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Abstract—This paper develops an approach to enable the
optimal participation of distributed energy resources (DERs) in
inertial and primary-frequency response alongside conventional
synchronous generators. Leveraging a reduced-order model de-
scription of frequency dynamics, DERs’ synthetic inertias and
droop coefficients are designed to meet time-domain performance
objectives of frequency overshoot and steady-state regulation.
Furthermore, an optimization-based method centered around
classical economic dispatch is developed to ensure that DERs
share the power injections for inertial- and primary-frequency
response in proportion to their power ratings. Simulations for
a modified New England test-case system composed of ten
synchronous generators and six instances of the IEEE 37-node
test feeder with frequency-responsive DERs validate the design
strategy.

Index Terms—Distributed energy resources, droop control,
model reduction, inertial response, primary frequency response,
synthetic inertia.

I. INTRODUCTION

ENSURING power quality in the face of the rapid and
admittedly ad-hoc integration of distributed energy re-

sources (DERs) is a challenging task. It is therefore accepted
that DERs ought to provide a wide array of ancillary services
such as reactive-power support, voltage control, frequency
control, and operating reserves to ensure their synergistic
operation alongside conventional generators, and seamless
integration into the bulk power system [1]–[3]. This paper
focuses on frequency control and outlines an approach to
optimize the participation of DERs in inertial and primary-
frequency response. Particularly, DER synthetic-inertia and
droop coefficients are determined such that: i) a collection
of DERs and synchronous generators in a given balancing
area meet time-domain specifications on frequency overshoot
and steady-state frequency regulation, and ii) the DERs inject
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power in proportion to their power ratings as they partake in
inertial and primary-frequency response.

To illustrate the developed approach, consider Fig. 1(a)
and Fig. 1(b). The power system in Fig. 1(a) is composed
of two conventional synchronous generators and two DERs.
The trace in Fig. 1(b) sketches frequency deviation from
synchronous frequency, ωs, following a large-signal increase
in load, ∆Pload. The system frequency reaches a minimum,
∆ωnadir, at time tnadir, and as the generators and DERs
respond, it settles to yield the steady-state offset ∆ωss. With
this general setting in mind, we dwell on the following
questions: i) How does one pick the synthetic inertias and
droop slopes of individual DERs to guarantee a prescribed
overshoot and steady-state frequency? ii) How does one ensure
fairness of participation in terms of power provisioning among
the DERs? The answers to these questions hinge on uncov-
ering the mapping between the time-domain specifications
∆ωnadir and ∆ωss to the synthetic inertias and droop slopes,
MD,1,MD,2 and DD,1, DD,2—a difficult proposition indeed,
given the nonlinear system dynamics involved. This challenge
is addressed through the following three steps:

(A) Formulate a reduced second-order model with system
frequency and aggregated governor dynamics as states,
and load disturbance as input.

(B) Obtain the time-domain frequency trajectory in closed
form leveraging the analytical convenience of the
second-order model. The trajectory is parameterized by
the effective damping and inertia, defined to be the sum
of generator and DER damping and inertia terms.

(C) Disaggregate the effective inertia and damping into in-
dividual DER contributions leveraging an optimization-
based perspective that ensures DERs respond in propor-
tion to their power ratings.

With regard to the model-reduction step (A), the time constant
that captures the dynamics of the aggregated governor is ob-
tained by minimizing the Frobenius norm of the difference of
the system matrices corresponding to the original and reduced-
order models. Then a closed-form expression is derived for
this time constant. Interestingly, one can note that it is not
a function of the effective inertia and damping terms which
implies that the model-reduction task can be decoupled from
the design tasks in (B) and (C). Furthermore, step (C) not only
yields the optimal synthetic inertias and droop slopes for the
DERs, but also suggests cost functions to dispatch the DERs
alongside conventional generators. This addresses the widely
appreciated problem of obtaining meaningful cost functions to
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Fig. 1. The design strategy allows one to pick DER synthetic-inertia and droop
constants, MD,1,MD,2 and DD,1, DD,2, (see (a)) to meet specifications
pertaining to frequency nadir, ∆ωnadir, and steady-state frequency offset,
∆ωss (see (b)) following a disturbance ∆Pload. Furthermore, the synthetic
inertias and droop slopes are engineered such that DER power injections
∆PD,1,∆PD,2 are proportional to their power ratings through the transient.

