQG) controller to achieve
optimal tracking of line active-power flows and regulate sys-
tem frequency at the nominal value, so that as k → ∞,
F[k] = F ref and ∆ω[k] = 0, all while contending with mea-
surement noise and errors arising from active- and reactive-
power coupling. The LQG controller is a combination of a
linear-quadratic regulator (LQR) state feedback and a Kalman
filter state estimator; we describe each component in detail
next.

The LQR optimal feedback control law is

u[k] = −Kx[k], (20)

where the state feedback K ∈ R|N |×(E+2|G|) (and in turn,
u[k]) is designed by solving [26]

minimize
K

J(K) =

∞∑
k=0

(
xT[k]Ψxx[k] + uT[k]Ψuu[k]

)
. (21)

In (21), Ψx ∈ R(E+2|G|)×(E+2|G|) (Ψx = ΨT
x , Ψx � 0) and

Ψu ∈ R|N |×|N| (Ψu = ΨT
u , Ψu � 0) are performance-

index weighing matrices. Namely, Ψx specifies the cost of
line active-power flows and synchronous generator frequencies
deviating away from their desired reference values, and entries
of Ψu embeds the cost of the control inputs. In our setting,
control inputs are nodal injections arising from either gener-
ators or controllable loads, i.e., those with adjustable active-
power set points. Fixed loads are ascribed greater cost in Ψu

such that their corresponding set points remain unchanged.
Remark 1 (Incorporating Capacity Limits): To ensure

that the controller respects capacity limits on generator or
controllable-load injections, we may design entries of Ψu as
follows. Given the maximum acceptable injection variation
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away from the current operating point, denoted by ∆Pmax,
Ψu would be a diagonal matrix expressed as [27]

Ψu = diag

(
1|N |

∆Pmax ◦∆Pmax

)
. (22)

�
In accordance with standard LQR design, the optimal state

feedback is given by [26]

K =
(

Ψu +BT
[k]GB[k]

)−1
BT

[k]GA, (23)

where G is the unique positive-definite solution of the discrete-
time algebraic Riccati equation (DARE) described by [26]

G = ATGA−ATGB[k](Ψu +BT
[k]GB[k])

−1BT
[k]GA+ Ψx.

While (23) can be solved at each time instant k, in practical
implementations, K would be updated periodically as the
operating point sufficiently deviates from the previous one at
which it was obtained. In fact, through extensive numerical
case studies conducted for IEEE test systems, we find that the
feedback obtained using the contributions of each active-power
nodal injection to the line active-power flows at the initial
condition is sufficient to track line flows to desired quantities.
Thus, for all case studies in the remainder of the paper, we
compute K only once using B[0] in (23), i.e., the controller
is designed using the line-flow sensitivities computed at the
initial steady state.

To contend with measurement noise µ[k], a state estimator
is established as follows:

x̂[k+1] = Ax̂[k] +B[k]u[k] + Γ
(
y[k] − Cx̂[k]

)
, (24)

where x̂[k] represents the state estimates and Γ is the steady-
state optimal Kalman filter gain, given by [26]

Γ = AOCT
(
COCT +Rµ

)−1
. (25)

In (25), Rµ denotes the measurement noise (i.e., µ[k]) covari-
ance, and O is the unique positive definite solution for the
Kalman filter DARE [26]

O = AOAT +Rz −AOCT
(
Rµ + COCT

)−1
COAT,

where Rz denotes the covariance of z[k]. Based on the sep-
aration principle, the LQR state feedback control law and
Kalman filter observer are designed separately and combined
afterwards [26].

In general, the problem in (21) yields a dense state feedback
matrix K, as shown in Fig. 2a, which implies that a centralized
controller must be able to vary injections at all buses in the
system. Since such an assumption may not be practical for
a large-scale power system, next, we relax these requirements
and propose to use a sparsity-promoting optimal controller that
uses injections from only a subset of buses (usually electrically
near the lines of interest), as motivated in Fig. 2b.

IV. SPARSITY-PROMOTING OPTIMAL CONTROL

In this section, we extend the continuous-time ADMM
algorithm in [14] that identifies desirable controller sparsity
patterns to our discrete-time problem setting.

(a) (b)
Fig. 2: Desired line flow to be controlled (encircled) and injections selected
by controllers (dark trace). (a) For γ = 0, the optimal feedback K is dense
and the controller tends to use all injections in the network. (b) With γ > 0,
the optimal controller design yields a sparse K and uses only a subset of
buses at the expense of closed-loop performance degradation.

