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Abstract—This paper proposes to incorporate goodness-of-
fit (GoF) metrics as outputs—in addition to the synchronized pha-
sor (or synchrophasor)—from a phasor measurement unit (PMU)
to assess the performance quality of synchrophasor-based real-
time applications, with specific focus on the accuracy of fault
location along a transmission line. Typically, a PMU outputs
quantities that describe the phasor-of-best-fit of a time-domain
voltage or current signal. While a phasor accurately represents
the actual measured signal in sinusoidal steady state, this may not
be the case during electrical transients that occur immediately
after sudden events, such as a fault. Unaware of this, the real-time
application may not locate the fault accurately. By quantifying
the accuracy of the phasor as compared with the actual time-
domain signal to which the phasor is fit, GoF metrics help to
assess the credibility of fault-location results. This hypothesis is
verified via extensive case studies, and GoF-based criteria for
sufficiently accurate fault-location results are uncovered.

Index Terms—Fault location, goodness of fit, phasor measure-
ment units, synchrophasor,

I. INTRODUCTION

THE transmission grid transfers large amounts of electric
power from generators to load centres via a complex

network of transmission lines. From time to time, these
lines experience faults caused by various events, such as
storms, lightning, and insulation aging and breakdown [1]. In
order to ensure system-wide power availability and quality,
maintenance crews must swiftly repair damages and restore
the faulted line. Vital to accomplishing these tasks are real-
time tools that accurately pinpoint the fault location along
the line of interest in a timely manner. Existing methods
can be broadly categorized into (i) single-end methods and
(ii) double- or multi-end methods. Single-end methods (see,
e.g., [2], [3]) utilize measurements obtained from only one end
of the faulted line and do not need data from remote buses, but
fault-location results may not be accurate. On the other hand,
methods that utilize measurements from both ends (or multiple
ends in case of multi-terminal lines) of the faulted line are
generally more accurate [4], [5]. Nevertheless, unsynchronized
measurements obtained from remote buses may cause fault-
location errors, which is a shortcoming that has been identified
in the literature [6], [7]. An enabling technology that can
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address this challenge is the phasor measurement unit (PMU),
which provides synchronized-phasor (or synchrophasor) mea-
surements [8].

The PMU fits a phasor to a time-domain signal collected by
a current or voltage transformer, and further reports the phasor
amplitude, phase angle, frequency, and rate of change of
frequency [9]. These quantities are all synchronized and tagged
with an accurate coordinated universal time stamp by using,
e.g., the reference time acquired through global positioning
system receivers [9]. Thereafter, a wide-area communication
network enables synchrophasor measurements to be transmit-
ted from various PMUs to phasor data collectors (PDCs) and
then a central location [10]. These measurements may be used
by real-time application deployed at the level of a single PMU,
a local PDC, or a central decision maker [11].

Recognizing the potential for synchrophasors to reduce
fault-location errors arising from unsynchronized measure-
ments, numerous approaches have been proposed to take
advantage of them [12]–[14]. However, these do not address
the impact of phasor measurement errors on the resulting fault-
location accuracy or credibility. A typical metric to quantify
errors in the PMU output is the total vector error (TVE), which
measures the difference between the information from a PMU
that describes a phasor and the true phasor itself [9], [15]. Such
a metric is relevant only if the actual voltage and current signal
of interest is in sinusoidal steady state. However, immediately
following sudden events, such as fault initiation and clearance,
voltages and currents experience electrical transients that ren-
der the sinusoidal steady-state assumption held by the TVE
metric invalid. To address this shortcoming, the goodness-of-
fit (GoF) metric measures the difference between the time-
domain waveform reconstructed from the phasor measurement
and the actual voltage or current signal [16]. By explicitly
comparing the time-domain signals, the GoF metric is applica-
ble under both sinusoidal steady-state and electrically transient
operating conditions. This is particularly relevant for real-
time reliability-critical applications—such as fault location—
that use synchrophasors obtained while the system experiences
electrical transients. In this paper, to transition synchrophasor-
based fault location to a practical solution for industry use, we
focus on GoF metrics to help quantify synchrophasor accuracy
during fault conditions and, in turn, to assess the confidence
level of the ensuing fault-location results.

Given that double-end fault-location methods are easily
implementable with the modern communication infrastructure
in today’s power system, we focus on such a method similar
to that described in [12] and extend it to locate (possibly
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unsymmetric) faults along three-phase transmission lines using
synchrophasors. Next, via a numerical example, we highlight
that the accuracy of fault-location results depends on how well
voltage or current waveforms can be approximated as phasors.
In order to quantify the mismatch between actual time-domain
waveforms and their phasor representations during electrical
transients, we use the GoF metric described in [16], as
well as a variant of it. With the GoF metrics in hand, we
perform numerous simulations for various fault conditions
and locations along a transmission line to investigate the
relationship between the accuracy of synchrophasor-based
fault-location results and the GoF values for corresponding
phasors. Through extensive numerical case studies, we observe
that synchrophasors with GoF values above certain thresholds
provide sufficient confidence levels in the accuracy of fault-
location results. Thus, we recommend to include GoF metrics
as additional prescribed quantities for PMUs to transmit to the
fault-location application. Such a modification may also help
to assess the accuracy of results from other synchrophasor-
based applications that require a high level of confidence (as
is often the case in production-grade real-time applications in
the electric power industry).