dispatch DERs such as photovoltaic systems, wind systems,
and energy storage systems that have no fuel costs [4]. Before
proceeding, we remark that it might appear we only consider
the case where each DER is a single energy-conversion unit.
This is without loss of generality; our approach extends to the
setting where a collection of DERs are connected to a bus.

The scope of this work specifically encompasses the two
areas of model-reduction techniques and optimization-based
design; we focus our review of pertinent literature accord-
ingly. There are numerous other aspects such as monetary
considerations [5] and controller design respecting features
of PV and wind energy conversion systems [6], [7], that,
while important in the broad topic of DER integration, are
tangential to the present work. Model-reduction methods for
power systems is a widely researched topic. A selective modal
analysis technique [8] is adopted in [9] to develop a reduced-
order model reflecting the structure of the originating model.
Another recent effort of note is [10], where model reduction
is performed by systematically eliminating elements of system
matrices (instead of removing components from the state
vector). Most other approaches in this domain invoke well
known numerical techniques such as balanced truncation [11],
proper orthogonal decomposition [12] and Krylov-subspace
methods [13] and apply them to pertinent dynamical models
based on application. An overview of common methods is
available in [14]. We also bring to attention the effort in [15]
where a second-order model for the system frequency re-
sponse is derived under the unproven assumption that averaged
model parameters serve as good proxies for the reduced-
order model, and this model is used for setting load shedding
relays to contend with under frequency events. Most of the
methods discussed above are primarily numerical in nature.
They involve matrix manipulations of varying complexity,
and these render the task of relating the parameters of the
reduced-order model to those of the original model to be
intractable. Our approach, on the other hand, allows one to
track back the design parameters obtained in the second-order
model to the originating model. This is key ingredient of the
presented design process which relies on the second-order
system description to obtain the frequency trajectory as a
function of the system-wide effective inertia and damping.

Shifting focus to optimization-based design methods for
DER integration, the efforts in [16], [17] involve optimization
problems for scheduling that include DER damping and inertia

terms as optimization variables. However to simplify analysis,
these methods adopt (the admittedly simple) model where the
mechanical power output of the generator changes linearly
with frequency deviation. In this regard, proposed approach is
more accurate since we retain a detailed dynamical model for
the governor in the analysis. Techniques based on minimizing
H1, H2, and H∞ norms are provided in [18]–[21]. These
approaches ultimately optimize objective functions which are
merely proxies of time-domain criteria like frequency devia-
tions and overshoot. Optimization-based methods to engineer
inertia and damping constants to meet frequency- and time-
domain specifications are provided in [22] and [23], respec-
tively. These methods are based on numerically computing
the system eigenvalues and their sensitivities. The proposed
approach is markedly different since it is analytical in nature
and presents limited-to-no computational burden. Tuning of
inertia and droop coefficients based on system norms or
spectral metrics is considered in [24], [25]; and it is as-
sumed that generator inertia can be controlled or modified,
whereas we consider external DER support. We also bring
to attention our recent work [26] that examined the optimal
design of droop slopes for DERs in distribution networks.
The goal therein was to guarantee a prescribed primary-
frequency regulation value at the feeder-head while ensuring
that DERs are not unfairly penalized for their power rating
or location within the distribution feeder. Here, we depart
from purely steady-state analysis and consider time-domain
specifications at the transmission level while acknowledging
generator dynamics. Another related effort—albeit for islanded
inverter-based systems—is [27], which connects droop control
and economic optimality. While our optimization-based disag-
gregation strategy also uncovers synergies between economic
dispatch and real-time control, we study primary and inertial
control in mixed DER-machine systems.