A. Problem Formulation

The objective is to design the optimal state feedback
matrix K, subject to structural constraints that dictate the
locations of nonzero entries in K. With the subspace S
embodying these constraints, we search for stabilizing K that
optimizes [14]

minimize
K

J(K)

subject to K ∈ S, (26)

where J(K) is the LQR quadratic cost function in (21). In
the absence of structural constraints on K, the solution to (26)
reduces to that of the LQR problem in (21), which generally
yields a dense feedback matrix. Solving (26) becomes combi-
natorially intractable as the dimension of K grows. So instead,
consider an optimization scheme that penalizes the `1-norm of
the feedback matrix, as follows [14]:

minimize
K̃

J(K̃) + γg(K̃). (27)

In (27), g(K̃) represents a sparsity-promoting penalty func-
tion, which can be expressed as the weighted `1-norm of K̃

g(K̃) =
∑
i,j

Wij |[K̃]ij |, (28)

where weights Wij ≥ 0. By incorporating g(K̃) into the
optimization problem, the structural constraint imposed on K̃
in (26) is eliminated. The positive scalar γ emphasizes the
sparsity level of K̃, i.e., larger γ promotes sparser K̃, while
γ = 0 recovers the non-sparse feedback in (23) obtained
by solving (21). Starting from this initial value, an iterative
algorithm—ADMM—is employed to solve (27) for different
and increasingly larger values of γ. Subsequently, the value
of γ is chosen based on the trade-off between the closed-
loop H2 performance (i.e., value of J) and the sparsity of K̃.
Finally, the sparsity pattern is fixed and the optimal structured
state feedback is obtained by solving the original problem
in (26). Figure 2 illustrates the effect of γ on the sparsity
of K and consequently the required control inputs: γ = 0
leads to dense K, while γ > 0 promotes sparser K.
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B. Identifying Sparsity Patterns Via ADMM

We extend the setting in [14] to the discrete-time case
and identify favourable sparsity patterns using ADMM. The
ADMM algorithm exploits the separability of the sparsity-
promoting penalty function g and the differentiability of J .
The introduction of an additional variable Z and an additional
constraint K̃ − Z = 0 facilitate the decoupling of (27) into
two parts that depend on two different variables [14]. Consider
the following constrained optimization problem

minimize
K̃

J(K̃) + γg(Z)

subject to K̃ − Z = 0, (29)

which is equivalent to the problem in (27). The augmented
Lagrangian associated with (29) is given by [14]

Lρ(K̃, Z,Λ) = J(K̃) + γg(Z) + Tr{ΛT(K̃ − Z)}

+
ρ

2
‖K̃ − Z‖2F, (30)

where Λ is the matrix of Lagrange multipliers and ρ is a
positive scalar. The ADMM algorithm uses a sequence of
iterations to search for a minimizer in (29) as follows: [14]

K̃`+1 := arg min
K̃
Lρ(K̃, Z`,Λ`) (31)

Z`+1 := arg min
Z
Lρ(K̃`+1, Z,Λ`) (32)

Λ`+1 := Λ` + ρ(K̃`+1 − Z`+1) (33)

until ‖K̃`+1−Z`+1‖F ≤ ε and ‖Z`+1−Z`‖F ≤ ε, with initial
conditions K̃0 obtained from (23), Z0 = K̃0, and Λ0 = 0,
and ε > 0 is a predefined tolerance for the equality constraint
in (29).

The first step in the ADMM algorithm is to solve the
K̃-minimization problem in (31). The first-order necessary
condition of optimality with respect to K̃ is

0 = ∇K̃Lρ(K̃, Z
`,Λ`) = ∇J(K̃) + Λ` + ρ(K̃ − Z`), (34)

where the gradient of J is given by

∇J(K̃) = 2(ΨuK̃ −BTG(A−BK̃))L, (35)

with L and G being the controllability and observability
Gramians of the closed-loop system, which are obtained as
the solutions of

(A−BK̃)L(A−BK̃)T − L = −BzBT
z , (36)

(A−BK̃)TG(A−BK̃)−G = −Ψx − K̃TΨuK̃. (37)

The derivation of (35) is provided in Appendix B. The update
K̃`+1 is obtained via the Anderson-Moore method, which
proceeds as follows. First, with K̃ fixed to the value K̃`

in (36)–(37), they are solved to obtain L and G. Then, the
solved L and G are substituted into (35), and the resultant
into (34), which is solved to yield K̃ = K

`
. Subsequently, the

update K̃`+1 = K̃` + s`(K
` − K̃`), where s` is a step size

determined by the Armijo rule [28]. In the update, K
` − K̃`

forms a descent direction of (34), which can be exploited by
line search methods to determine a suitable step size [14].