The remainder of the paper is organized as follows. In
Section II, we extend the method in [12] to locate a (possibly
unsymmetric) fault along a three-phase line and to identify
the faulted phases. Then, by comparing simulation cases for
which this method returns accurate versus inaccurate fault-
location results, we motivate the need for a GoF metric. This
metric and a variant are defined with numerical illustration of
their properties in Section III. In Section IV, the advantages
of incorporating GoF metrics into PMUs are demonstrated
through numerical case studies. Finally, concluding remarks
and directions for future work are offered in Section V.

II. BACKGROUND

Following the release of [9], synchrophasor algorithms have
been further investigated with the aim of improving the basic
model in [9] to meet the static and dynamic performance
requirements assigned in industry standards (see, e.g., [17]–
[19]). Synchrophasors obtained from PMUs can be categorized
into two performance classes: measurement (M-class) and
protection (P-class) [15]. Since the focus of this paper is on a
specific application of PMUs for system protection, we elect
to use the basic P-class PMU model proposed in Annex C
of [9], from which measurements are extracted. However, we
note that the choice of a more detailed PMU model would not
affect our analysis or results significantly. In this section, PMU
measurements are used to estimate steady-state transmission-
line impedances and to locate unsymmetric faults. Through the
fault-location application, we motivate the need to incorporate
GoF metrics for PMU measurements.

A. Measurement-based Estimation of Line Impedance

Steady-state transmission-line impedance values are prone
to variations of up to 40% under various ambient and loading
conditions [20]. In order to ensure accurate fault-location
results, the pre-fault steady-state line impedance for each phase

must be updated periodically to match evolving operating
conditions. Inspired by the parameter-free method proposed
in [12], in which measurements in the pre-fault period are
used instead of relying on a priori knowledge of line parame-
ters, below we estimate steady-state lumped line parameters
assuming three-phase balanced impedances. With reference
to Fig. 1a, we assume that P-class PMUs are installed at
buses m and n, which are connected via the transmission
line of interest, and per-phase bus-voltage and current-flow
measurements are available.

Suppose PMU phasor measurements are reported at inter-
vals of ∆t, i.e., at times tk = k∆t, k = 1, 2, . . . Denote
measured voltages (as phasors) at bus m and time tk for
phases a, b, and c as V a

m[k], V b
m[k], and V c

m[k], respectively.
Further denote the measured currents (as phasors) through
line (m,n) (assume positive flow from bus m to n measured at
bus m) at time tk in phases a, b, and c as Ia(m,n)[k], Ib(m,n)[k],
and Ic(m,n)[k], respectively. Collect per-phase voltage measure-
ments at bus m into Vm[k] = [V a

m[k], V b
m[k], V c

m[k]]T; also
collect per-phase measurements of currents in line (m,n) into
I(m,n)[k] = [Ia(m,n)[k], Ib(m,n)[k], Ic(m,n)[k]]T. In symmetrical
components, the voltage at bus m is defined as V s

m[k] :=
T−1Vm[k], where T is the so-called symmetrical components
transformation matrix [21]. Similarly, for currents through line
(m,n), Is(m,n)[k] = T−1I(m,n)[k]. With these definitions in
place, consider a three-phase line with balanced impedances,
for which the circuit in symmetrical components is decoupled
into three independent impedance networks, i.e., [21]

V s
m[k]− V s

n [k] = diag(Zs
(m,n))I

s
(m,n)[k], (1)

where the vector Zs
(m,n) contains the positive-, negative-, and

zero-sequence network impedances, and diag(Zs
(m,n)) denotes

the diagonal matrix formed with diagonal entries composed of
entries of Zs

(m,n)[k]. Then, using per-phase voltage and current
measurements obtained at time tk, we can compute1

Zs
(m,n)[k] = diag(Is(m,n)[k])−1(V s

m[k]− V s
n [k]) (2)

= diag(T−1I(m,n)[k])−1T−1(Vm[k]− Vn[k]),

where the second equality above results by immediate applica-
tion of the symmetrical components transformation. From (2),
we can straightforwardly obtain an up-to-date estimate of the
abc-frame three-phase impedance matrix as

Z(m,n)[k] = Tdiag(Zs
(m,n)[k])T−1. (3)

Since we consider the case of balanced impedances, the
diagonal entries of Z(m,n)[k] (representing self impedances)
have the same value, and the off-diagonal entries (representing
mutual impedances) are also equal to each other.