A preliminary version of this work appears in [28]. Here,
it is significantly expanded in several important directions.
First, a closed-form solution for the time constant that captures
aggregate turbine-governor dynamics in the reduced-order
model is presented—a significant contribution over [28] that
required a numerical solution approach. Second, compared
to [28], we focus on time-domain specifications—such as
peak overshoot—that are admittedly more challenging to sat-
isfy given the system dynamical models. Furthermore, the
optimization-based disaggregation of effective damping and
inertia to those of individual DERs is a unique contribution
of this paper, and it ensures that the DERs participate fairly
(in proportion to their power ratings) in supporting system
frequency.

The remainder of this manuscript is organized as follows.
Section II outlines the dynamical models adopted for indi-
vidual generators and DERs, and Section III develops the
reduced second-order model for the entire system. Leveraging
this second-order model, the approach to design system-
wide effective inertia and damping coefficients is described in
Section IV, while the optimization-based method to engineer
individual DER control coefficients is presented in Section V.
In Section VI, the proposed methodologies via numerical case
studies is validated. Concluding remarks and directions for
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future work are offered in Section VII.

II. SYSTEM DYNAMICAL MODELS

In this section, we describe pertinent dynamical models
adopted for the generators, DERs, and the network.

A. Transmission Network Model

Consider a transmission grid with buses collected in the set
N . Partition the set N = D ∪ G, where G is the set of buses
that are connected to conventional turbine-based generators
and D is the set of buses connected to frequency-responsive
DERs (or their aggregates). For notational and expositional
convenience, assume D∩G = ∅. (This can be readily relaxed.)
Buses electrically connected to bus ` are collected in the set
N`. Transmission lines are assumed to be lossless.1

B. Synchronous-generator Dynamics

The dynamics of angular position, frequency, and
mechanical-power input are modeled for the generators in the
network [29]. Dynamics of power-system stabilizers are typi-
cally neglected for studying phenomena pertinent to primary-
frequency and inertial response. Automatic voltage regulator
dynamics are ignored and it is assumed that the exciter oper-
ates at a stable output; therefore, the machine terminal voltage
is assumed to be fixed [30], [31]. With these assumptions,
dynamics of the g ∈ G generator are:

θ̇g = ωg − ωs, (1a)

MG,gω̇g = Pm
G,g −DG,g(ωg − ωs) + PG,g −

∑
`∈Ng

Pg`, (1b)

τgṖ
m
G,g = −Pm

G,g + P r
G,g −RG,g(ωg − ωs). (1c)

Above, θg, ωg, and Pm
G,g are the rotor electrical angular

position, generator frequency, and turbine mechanical power,
respectively, and ωs is the synchronous frequency. Further-
more, MG,g is the inertia constant, DG,g is the load-damping
coefficient, RG,g is the inverse of the frequency-power speed-
droop regulation constant,2 τg is the turbine time constant,
and P r

G,g denotes the reference-power setting computed from
economic dispatch. Finally, PG,g is the real-power injection at
bus g, and Pg` is the real-power flow from bus g to `. For
notational convenience, we define:

Pm
G := [Pm

G,1, . . . , P
m
G,|G|]

T, P r
G := [P r

G,1, . . . , P
r
G,|G|]

T,

RG := [RG,1, . . . , RG,|G|]
T, τ := [τ1, τ2, . . . , τ|G|]

T. (2)

1Notation: The matrix transpose is denoted by (·)T, and trace by Tr(·). The
cardinality of a set is denoted by | · |. A diagonal matrix formed with diagonal
entries composed of entries of vector x is denoted by diag(x); diag{x, y} is
a diagonal matrix with entries of vectors (or matrices) x and y stacked along
the main diagonal. The N × 1 vectors of all ones and zeros are denoted by
1N and 0N ; and the N ×N identity matrix by IN .

2We abuse notation here slightly. Typically, the frequency-power speed-
droop regulation constant—and not the inverse—is denoted by RG,g [29].