Algorithm 1 Identify Sparsity Patterns via ADMM
Input: K for standard LQR problem computed via (23), scalar
parameter γ, and predefined threshold ε.
Output: Sparse feedback matrix K̃? that optimizes (27).

1: Initialize. Set K̃0 = K, Z0 = K̃0, Λ0 = 0, and counter
` = −1.

2: repeat
3: Set `← `+ 1
4: Solve (36) and (37) with K̃ = K̃` to obtain L and G
5: Substitute L and G into (34) to obtain K

`

6: Update K̃`+1 = K̃` + s`(K
` − K̃`)

7: Update Z`+1 using (39) and Λ`+1 using (33)
8: until ||K̃`+1 − Z`+1||F ≤ ε and ||Z`+1 − Z`||F ≤ ε

With the K̃`+1 update in hand, the next step is to solve (32).
Setting ∇Lρ(K̃`+1, Z,Λ`) to zero yields the first-order nec-
essary condition for optimality with respect to Z:

0 = γ∇g(Z)− Λ` − ρ(K̃`+1 − Z). (38)

Since g can be written as a summation of component-wise
functions of Z, decompose (38) into subproblems that involve
scalar variables [Z]ij . This way, in solving (38), the entry-wise
Z-update is given by

[Z]`+1
ij =

{ (
1− a

|σ`
ij |

)
σ`ij , |σ`ij | > a

0, |σ`ij | ≤ a,
(39)

where σ` = ρ−1Λ`+K̃`+1 and a = γρ−1Wij . The derivation
of (39) is provided in Appendix C. Using (39), entries [Z]`+1

ij

can be aggressively driven to zero by increasing γ and Wij and
by decreasing ρ. Finally, in each iteration, the updated Λ`+1 is
obtained via (33) with K̃`+1 and Z`+1. The ADMM iterations
continue until the stopping criteria are satisfied with optimizers
given by K̃?, Z?, and Λ?. This procedure is summarized in
Algorithm 1.

C. Solving the Structurally Constrained Problem in (26)

The ADMM algorithm outlined previously only identifies
the desired sparsity pattern of K as that of K̃? ∈ S, which
can be described by the structural identity

[IS ]ij =

{
1, if [K̃?]ij 6= 0,

0, if [K̃?]ij = 0.
(40)

With this desired pattern in hand, we return to the struc-
turally constrained problem in (26) and solve it using descent
algorithms such as Newton’s method to obtain the optimal
K? ∈ S that minimizes the original cost function in (21).
Particularly, beginning with an initial feedback K0 = K̃? ∈ S,
the objective function is re-evaluated by updating K according
to K`+1 = K` + s`∆K`, until ‖∇J(K`+1)‖F ≤ ε. In each
iteration, s` is the step size, and ∆K` ∈ S is the Newton
direction determined by the minimizer of the second-order
approximation of the objective function in (21). Particularly,
∆K` ∈ S is the minimizer of〈
∇J(K`) ◦ IS ,∆K`

〉
+

1

2

〈
H(K`,∆K`) ◦ IS ,∆K`

〉
, (41)
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Algorithm 2 Structurally Constrained Optimal Feedback

Input: K̃? ∈ S obtained from Algorithm 1 and predefined
threshold ε.
Output: Sparse feedback matrix K? ∈ S that optimizes (26).

1: Initialize. Set K0 = K̃? ∈ S and counter ` = −1.
2: repeat
3: Set `← `+ 1
4: Compute ∆K` that minimizes (41)
5: Update K`+1 = K` + s`∆K`

6: until ||∇J(K`+1)||F ≤ ε

Fig. 3: Network topology for WECC 3-machine 9-bus system.

Fig. 4: Network topology for NE 10-machine 39-bus system.

where H(·, ·) is the Hessian matrix of the objective function
in (21). Note that pertinent entries in ∆K` are enforced to
be zero via suitable entry-wise multiplication with IS . This
procedure is summarized in Algorithm 2.