B. Fault Location and Faulted-phase Identification

Consider a three-phase transmission line (m,n) with to-
tal length ` and steady-state impedance matrix estimated
as Z(m,n) from (3), with an unknown fault imposed, as
shown in Fig. 1b. In this section, we simultaneously locate

1We use the fact that diag(x)y = diag(y)x, where x and y are vectors
of appropriate dimension.
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(a)

(b)

Fig. 1: Circuit model of three-phase transmission line (m,n) (see,
e.g., [22]) (a) before fault, and (b) during fault. The fault location
(characterized as the distance d from bus m) and the fault-to-
ground impedances (Za

(m,n),f , Zb
(m,n),f , and Zc

(m,n),f ) are unknown
quantities. Once solved, they provide the fault location and identify
the affected phases.

the fault and estimate the fault-to-ground impedance using
synchrophasors obtained at buses m and n. The estimated
fault location and impedance values also indicate the phases
that are affected by the fault. To this end, denote the un-
known distance from bus m to the fault location at time tk
as d[k] = [da[k], db[k], dc[k]]T, where da[k], db[k], and dc[k]
represent the distances in phases a, b, and c, respectively. Also,
denote the unknown fault-to-ground impedance at time tk
as Z(m,n),f [k] = [Za

(m,n),f [k], Zb
(m,n),f [k], Zc

(m,n),f [k]]T,
where Za

(m,n),f [k], Zb
(m,n),f [k], and Zc

(m,n),f [k] represent
fault-to-ground impedances in phases a, b, and c, respectively.
The variables d[k] and Z(m,n),f [k] are unknowns to be solved
in this problem. Based on the circuit in Fig. 1b, we can express
three-phase KVL equations from bus m to n at time tk as

Vm[k]− Vn[k] = Z(m,n) (diag(d[k])) I(m,n)[k]

− Z(m,n)diag(`13 − d[k])I(n,m)[k]

= Z(m,n)diag
(
I(m,n)[k] + I(n,m)[k]

)
d[k]

− `Z(m,n)I(n,m)[k]

=: A1[k]d[k]− c[k], (4)

where 13 = [1, 1, 1]T. Similarly, we can write another KVL
equation at time tk from bus m to ground as

Vm[k] = Z(m,n)diag(d[k])I(m,n)[k]

+ diag(Z(m,n),f [k])(I(m,n)[k] + I(n,m)[k])

= Z(m,n)diag(I(m,n)[k])d[k]

+ diag(I(m,n)[k] + I(n,m)[k])Z(m,n),f [k]

=: A2[k]d[k] +A3[k]Z(m,n),f [k]. (5)

Next, combine (4) and (5) in matrix form as[
Vm[k]− Vn[k] + c[k]

Vm[k]

]
=

[
A1[k] 0
A2[k] A3[k]

] [
d[k]

Z(m,n),f [k]

]
.

(6)

At each time tk, the system of equations in (6) can be solved
simultaneously to obtain estimates of the fault location and the

fault-to-ground impedances. As we will show in Example 1,
we can locate the unknown and possibly unsymmetric fault
via the solution of (6). Note that the solvability of (6) can
be ensured by checking that A1[k] and A3[k] are invertible.
The matrix A1[k] is invertible as long as the entries of Zs

(m,n)

are nonzero, and the matrix A3[k] is invertible as long as the
current in each phase of the transmission line is nonzero.

Example 1. We consider the canonical two-area test power
system (see, e.g., [22]), with particular interest in one of the
two identical 230-kV three-phase balanced transmission lines
of length 220 km connecting the two area via buses m and n.
A transposed distributed line model is used to simulate the
transmission line. The PMUs are modelled in the MATLAB
Simulink environment using the Fast Fourier Transform (FFT)
function at the nominal 60-Hz frequency to obtain phasor
magnitudes and phase angles. These values are reported once
per electrical cycle, i.e., ∆t = 16.667 ms. Then, via the
method described in Section II-A, the abc-frame impedance
matrix can be easily obtained using (3) as Z(m,n), in which the
diagonal elements are 276.51∠62.931◦ Ω and the off-diagonal
elements are 172.91∠48.669◦ Ω.

Next, to illustrate the proposed fault location method sum-
marized as (6), we choose simulation cases covering five types
of faults: three phase to ground (abcg), double phase to ground
(abg), single phase to ground (ag), three phase (abc), and
double phase (ab). In each case, unbeknownst to operators,
the fault occurs at a distance of 60 km from bus m with fault-
to-ground resistance 5 Ω at time t = 0 s, and the fault sustains
for three cycles before circuit breakers are tripped. Phasor
measurements are collected at times tk = k∆t, k = 1, 2, 3,
i.e., at the end of each electrical cycle during the fault.

We first report and discuss results using measurements from
the third cycle, i.e., in measurement window 2∆t < t ≤ 3∆t.
The unknown variables d[3] and Z(m,n),f [3] are solved via (6)
and results are reported in Table I, based on which we make
the following observations:

� Fault location: For all five fault types, the estimated dis-
tances are nearly identical to the actual location with errors
of less than 0.1% normalized to the line length of 220 km.

� Faulted-phase identification: For phases that remain intact,
the estimated distances from bus m are unreasonably large,
i.e., they are significantly greater than the line length. The
corresponding fault-to-ground impedances have extremely
large magnitudes, i.e., they represent open circuits. These
observations are indicative of fault signature and help to
identify the faulted phases.