C. Frequency-responsive DER Model

Assume the following model for DER d ∈ D:

θ̇d = ωd − ωs, (3a)

MD,dω̇d = −DD,d(ωd − ωs) + PD,d −
∑
`∈Nd

Pd`. (3b)

The droop coefficient DD,d establishes the frequency response
of the DER at bus d, the synthetic-inertia constant MD,d deter-
mines the inertial response, PD,d is the real power injected at
bus d, and Pd` is the real power flow from bus d to `. The rated
real-power output of DER d is denoted by PD,d. Typically,
three-phase grid-tied inverters have power controllers that
accept reference setpoints for active and reactive power, and
they include phase-locked loops that sense the grid frequency.
(See, e.g., [32], [33] for a typical control architecture.) To
implement frequency control, one would modulate these ref-
erence setpoints with correction terms for damping and inertial
control. Furthermore, internal controller dynamics of DERs are
ignored since they are implemented at much faster time scales.
Studies focused on faster timescales would require the model
in (3) to be augmented with further DER-specific dynamics
that would dictate the evolution of pertinent power-related
DER states and establish connections with the electrical output
power.

Before proceeding, a few clarifying comments about the
models presented thus far are offered. Frequency-sensitive
loads present at generator buses are modeled with the load-
damping constant in (1b). Frequency sensitivity of the DERs
is captured with the model (3b). Conventional loads are
governed by the same model as (3) with MD,d = DD,d = 0.
Uncontrollable frequency-sensitive loads on load buses are not
modeled to simplify notation; they could be straightforwardly
incorporated into (3). As expressed, (3) suggests there is
an individual DER at bus d. To model an aggregation of
DERs with the same capacity all connected to the same bus
(e.g., a large wind energy conversion system where the power
flows in the collector system are neglected) we can use (3)
with the understanding that the droop slopes and synthetic-
inertia coefficients for individual DERs in the aggregation
are given by DD,d/|Dd| and MD,d/|Dd|, respectively, where
Dd is the set of DERs at bus d. For the case when DERs
are not all connected to the same bus and power flows are
not neglected, linearizations of the power-flow equations can
facilitate systematic disaggregation of DD,d and MD,d to units
within each feeder [26].

III. REDUCED SECOND-ORDER MODEL

In this section, we obtain a reduced second-order model to
capture the dynamics of system frequency.

A. State-space Model

Assume the system initially operates at the steady-state
equilibrium point with ωg = ωd = ωs, ∀g ∈ G, d ∈ D.
Defining ∆ω := ωg−ωs = ωd−ωs, we get from (1b) and (3b)

MG,g∆ω̇ = Pm
G,g −DG,g∆ω + PG,g −

∑
`∈Ng

Pg` (4)
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MD,d∆ω̇ = −DD,d∆ω + PD,d −
∑
`∈Nd

Pd`. (5)

Using the same ∆ω for all nodes is valid for networks
where electrical distances are negligible and all the buses have
the same frequency even during transients [31], [34], [35].
Summing (4) over all g ∈ G, and (5) over all d ∈ D, while
recognizing that

∑
g∈G

∑
`∈Ng

Pg` +
∑
d∈D

∑
`∈Nd Pd` = 0

(since the network is lossless) we get

Meff∆ω̇ =
∑
g∈G

Pm
G,g −Dnet∆ω − Pload, (6)

where Pload is the total electrical load given by

Pload := −
∑
g∈G

PG,g −
∑
d∈D

PD,d, (7)

and the effective inertia constant, Meff , net damping constant,
Dnet, and effective damping constant, Deff , are defined as

Meff :=
∑
g∈G

MG,g +
∑
d∈D

MD,d, (8)

Dnet :=
∑
g∈G

DG,g +
∑
d∈D

DD,d, (9)

Deff :=
∑
g∈G

(DG,g +RG,g) +
∑
d∈D

DD,d. (10)