V. CASE STUDIES

This section demonstrates the effectiveness of controllers
presented in Sections III–IV via numerical case studies in-
volving the Western Electricity Coordinating Council (WECC)
3-machine 9-bus and the New England (NE) 10-machine
39-bus test systems (see Figs. 3 and 4, respectively). The
WECC case study illustrates the trade-off between controller
sparsity and system closed-loop performance; and the NE
case study demonstrates scalability of the proposed method.
We also report execution times to design the controller in
the WECC, the NE, and the Northeast Power Coordinat-
ing Council (NPCC) 48-machine 140-bus test systems [29].
Although a simplified model is used to design the LQG
controllers, they are verified with time-domain simulations of a
nonlinear differential-algebraic model that includes dynamics
arising from two-axis synchronous generators, governors, and

Fig. 5: Overall controller design procedure. (a) Initialization: assemble system
model in (19) and compute dense feedback matrix K for standard LQR
problem via (23). (b) Structure identification: identify desired sparsity pattern
by solving (27) via Algorithm 1. (c) Polishing: compute optimal sparsity-
promoting feedback matrix K? ∈ S by solving (26) via Algorithm 2.
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Fig. 6: WECC test system: sparsity-promoting algorithm performance evalu-
ation. (a) Sensitivity of NNZ entries in feedback matrix to γ-value. (b) Sen-
sitivity of performance degradation to γ-value. (c) Sensitivity of performance
degradation to NNZ entries in feedback matrix. (d) Pattern of nonzero entries
in sparse feedback matrix for the filled-circle case in Figs. 6a–6c.

exciters performed using PSAT [30]. Synthetic measurements
are sampled from the PSAT simulation at discrete intervals
of ∆T = 0.0333 s, well within the capability of current
measurement technology [22]. The proposed controller then
synthesizes the appropriate actuation signals that feed back
as inputs into the PSAT simulation, as shown in Fig. 1.
Furthermore, the controller design procedure used throughout
this section is summarized in Fig. 5.

A. WECC Test System

In this case study, we wish to regulate the active-power
flows in lines (9, 6) and (7, 5), which have initial steady-state
flows of P(9,6),[0] = 0.608 p.u. and P(7,5),[0] = 0.866 p.u.,
respectively. However, we would like to reduce the flows on
lines (9, 6) and (7, 5) to 0.5 p.u. and 0.7 p.u., respectively,
by specifying optimal injections via the ideas presented in
Section IV.

1) Sparse Controller Structure: With γ-values ranging from
γ = 10−4 to γ = 0.5 in the sparsity-promoting objective
function (27), optimal state feedback matrices with various
levels of sparsity are obtained. As γ grows, the number of
nonzero (NNZ) entries decreases, as shown in Fig. 6a. Also,
as shown in Fig. 6b, the H2 performance (as quantified by the
value of the objective function J(K) resulting from differ-
ent feedback matrices) degrades commensurately. In Fig. 6c,
we plot the tradeoff between the NNZ entries and the H2

performance degradation. As an example (marked by filled
circles in Fig. 6), populating 10.4% of available entries in the
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Fig. 7: WECC test system: comparison of trajectories without vs. with
line-flow control; in the case with line-flow control, the sparsity-promoting
controller with sparsity pattern in Fig. 6d is used. (a) Active-power flows in
the two lines of interest. (b) Centre-of-inertia frequency deviations.

feedback degrades performance by only 28.8% as compared to
the full K. The structure of this particular sparse K is shown
in Fig. 6d. It is worth noting that, by examining the electrical
distance between the lines of interest and buses in the network,
the sparsity-promoting controller naturally selects electrically
nearby buses. This is in accordance with the intuition that
most line flows are significantly affected by only injections at
electrically nearby buses.

2) Presence vs. Absence of Flow Control: In order to
illustrate the advantage of the proposed controller, we com-
pare the system response obtained with versus without line-
flow control. Consider the WECC test system, with initial
steady-state line active-power flows P(9,6),[0] = 0.608 p.u. and
P(7,5),[0] = 0.866 p.u. At t = 5 s, the uncontrollable load
at bus 4 decreases, which causes a net injection change of
∆P4 = 0.3 p.u. Without flow control, as shown by the solid
trace in Fig. 7a, we observe that the active-power flows in
lines (9, 6) and (7, 5) increase and may exceed their limits due
to the load change. On the other hand, with line-flow control
(see dashed trace in Fig. 7a), the flows converge to desired ref-
erence values of P ref

(9,6) = 0.5 p.u. and P ref
(7,5) = 0.7 p.u. Here,

the flows are regulated using the sparsity-promoting controller,
the sparsity pattern of which is shown in Fig. 6d. Note that in
both cases, we retain the frequency regulation feature of the
controller, so the centre-of-inertia (COI) frequency converges
to the reference frequency ωs = 1 p.u. as shown in Fig. 7b.