On the other hand, Table II reports fault location and
impedance estimates obtained with synchrophasor measure-
ments from the first cycle, i.e., 0 < t ≤ ∆t, of the during-
fault period. By comparing Tables I and II, we find that the
results from the former are much more accurate than those in
the latter. Of particular concern is that errors in the estimated
fault location grows from less than 0.1% to more than 2.0%,
a sizeable increase. �
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TABLE I: (Example 1) Fault location and fault-impedance estimation using measurements from the third cycle of during-fault period.

Fault Type da[3] db[3] dc[3]
Za

(m,n),f [3] Zb
(m,n),f [3] Zc

(m,n),f [3]km % Error km % Error km % Error
abcg 60.060 0.027 60.080 0.036 60.007 0.003 4.332∠3.607◦ 5.183∠6.687◦ 4.945∠0.470◦

abg 59.978 0.010 59.995 0.002 2483.7 − 5.683∠ − 10.112◦ 5.020∠33.005◦ 1.803 × 107∠ − 96.918◦

ag 59.985 0.007 4044.4 − 1186.4 − 4.921∠0.943◦ 5.370 × 106∠54.002◦ 1.010 × 107∠ − 18.311◦

abc 60.059 0.027 60.080 0.036 60.007 0.003 4.332∠3.607◦ 5.183∠6.688◦ 4.945∠0.470◦

ab 59.824 0.080 59.864 0.062 2414.4 − 22.088∠ − 11.559◦ 19.038∠160.902◦ 7.330 × 106∠ − 159.306◦

TABLE II: (Example 1) Fault location and fault-impedance estimation using measurements from the first cycle of during-fault period.

Fault Type da[1] db[1] dc[1]
Za

(m,n),f [1] Zb
(m,n),f [1] Zc

(m,n),f [1]km % Error km % Error km % Error
abcg 64.999 2.223 61.023 0.465 57.978 0.919 30.766∠5.365◦ 20.541∠34.746◦ 46.341∠38.725◦

abg 63.619 0.736 63.290 1.463 13425 − 30.810∠ − 6.595◦ 21.816∠45.561◦ 4.869 × 107∠ − 145.285◦

ag 62.997 1.362 15275 − 14420 − 61.283∠10.380◦ 1.354 × 108∠58.313◦ 5.729 × 107∠ − 60.366◦

abc 64.998 2.272 61.023 0.465 57.978 0.919 30.766∠5.365◦ 20.541∠34.746◦ 46.341∠38.725◦

ab 63.875 1.761 63.932 1.787 2673.3 − 38.005∠ − 16.708◦ 17.498∠88.404◦ 7.616 × 106∠ − 166.954◦

C. Motivation for a Goodness-of-fit Metric

During faults or other fast transients, phasors extracted from
PMUs may not accurately represent current/voltage waveforms
as shown in Fig. 2a, where the current waveform reconstructed
from phasor measurements is depicted by the dash-dot trace,
while the original current signal is represented by the solid
trace. We observe that the current waveform reconstructed
from phasor measurements reasonably matches the actual
signal in the third cycle during the fault, but not the first.
Such discrepancies can lead to significant errors in applications
that use these measurements, as we reveal in Example 1 with
respect to fault location. Hence, the question arises as to how
the fault-location application can assess the credibility of its
results. As we show next, this problem can be tackled by
appropriately evaluating the “goodness” of the fit between the
signal that is reconstructed from the phasor measurements and
the actual signal based on which the phasor was obtained.
Such metrics quantify the accuracy of sychrophasors, which
can in turn be related to the accuracy of fault-location results.
In this way, these metrics can help indicate whether or not
fault-location results obtained using particular synchrophasors
are credible.

III. GOODNESS-OF-FIT METRIC FOR
SYNCHROPHASOR MEASUREMENTS

Along a measurement window of length ∆t, the PMU
conducts FFTs on time-domain per-phase voltage and current
waveforms and produces corresponding phasor representa-
tions with amplitude and phase components [9]. However,
as highlighted in Section II-C, such phasor representations
may not accurately reflect the time-domain waveforms if there
are fast transients in the voltages and currents of interest.
In such a case, the real-time application would benefit from
additional quantities that describe the quality (i.e,. accuracy)
of the synchrophasors. To this end, the so-called goodness-
of-fit (GoF) metric evaluates the mismatch between the actual
voltage or current waveform and the corresponding waveform
reconstructed from their respective phasor measurements ob-
tained from PMUs [16]. In this section, we define this metric
(and a variant), highlight their key properties, demonstrate
their usage via several numerical examples, and finally propose
them as additional outputs to be provided by PMUs.