Furthermore, collecting copies of (1c) ∀g ∈ G, we can write

diag(τ)Ṗm
G = −Pm

G + P r
G −RG∆ω. (11)

Combining (6) and (11), yields the state-space model:

ẋ = Ax+Bu. (12)

The state vector and input, x, u ∈ R|G|+1, and system matrices,
A,B ∈ R(|G|+1)×(|G|+1) are given by

x = [∆ω, (Pm
G )T]T, u = [Pload, (P

r
G)T]T, (13)

A =

[ −DnetM
−1
eff M−1

eff 1T
|G|

AR Aτ

]
, B = diag{−M−1

eff ,−Aτ},

where Aτ := −diag(τ)−1 and AR := AτRG .

B. Reduced Second-order Model

Consider the following reduced second-order model to
capture the frequency dynamics:

ẋred = Aredxred +Bredured. (14)

The state vector and input, xred, ured ∈ R2, and system
matrices, Ared, Bred ∈ R2×2 are given by

xred = [∆ωred, P
m
red]T, ured = [Pload, P

r
red]T, (15)

Ared =

[
−DnetM

−1
eff M−1

eff

−RG,effτ
−1
red −τ−1

red

]
, Bred =

[
−M−1

eff 0
0 τ−1

red

]
,

where τred > 0 is represents the time constant of the aggre-
gated governor in the reduced-order model, and

P r
red =

∑
g∈G

P r
G,g, RG,eff =

∑
g∈G

RG,g. (16)

The order of the original model in (12) is |G|+1. By contrast,
the model in (14) is of order 2. The main point of difference

in the two models is with regard to the generator governors.
While the original model retains governor dynamics for each
generator, the reduced-order model contains an aggregated
governor.

When τg = τ`, ∀g, ` ∈ G, it is straightforward to show
that with the choice τred = τg and ∆ω(0) = ∆ωred(0);
∆ω(t) = ∆ωred(t), ∀t ≥ 0. When turbine time constants
are not equal, the error between ∆ωred(t) and ∆ω(t) can
be upperbounded. Consider the system (12) (with a matrix
A that is diagonalizable and Hurwitz) and the reduced-order
counterpart (14). Furthermore, define the matrix

Γ := diag{1, τ−1
reddiag(τ)}, (17)

which, we will find useful to quantify the error incurred in
model reduction. Suppose the initial conditions for the two
dynamical systems at time t = 0 are such that ∆ωred(0) =
∆ω(0), and Pm

red(0) =
∑

g∈G P
m
G,g(0). There exist δ, k, λ > 0,

such that if ‖(Γ− I|G|+1)A)‖2 < δ, we get ∀t ≥ 0,

|∆ω(t)−∆ωred(t)| < δ
k

λ
sup

0≤t̄≤t
‖x(t̄)‖2 + ‖A−1Bu(t̄)‖2.

(18)
For a detailed proof to the above statement, we refer readers
to [28]; a brief sketch follows next. Define the auxiliary |G|+1
dimensional dynamical system

ẋ = Ax+Bu. (19)

The state vector, x, and system matrices, A,B are given by

x = [∆ω, (P
m

G )T]T, u = [Pload, (P
r
G)T]T, (20)

A = ΓA =

[ −DnetM
−1
eff M−1

eff 1T
|G|

AR Aτ

]
, (21)

B = ΓB = diag{−M−1
eff ,−Aτ},

where Aτ := −τ−1
redI|G|, AR := AτRG . Since the initial

conditions for the system (19) are chosen to match those
of (12), i.e., x(0) = x(0), the reduced-order model in (14) can
be derived from the one in (19) by setting Pm

red =
∑

g∈G P
m

G,g
and P r

red =
∑

g∈G P
r
G,g. Furthermore, with initial conditions

∆ωred(0) = ∆ω(0) and Pm
G,red(0) =

∑
g∈G P

m

G,g(0), it
follows that ∆ωred(t) = ∆ω(t), ∀t ≥ 0. Now, consider the
dynamics of ∆x(t) := x(t)−x(t), which can be expressed as
∆ẋ = ΓA∆x+ (Γ− I|G|+1)ẋ with ∆x(0) = 0|G|+1. Treating
ẋ as an exogenous input, we get