B. New England Test System

Synchronous generators are connected to buses 30 to 39;
all constant-power loads are assumed to be controllable.
Initial active-power flows on lines (39, 1), (11, 6), (39, 9),
(23, 22), and (29, 26) are P(39,1),[0] = 4.39 p.u., P(11,6),[0] =
1.95 p.u., P(39,9),[0] = 5.56 p.u., P(23,22),[0] = 0.11 p.u., and
P(29,26),[0] = 1.90 p.u., respectively.
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Fig. 8: NE test system: comparison of trajectories resulting from non-sparse
vs. sparse feedback obtained as the solutions to (21) and (26), respectively,
where the network topology remains fixed. (a) Active-power flows in two
particular lines of interest. (b) Centre-of-inertia frequency deviations.

1) Sparse Controller Structure: In this case study, we
regulate active-power flows on a subset of lines and compare
the time-domain dynamic response of the full and sparse
feedback designs. Both designs utilize the same state- and
control-performance weights as in Section V-A. Suppose
that, instead of their initial steady-state values, desired flows
on lines (39, 1), (11, 6), (39, 9), (23, 22), and (29, 26) are
P ref
(39,1) = 4.2 p.u., P ref

(11,6) = 1.8 p.u., P ref
(39,9) = 5.4 p.u.,

P ref
(23,22) = 0.3 p.u., and P ref

(29,26) = 2 p.u., respectively. Using
the initial power-flow solution, line-flow sensitivities are com-
puted via (9), with which the optimal full and sparse feedbacks
are determined by solving (21) and (26), respectively. Similar
to Section V-A, we assess the tradeoff between NNZ entries
and performance degradation by varying γ in (27). Subsequent
time-domain results are obtained by choosing γ = 0.1, which
corresponds to 1.81% NNZ entries as compared to the full
feedback matrix and 16.7% performance degradation.

The active-power flows on all lines converge to the desired
reference values in both full and sparse feedback designs. In
Fig. 8a, we plot the line-flow trajectories for lines (39, 1)
and (39, 9) until 15 s, which are representative of other lines.
Additionally, the COI frequency in Fig. 8b, converges to the
reference frequency ωs = 1 p.u. with both controller designs.

2) Model-based vs. Measurement-based Sensitivities: Sup-
pose line (8, 9) is disconnected at t = 3 s, but the offline
model is not updated. Using the same sparse controller as
before, we consider two ways to obtain sensitivities Φ[k] at
each time step in Fig. 1: (i) model-based computed via (9) at
the initial operating point, (ii) measurement-based computed
via (13) with up-to-date active-power injection measurements
from only buses identified in the optimal sparsity pattern.
In this way, (i) is restrictive as the offline model may not
match the up-to-date topology and operating point. On the
other hand, (ii) adapts to system changes and does not require
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Fig. 9: NE test system: comparison of trajectories resulting from using
sparsity-promoting controller design where an undetected line outage occurs;
line-flow sensitivities Φ[k] are obtained with model- and sparse-measurement-
based methods. (a) Active-power flows in two particular lines of interest.
(b) Centre-of-inertia frequency deviations.

any additional communication links beyond those needed for
actuation by the sparse controller.

The line active-power flows depicted in Fig. 9a converge to
their desired reference values despite the fault and topolog-
ical modification. However, since the model-based approach
does not update with the topological change, the sparse
measurement-based estimation approach is more resilient to
the disturbance. Moreover, the COI frequency depicted in
Fig. 9b converges to the desired synchronous frequency ωs =
1 p.u. with considerably lower fluctuations when the controller
is used with the sparse measurement-based sensitivities.

C. Execution Times

To gauge the computational complexity of controller syn-
thesis, we measure the running times required to execute the
initialization, structure identification, and polishing steps (see
Fig. 5) for the WECC, NE, and NPCC test systems. All
algorithms are run using MATLAB R2017a on a MacBook
Pro machine with 2.5 GHz quad-core Intel Core i7 processor,
Turbo Boost up to 3.7 GHz, and 16 GB RAM. Execution times
are reported in Table I. We note that structure identification
via ADMM is the most time consuming step. In practice, we
envision ADMM to be solved offline to identify the subset of
injections to be used to control the line flows of interest. This
sparsity structure may be updated periodically as the system
sufficiently deviates from the previous operating point.