A. Definition of the GoF Metric
Denote the actual a-, b-, and c-phase voltage waveforms at

bus m at time t by v̂am(t), v̂bm(t), and v̂cm(t), respectively.
Similarly, let îa(m,n)(t), îb(m,n)(t), and îc(m,n)(t) denote the
actual currents in line (m,n). Within the measurement window
(k − 1)∆t < t ≤ k∆t or simply k, a PMU at bus m samples
the actual per-phase voltage and current waveforms at a rate
of N = 166 samples-per-measurement-window (i.e., sampling
time of ∆τ = 100µs) [17]. Then, the PMU conducts FFTs
on the collected samples to produce corresponding phasor
representations at time tk = k∆t, which are sent to the appli-
cation [23]. Denote the resultant a-, b-, and c-phase voltage
phasors as V a

m[k] = |V a
m[k]|∠φam[k], V b

m[k] = |V b
m[k]|∠φbm[k],

and V c
m[k] = |V c

m[k]|∠φcm[k], respectively, with steady-
state frequencies ωa

m[k], ωb
m[k], and ωc

m[k], respectively. Fur-
ther define |Vm[k]| = [|V a

m[k]|, |V b
m[k]|, |V c

m[k]|]T, φm[k] =
[φam[k], φbm[k], φcm[k]]T and ωm[k] = [ωa

m[k], ωb
m[k], ωc

m[k]]T.
Notation for measured phasor representations of per-phase
current flows are established similarly.

With the above notation in place, we develop GoF-related
concepts with respect to a-phase quantities, but note that b-
and c-phase quantities would be evaluated analogously. Using
the phasor magnitude, frequency, and phase information from
a PMU, we can recover a corresponding reconstructed time-
domain signal. For example, the reconstructed a-phase voltage
and current waveforms are expressed as

vam(t) = |V a
m[k]| · cos(ωa

m[k]t+ φam[k]), (7)
ia(m,n)(t) = |Ia(m,n)[k]| · cos(ωa

m[k]t+ θa(m,n)[k]), (8)

where (k− 1)∆t < t ≤ k∆t. The reconstructed signals in (7)
and (8) differ from their corresponding actual waveforms by

∆vam(t) = v̂am(t)− vam(t), (9)

∆ia(m,n)(t) = îa(m,n)(t)− i
a
(m,n)(t). (10)

Such discrepancies can be represented by the GoF as a single
quantity over the measurement window k. As an example, the
GoF metric (in [dB]) for the a-phase voltage and current are
computed as [16]

ϕa
m[k] = 20 log

|V a
m[k]|√

1
N−M

N∑
j=1

(
∆vam(tk−1 + j∆τ)

)2 , (11)
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Fig. 2: (Examples 2 and 3) Phase-a actual current waveform and
that reconstructed from PMU phasor measurements (a) without and
(b) with DC-offset modification. Corresponding GoF values are su-
perimposed. Fault initiates at the beginning of measurement window
k = 1.

ψa
(m,n)[k] = 20 log

|Ia(m,n)[k]|√
1

N−M

N∑
j=1

(
∆ia(m,n)(tk−1 + j∆τ)

)2 ,
(12)

where N represents the number of samples in one mea-
surement window (166 samples here) and M represents the
number of estimated parameters to reconstruct the waveform.
In our setting, M = 3, where the estimated parameters are
amplitude, phase, and frequency. Finally, ∆τ denotes the
PMU internal sampling time in s. The GoF metric, as defined
in (11) and (12), evaluates to a large value when the actual
and reconstructed signals are well matched. The logarithmic
function amplifies the range of GoF values in the case with
greater mismatch between actual and reconstructed signals.

Next, via a numerical example, we illustrate how the GoF
metric quantifies the mismatch between the PMU phasor mea-
surement and the corresponding actual time-domain signal.

Example 2. Consider the transmission line of interest in
Fig. 1b from Example 1. At t = 0 s, we initiate a three-
phase-to-ground fault with the fault resistance of 5 Ω on the
line (m,n) (that is, da = db = dc = 60 km), which sustains
for three cycles. Based on simulated actual waveforms and
those reconstructed from PMU measurements, we evaluate
GoFs in pre-fault, during-fault and post-fault operating condi-
tions. Figure 2a contains the actual a-phase current waveform
îa(m,n)(t) (solid trace) and the corresponding one ia(m,n)(t)
reconstructed from phasor measurements (dash-dot trace). The
GoF quantities are evaluated in each measurement window,
which is marked by circles. Based on a visual examination of
Fig. 2a, we make the following observations:

� Pre-fault period (k ≤ 0): The waveform reconstructed using
PMU measurements matches the actual waveform obtained
from simulations. In this period where the mismatch is
minimal, evaluated GoFs ψa

(m,n)[k] ≈ 50 dB, k ≤ 0.
� During-fault period (1 ≤ k ≤ 3): Immediately following the

fault initiation time t = 0 s, the mismatch between the actual
and reconstructed waveforms grows, so that the GoF evalu-
ated in the first during-fault cycle is ψa

(m,n)[1] = 7.5 dB. As
the transients settle in measurement windows k = 2, 3, the
match between the two waveforms improves, and the GoFs
correspondingly increase to ψa

(m,n)[k] = 19 dB for k = 2,
and ψa

(m,n)[k] = 31 dB for k = 3.
� Post-fault period (k > 3): After 3 cycles, i.e., at t = 50 ms,

the fault is cleared by opening circuit breakers at both
ends of the faulted line at near zero current. Following
the disconnection of one line, the current through that line
decreases sharply. Again, such a sudden change causes the
mismatch between the waveforms to increase, and in turn
leads to lower GoF in measurement window k = 4.