∆x(t) =

∫ t

t̄=0

eΓA(t−t̄)(Γ− I|G|+1)ẋ(t̄)dt̄. (22)

There exist k, λ > 0 such that we can bound ‖eΓA(t−t̄)‖2 ≤
ke−λ(t−t̄), ∀ 0 ≤ t̄ ≤ t [36]. Using this fact, we get from (22)
that

‖∆x(t)‖2 ≤
∫ t

t̄=0

ke−λ(t−t̄)

· ‖(Γ− I|G|+1)(Ax(t̄) +Bu(t̄))‖2dt̄, (23)

The bound in (18) follows by recognizing |∆ω(t)−∆ω(t)| =
|∆ωred(t) − ∆ω(t)| ≤ ‖∆x(t)‖2, and under the constraint
‖(Γ− I|G|+1)A)‖2 < δ.
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C. Choosing an Appropriate Value for τred

Given the bound on the error between ∆ωred(t) and ∆ω(t)
is directly proportional to ‖(Γ − I‖G‖+1)A‖2, evidently, a
reasonable choice for τred would be the following:

τred = arg min
τ̂≥0
‖(Γ(τ̂)− I|G|+1)A‖2, (24)

where Γ(τ̂) := τ̂−1diag{τ̂ , diag(τ)}. Notice ‖(Γ(τ̂) −
I|G|+1)A‖2 = ‖(Γ̃(τ̂)−I|G|)Ã‖2, where Γ̃(τ̂) := τ̂−1diag(τ),
and Ã := [AR Aτ ], with Aτ = −diag(τ)−1 and AR =
AτRG (12). This is because the first row of the matrix
(Γ(τ̂) − I|G|+1)A has all zero entries. Therefore, instead
of (24), we solve

τred = arg min
τ̂≥0
‖(Γ̃(τ̂)− I|G|)Ã‖2. (25)

For any matrix A, ‖A‖2 ≤ ‖A‖F [37], which is a fact that is
particularly useful when applied to our problem. While (25)
does not admit a minimizer in analytical closed form, one can
obtain an analytical closed-form solution for

arg min
τ̂≥0
‖(Γ̃(τ̂)− I|G|)Ã‖F. (26)

The minimizer to (26) is given by

τred =
Tr
(
diag(τ)ÃÃTdiag(τ)

)
Tr(diag(τ)ÃÃT)

. (27)

A detailed derivation is provided in Appendix A. We comment
on an important point about the choice of τred above. Notice
that the matrix Ã does not depend on Deff and Meff , which
implies that the reduced-order model can be obtained before
attempting design.

IV. DESIGNING INERTIA AND DAMPING COEFFICIENTS

In this section, we utilize the second-order model to ob-
tain the transfer function from the net-load disturbance to
frequency deviation. The inverse Laplace transform yields the
time-domain evolution of frequency following a load step
as a function of the effective damping and inertia. We can
then determine the damping and inertia to obtain a prescribed
steady-state frequency regulation and peak overshoot.

A. Transfer Function from Load to Frequency

The s-domain transfer function from the load, Pload, to
frequency deviation, ∆ω, is obtained from (14) as3

∆ω(s)

Pload(s)
= − k(s+ ζ)

s2 + 2ξωns+ ω2
n

, (28)

where the parameters k, ζ, ωn, and ξ are given by

k := M−1
eff , ζ := τ−1

red, (29)

ωn :=

√
Deff

τredMeff
, ξ :=

1

2

Meff + τredDnet√
τredMeffDeff

.

3We abuse notation slightly and denote the frequency offset corresponding
to the reduced-order model by ∆ω and not ∆ωred.