VI. CONCLUDING REMARKS

In this paper, we proposed a method for regulating line
active-power flows to desired setpoints while maintaining the
nominal system frequency using sparsity-promoting control.
The main advantages of the proposed control strategy are that
it leverages existing resources, requires only local actuation

TABLE I: Execution times [s] for controller design procedure, corresponding
to steps outlined in Fig. 5: (a) Initialization, (b) Structure identification via
Algorithm 1, and (c) Polishing via Algorithm 2.

WECC 9-bus NE 39-bus NPCC 140-bus
Initialization 0.00166 0.00846 0.158

Structure Identification 0.321 2.49 12.5
Polishing 0.0173 0.0732 1.24

Total 0.340 2.57 13.9

commands, and adapts to potential network-topology and
operating-point changes. The proposed controller time-domain
dynamic performance was demonstrated via numerous case
studies involving the WECC and New England test systems.
Applicability of sparse measurement-based estimation of line-
flow sensitivities with faults and line-outage contingencies
were presented. Compelling avenues for future work include
extending the developed framework to incorporate voltage
regulation, uncertainty from uncontrollable generation, and
communication failures. Another pertinent future direction is
to formulate appropriate models for and to investigate the
efficacy of output-feedback control designs.

APPENDIX

A. List of Abbreviations

ADMM Alternating direction method of multipliers
AGC Automatic generation control
COI Centre-of-inertia
DARE Discrete algebraic Riccati equation
DER Distributed energy resource
LQG Linear quadratic Gaussian
LQR Linear quadratic regulator
NE New England
NNZ Number of nonzero
NPCC Northeast Power Coordinating Council
PMU Phasor measurement unit
PSAT Power System Analysis Toolbox
WECC Western Electricity Coordinating Council
WLS Weighted least squares

B. Derivation of ∇J(K) in (35)

To facilitate the derivation, we note that another way to
express the objective function in (21), for stabilizing K, is [31]

J(K) = Tr
{
BT
z G(K)Bz

}
= Tr{G(K)BzB

T
z }, (42)

where the second equality above results from the cyclic permu-
tation property of traces. First-order Taylor-series expansion
of (42) around the solution K and corresponding G(K) yields

Tr{∇J(K)
T

∆K} = Tr{∆G(K)BzB
T
z }. (43)

Similarly, around the same solution, first-order Taylor-series
expansion of (37) yields

0 = (A−BK)T∆G(K)(A−BK)−∆G(K)

+ ∆KT(ΨuK −BTG(A−BK))

+ (ΨuK −BTG(A−BK))T∆K, (44)
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where G and Ψu are symmetric matrices. Now, let L be the
solution to the Lyapunov equation in (36). Pre-multiply (36)
by ∆G(K) and take the trace of both sides to obtain

− Tr{∆G(K)BzB
T
z } = Tr{−∆G(K)L

+ ∆G(K)(A−BK)L(A−BK)T}. (45)

Post-multiply (44) by L and take the trace of both sides to get

0 = Tr{(A−BK)T∆G(K)(A−BK)L−∆G(K)L}
+ Tr{∆KT(ΨuK −BTG(A−BK))L}
+ Tr{(ΨuK −BTG(A−BK))T∆KL}. (46)

Recognizing that the first term above is equivalent to the right-
hand side of (45), and combining (43), (45), and (46) with
appropriate use of properties of the trace, we get

Tr{∇J(K)
T

∆K} = Tr{2∆KT(ΨuK−BTG(A−BK))L},

from which we extract the expression for the gradient of J as

∇J(K) = 2
(
ΨuK −BTG(A−BK)

)
L.

C. Derivation of [Z]`+1
ij in (39)

The derivation follows by solving (38), which begins with
differentiating g(Z) =

∑
i,jWij |[Z]ij | with respect to each

entry [Z]ij to get

∂g(Z)

∂[Z]ij
=

 Wij , if [Z]ij > 0,
−Wij , if [Z]ij < 0,
does not exist, otherwise.

Substituting the above back into (38), and defining σ` =
ρ−1Λ` + K̃`+1 and a = γρ−1Wij , we obtain the entry-wise
Z-update as

[Z]`+1
ij =


−a+ σ`ij , σ`ij > a,
a+ σ`ij , σ`ij < −a,
0, otherwise,

which is equivalent to (39).
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