Here, we omit detailed discussion of voltage waveforms with
respect to their mismatches and corresponding GoFs, but note
that analogous analysis can be carried out. �

B. Accounting for DC Offset

In Example 2, we observe that while there is nearly perfect
match between the reconstructed and the actual waveforms
in sinusoidal steady state, the mismatch is quite notable in
the during-fault period, when the system experiences electrical
transients. Recall that reconstructed signals (see, e.g., dash-dot
trace in Fig. 2a) are recovered from the amplitude, phase, and
frequency values, which are obtained via the PMU, using (7)
and (8). However, the three aforementioned parameters do
not encode information about the DC offset of the actual
waveform, which may be nonzero during electrical transients.
As a result, the GoF metric may be decrease in value simply
due to a DC offset, and not errors in the phasor information
reported. For example, this intuition is evident via visual
inspection of Fig. 2a for k = 1. Thus, we devote some time to
investigate the effects of such DC offsets on the GoF metric.

The DC offset can be easily computed by the PMU at
time tk for the previous measurement window (k − 1)∆t <
t ≤ k∆t. As an example, DC offsets for a-phase voltage and
current are evaluated as:

∆vam[k] =
1

N

N∑
j=1

∆vam(tk−1 + j∆τ), (13)

∆i
a
(m,n)[k] =

1

N

N∑
j=1

∆ia(m,n)(tk−1 + j∆τ), (14)

respectively. These can be interpreted as the mean value of
the difference between the actual and reconstructed signals in
measurement window k. Now, using the DC-offset information
in conjunction with PMU phasor measurements (i.e., ampli-
tude, phase, and frequency), we hope that the reconstructed
waveforms would more closely match the actual ones. For
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Fig. 3: (Example 4) Phase-a actual current waveform and that recon-
structed from PMU phasor measurements (a) without and (b) with
DC-offset modification. Corresponding GoF values are superimposed.
Fault initiates at t = 6.94 ms, within measurement window k = 1.

example, for (k−1)∆t < t ≤ k∆t, the reconstructed a-phase
voltage and current waveforms can be expressed as

vam(t) = vam(t) + ∆vam[k] (15)

i
a
(m,n)(t) = ia(m,n)(t) + ∆i

a
(m,n)[k], (16)

respectively, where vam(t) and ia(m,n)(t) are obtained from (7)
and (8), respectively. Accordingly, the mismatch between the
actual waveforms and the ones reconstructed from synchropha-
sors (accounting for DC offset) are computed as v̂am(t)−vam(t)
and îa(m,n)(t) − i

a
(m,n)(t). Finally, these can be substituted

into (11) and (12) to obtain updated GoF metrics ϕa
m[k] and

ψ
a

(m,n)[k] for the a-phase voltage and current, respectively.

Example 3 (Effect of DC Offset on GoF Metrics). Consider
the same system and fault scenario as in Example 2, but in
addition to |Ia(m,n)[k]|, θa(m,n)[k], and ωa

m[k], assume that the
DC offset obtained from (14) is available. The reconstructed
current waveform is superimposed onto the actual one in
Fig. 2b. In this case, in contrast to Fig. 2a, the reconstructed
and actual waveforms match much more closely, with the
greatest improvement in the during-fault period, especially in
measurement window k = 1. Correspondingly, as compared
with Example 2, GoF values are greater in the during-fault
period, as depicted in Fig. 2b. Specifically, in the problematic
measurement window k = 1 from Example 2, the GoF
increases from 7.5 dB to 20.5 dB. �

Previously, by making available the DC offset of the actual
signal obtained from (13) and (14), we significantly improve
the match between the actual waveform and that reconstructed
from PMU measurements, as illustrated in Example 3. On the
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Fig. 4: (Example 5) Current transformer (CT) flux saturation limit
is set to 2µV·s. (a) Phase-a CT magnetizing current and core
flux. (b) Phase-a actual current waveform and that reconstructed
from PMU phasor measurements with DC-offset modification. Fault
initiates at the beginning of measurement window k = 1.

other hand, as we show next via Examples 4 and 5, respec-
tively, the problem of matching the reconstructed waveform to
the actual one is further complicated if (i) the fault initiation
time does not coincide with the measurement window bound-
ary, or (ii) the current transformer (CT) saturates due to large
line currents.

Example 4 (Effect of Fault Initiation Time on GoF Metrics).
In the scenario used in Examples 2 and 3, the fault initiation
time fortuitously coincides with the boundary between two
consecutive measurement windows. In this example, we con-
sider the same system and fault scenario as before, except the
fault initiation time is set to t = 6.94 ms, which is close to
the centre of the measurement window k = 1, as shown in
Fig. 3. Evident from a visual inspection of Fig. 3a, in which
the reconstructed waveform is obtained using only current
phasor estimates, the substantial mismatch in measurement
window k = 1 cannot be completely obviated by a simple
DC offset. This observation is substantiated in Fig. 3b, where
the reconstructed waveform incorporates the DC offset in the
actual signal. Specifically, in measurement window k = 1, the
GoF with the DC-offset modification is 9.7 dB as compared
to 4.4 dB in Fig. 3a. Indeed, while the improvement in the
match is less significant than that observed in Example 3, by
considering the DC offset, the mismatch is still reduced. �

Example 5 (Effect of Current-transformer Saturation on GoF
Metrics). The measurement accuracy of monitoring and pro-
tection devices such as PMUs and relays depends on the
quality of analog signals obtained from CTs [24]. Examples 2–
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Fig. 5: Schematic of proposed PMU.