Consider a step change in the load at time t = 0 of ∆Pload.
Substituting Pload(s) = ∆Pload/s in (28), we get

∆ω(s) = − ∆Ploadk(s+ ζ)

s(s2 + 2ξωns+ ω2
n)
. (30)

Taking the inverse Laplace transform above, assuming the
system is underdamped, i.e., 0 < ξ < 1, we get

∆ω(t) = ∆ωss

(
1− e−ξωnt√

1− ξ2

(
sin(ωdt+ ϕ)

−ωn

ζ
sin(ωdt)

))
,

(31)

where, the parameters ωd, ϕ, and ∆ωss are given by

ωd = ωn

√
1− ζ2, ϕ = tan−1

(
ζ−1

√
1− ζ2

)
,

∆ωss = −∆Pload

Deff
.

(32)

Note that ∆ωss is the steady-state frequency offset, i.e.,
limt→∞∆ω(t) = ∆ωss.

B. Steady-state Frequency Regulation

The steady-state frequency-regulation is the ratio of change
in real-power net-load to the change in steady-state frequency,
and it is typically specified in units of MW/0.1 Hz [38].
Denote the specified value of the frequency regulation by
RP/ω . Notice from (32) that the effective damping constant
should be picked as

Deff = −∆Pload

∆ωss
= RP/ω, (33)

to ensure this specification is met. With Deff at hand, individ-
ual DER damping coefficients should be picked to satisfy (10).

C. Peak Overshoot

The frequency nadir, ∆ωnadir, is defined as the system
frequency at the first time tnadir > 0 (following the load
disturbance) at which d∆ω

dt

∣∣
t=tnadir

= 0. The peak overshoot
specification is defined as:

ω%
peak =

∆ωnadir

∆ωss
· 100, (34)

where ∆ωss is the steady-state frequency offset that the system
settles to at the post-disturbance equilibrium. (See Fig. 1
for an illustration.) In general, given the generator and DER
dynamical models in (1) and (3), it is intractable to relate
system parameters to the peak overshoot. However, the second-
order reduced model allows us to do so. From (31), we see
that tnadir is given by the solution of the following equation:

e−ξωntnadir
(
ωnξ sin(ωdtnadir + ϕ)− ωd cos(ωdtnadir + ϕ)

+ ζ−1ω2
nξ sin(ωdtnadir)− ζ−1ωnωd cos(ωdtnadir)

)
= 0.

Elementary trigonometric manipulations simplify the above to

tan(ωdtnadir) =
ωd

ξωn − ζ
, (35)
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from which we obtain tnadir as:

tnadir = ω−1
d tan−1

(
ωd

ξωn − ζ

)
(36)

= 2ρ−1τ−1
redMeff tan−1

(
ρ

Meff + τ−1
redDnet − 2Meffτ

−2
red

)
,

where, to contain notation, we define

ρ :=
√

4τ−1
redMeffDeff − (Meff + τ−1

redDnet)2. (37)

The second equality in (36), and (37) follow from (29)
and (32). Substituting tnadir from (36) above in (31) we get:

∆ωnadir = ∆ω(tnadir)

= ∆ωsse
−ξωntnadir

√
ω2

n + ζ2 − 2ζξωn. (38)

The peak overshoot is therefore given by:

ω%
peak =

∆ωnadir

∆ωss
· 100 (39)

=

√
RG,eff

τredMeff
e

2Meffτ
−2
red
−Meff−τ

−1
red

Dnet

2Meffτ
−1
red

tnadir · 100,

where the second equality above follows from leveraging the
definitions in (29) and (32). With Deff picked to satisfy (33),
and given ω%

peak, note that (39) is a nonlinear algebraic
equation in Meff . Solving for Meff from above, the DER
synthetic inertias should be picked to satisfy (8).

The above design strategy only establishes constraints on the
sum of DER damping and synthetic-inertia coefficients. There
are many (indeed, infinite) possibilities to disaggregate this
sum into individual values DD,d, MD,d. We focus on a choice
that is optimal in the sense that it ensures power sharing next.
Furthermore, we use the overshoot and frequency regulation as
design metrics without loss of generality. Indeed, given (31),
one could focus on other specifications, e.g., rate of change
of frequency and settling time.