4 assumed an ideal CT model without saturation. In reality, due
to the nonlinear characteristic of its core, the CT is vulnerable
to the saturation phenomenon when line-current magnitudes
are much higher than their steady-state values [25]. In this
example, we consider the same scenario as in Examples 2
and 3, except a non-ideal CT model is used and the core flux
saturation limit is set to 2µV·s. As shown in Fig. 4a, following
the increase of the core flux to an amplitude more than 2µV·s,
the CT saturates and the magnetizing current increases sharply.
Then, as shown in Fig. 4b, the saturation phenomenon leads
to non-sinusoidal current waveforms (as seen by the PMU)
in the during-fault period. Again, we note that the mismatch
between the original and the reconstructed waveforms cannot
be removed by a simple DC offset. �

Via Examples 3–5, we observe that the GoF metric quanti-
fies the error of the reported synchrophasor, and GoF values
may be improved when the reconstructed signal considers the
mean DC offset in a measurement window (k − 1)∆t < t ≤
k∆t. Thus, we hypothesize that GoF metrics can serve as a
predictor for the performance quality of real-time applications,
such as fault location.

C. Inclusion of GoF Metrics in the PMU

Base on the discussion above, we propose to include the
GoF and its DC-offset-modified variant as prescribed quan-
tities for the PMU to transmit to real-time applications. In
the proposed structure (marked as the dashed trace in Fig. 5),
in addition to the phasor information (amplitude, phase, and
frequency) reported by the standard PMU, the GoF and GoF
(which denotes the GoF-variant that quantifies the mismatch
between the original signal and the one reconstructed account-
ing for DC offset) are also computed and transmitted. It is
worth noting that we do not advocate to transmit the DC offset
itself to the application, because our goal is not to reconstruct
the actual voltage and current waveforms at the application, but
rather to determine whether or not real-time application results
are credible. Next, via numerical case studies, we illustrate
how the GoF metrics can help to predict the performance
quality of the fault-location application.

IV. CASE STUDIES

In this section, we demonstrate the advantage of incorpo-
rating GoF metrics into PMUs by applying them to the fault-
location application. In Example 1, we considered five fault
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Fig. 6: Fault location error versus GoF values computed for wave-
forms reconstructed from PMU phasor measurements obtained in
measurement windows k = 1, 2, 3 (a) without and (b) with DC-offset
modification. The × markers denote cases in which fault initiates
12.5 ms (equivalent to 3/4 of the measurement window length) into
measurement window k = 1.

types: abcg, abg, ag, abc, and ab. Here, in order to include all
fault conditions in our simulations, we also consider variations
in (i) fault resistance, (ii) fault location along the line, and
(iii) fault initiation time with respect to measurement window
boundaries. Particularly, for each fault type, simulations cover
fault resistances of 5 Ω, 20 Ω, and 30 Ω, fault locations of 10,
60, 110, 160, and 210 km from bus m, and 4 fault initiation
times equally spaced within a measurement window. Thus, in
total, we conduct 60 simulations for each of the five fault types.
In each simulation, we assume that the fault lasts for three
electrical cycles, which provides three synchrophasors for the
during-fault period. Each set of synchrophasors (corresponding
to a “case”) is used to locate the fault and estimate the fault-
to-ground impedance via (6).

A. Simulation Results

For each case, we obtain synchrophasor measurements
of I(m,n) and I(n,m) at buses m and n, respectively, as
well as their corresponding GoF values. Then, for each pair
of current measurements obtained at either end of the line,
we take the average of the two GoF values. As shown in
Fig. 6a, we subsequently plot the fault location error in each
case against the average GoF of corresponding measurements.
Fault location results obtained using synchrophasors from
measurement windows k = 1, 2, 3 of the during-fault period
are marked in red, blue, and green colours, respectively. Via
visual inspection of Fig. 6a, we observe that the greater fault
location errors (> 1%) are predominantly associated with



8

TABLE III: (Remark 1) Comparison of fault-location accuracy with
corresponding GOF metrics for an abcg fault occurring at 60 km from
bus m with Rg = 5 Ω. Fault initiates at the beginning of measurement
window k = 1.

Measurement window k = 1 Measurement window k = 3

% Error GoF GoF % Error GoF GoF
Without saturation 0.6463 6.6909 19.239 0.1375 32.978 45.808

With saturation 21.628 4.0000 4.1050 1.9305 17.990 18.195

synchrophasors obtained measurement window k = 1, with
low GoF values (< 25 dB). Here, thresholds of 1% and 25 dB
are considered to facilitate subsequent discussions, but they
may be tailored for each application scenario based on the
user’s tolerance for accuracy. Moreover, it is worth noting that
within each fault type considered, cases in which the fault
initiates 12.5 ms (equivalent to 3/4 of the measurement win-
dow length) into measurement window k = 1 are associated
with the highest fault-location errors (marked as red ×’s in
Fig. 6a). In these, the PMU does not have enough information
from the during-fault period, so the resulting phasor leads to
a poor fit between the time-domain waveform and that recon-
structed from the phasor, as previously highlighted in Fig. 3a.
On the other hand, synchrophasors obtained in measurement
window k = 3 (and some from k = 2) are associated with
higher GoF values (greater than 25 dB), which indicate good
fit. Corresponding fault-location errors are less than 1%. These
results echo the phenomenon observed in Example 1 for fault-
to-ground impedance of 5 Ω and fault location of 60 km from
bus m.

Recall from Example 3 that a simple constant DC-offset
modification can significantly improve the GoF value for the
reconstructed waveform. Thus, we also compute the GoF
values after DC-offset modification (we call this GoF variant
GoF). Similar to Fig. 6a, we plot fault location error for each
case against its corresponding GoF value in Fig. 6b. Using
this modified GoF metric, many of the cases with acceptable
fault location errors (less than 1%) are shifted to the right with
GoF values greater than 25 dB. Particularly, in Fig. 6a, there
are 445 cases with GoF values greater than 25 dB, all of which
correspond to sufficiently accurate fault location errors of less
than 1%. On the other hand, in Fig. 6b, 89 more cases with
sufficiently accurate fault location results are identified based
on the criterion that their corresponding GoF values are greater
than 25 dB. Thus, we conclude that indeed, the modified GoF
metric is able to better distinguish cases whose fault location
results are sufficiently accurate.

Remark 1 (Effect of Current-transformer Saturation). Ta-
ble III reports fault location accuracy using synchrophasors
obtained in measurement windows k = 1 and k = 3, as well as
their corresponding GoF and GoF values. Comparing the rows
in Table III, we observe that GoF and GoF values are similarly
low when CT saturation occurs. This is because the mismatch
between the original and reconstructed waveforms is not due
to DC offset, as noted in Example 5. Even though GoF and
GoF values are similar, their low values still provide a good
predictor for uncredible fault-location results. Particularly, in
both measurement windows k = 1 and k = 3, fault-location
errors are quite high, which are reflected in low GoF and GoF

Fig. 7: Proposed decision tree to assess credibility of fault location.

values. In fact, the closeness of the two values indicates that
the reason for low GoF is not DC offset, but that the waveform
is actually distorted. �

B. GoF Criteria for Predicting Fault Location Accuracy

After a fault occurs, as shown in Fig. 5, synchrophasor
measurements and corresponding GoF or GoF values are
received by the fault-location application, which utilizes (i) the
synchrophasors to determine the location of the fault, and
(ii) the GoF or GoF values to assess whether or not the
fault-location results are sufficiently credible. Based on the
discussion in Section IV-A, we note that a GoF value of 25 dB
is a reasonable demarcation in this case to determine whether
or not fault location results are sufficiently credible.

Using the decision process outlined in Fig. 7, we first
consider cases with GoF > 25 dB and conclude that, as shown
in Fig. 8a, they predominantly correspond to fault location
errors of less than 0.5%, and 73.03% of those cases correspond
to errors of less than 0.1%. If GoF is not available because the
PMU is not equipped to obtain the DC offset of time-domain
measurement waveforms, the assessment would end here.
However, in the case that GoF is available to the application,
we note that nearly all the cases with GoF < 25 dB but
GoF > 25 dB correspond to fault location errors of less than
1% as shown in Fig. 8b, and 86.52% of the cases have errors
of less than 0.5%. Finally, as shown in Fig. 8c, cases with
GoF < 25 dB and GoF < 25 dB have fault location errors in
a wide range (as high as nearly 12%). By observing Fig. 8,
we conclude that cases with GoF > 25 dB or those with
GoF > 25 dB return credible fault-location results, but cases
with GoF < 25 dB or GoF < 25 dB are inconclusive.

V. CONCLUDING REMARKS AND DIRECTIONS FOR
FUTURE RESEARCH

This paper illustrates the usability of GoF metrics to
quantify synchrophasor accuracy in real-time applications.
Specifically, for fault location along a transmission line, GoF
metrics indeed yield an assessment for the confidence level
of fault-location results. Thus, we advocate that the PMU
transmits GoF values in addition to the standard synchrophasor
output to various real-time applications. Additionally, based on
aggregate results from extensive case studies, we provide GoF
criteria under which fault-location results can be deemed to be
sufficiently credible. A particularly relevant extension of this
work is to develop PMU models that incorporate DC offsets
in the measured signals and GoF metrics as outputs. Other
compelling directions for future work include investigating the
role of GoF metrics in other real-time applications, such as
special protection schemes, transient stability assessment, and
dynamic state estimation.
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Fig. 8: Proportion of cases corresponding to particular ranges of fault location errors out of a total of (a) 445 cases with GoF > 25 dB,
(b) 89 cases with GoF < 25 dB and GoF > 25 dB, and (c) 366 cases with GoF < 25 dB and GoF < 25 dB.
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