V. OPTIMIZATION-BASED DISAGGREGATION

In this section, we present an optimization-based perspective
to disaggregate the system-wide effective inertia and damping
constants into DER synthetic-inertia and droop slopes such
that the DERs share power in proportion to their ratings.

A. Economic Dispatch Problem Incorporating DERs

At the transmission level, the system operator conducts
economic dispatch, e.g., every 5-10 minutes, to determine the
reference power injections for the generators and DERs to
meet the system load. Given the models in (1) and (3), such
a problem takes the form:4

min
P r
G,g,g∈G,PD,d,d∈D

∑
g∈G

cG,g(P r
G,g) +

∑
d∈D

cD,d(PD,d) (40a)

s. t.
∑
g∈G

P r
G,g +

∑
d∈D

PD,d +
∑
g∈G

PG,g = 0 (40b)

4While the model and notation in (3) applies to DERs and conventional
loads, only the DERs are dispatched. This is slightly at odds with the notation
adopted in (40).

P r
G,g ≤ P r

G,g ≤ P
r

G,g, ∀g ∈ G (40c)

PD,d ≤ PD,d ≤ PD,d, ∀d ∈ D. (40d)

We assume that the cost functions cG,g(·) and cD,d(·) are
strictly convex and twice continuously differentiable. Denote
the Lagrange multiplier corresponding to the power-balance
equality constraint (40b) by λ. Constraints (40c) and (40d)
impose power limits on generators and DERs, respectively.
The Karush-Kuhn-Tucker (KKT) conditions [39], and strict
convexity of the objective function (40a) imply that (40) has
a unique set of optimizers {P ?D,d}d∈D, {P r,?

G,g}g∈G , λ? which
satisfy:

c′(P ?D,d) :=
dcD,d
dPD,d

∣∣∣∣
P?D,d

= −λ?,

if PD,d < P ?D,d < PD,d (41)

c′(P ?D,d) > −λ?, if P ?D,d = PD,d (42)

c′(P ?D,d) < −λ?, if P ?D,d = PD,d (43)∑
g∈G

P r,?
G,g +

∑
d∈D

P ?D,d +
∑
g∈G

PG,g = 0. (44)

The uniqueness of λ? holds as long as not all the optimal P r,?
G,g,

g ∈ G and P ?D,d, d ∈ D reach their limits. Let D′ denote the
set of DERs whose optimal economic dispatch decisions do
not reach their power limits, i.e.,

D′ :=
{
d ∈ D

∣∣PD,d < P ?D,d < PD,d
}
.

Then a DER d ∈ D\D′ cannot respond to both over-
and under-frequency events, since its power cannot change
further in one direction. We consider the scenario where
only bi-directional, symmetric response is allowed, and thus
exclude the set D\D′ of DERs from participating in inertial
and primary-frequency response. For notational simplicity, let
D′ = D, i.e., assume that none of the DERs reaches its power
limit. However, the analysis can be straightforwardly extended
to the case where D′ ⊂ D, by setting M?

D,d = D?
D,d = 0 for

d ∈ D\D′.

B. Optimizing DER Power Injections

With this problem in place, we now discuss how the DER
power injections can be optimized to meet a change in the
load across time scales pertaining to inertial- and primary-
frequency response. To this end, consider that the real-power
load changes by an amount ∆Pload at time t = 0. To ensure
that the DERs respond optimally, their real-power injections
would have to be the solutions of the following optimization
problem which follows directly from (40):

min
P in
D,d(t),d∈D

∫ ∞
t=0

∑
d∈D

cD,d(P
in
D,d(t))dt (45)

s. t.
∑
g∈G

P in
G,g(t) +

∑
d∈D

P in
D,d(t) +

∑
g∈G

PG,g −∆Pload = 0,

where, we denote P in
G,g(t) and P in

D,d(t) to be the real power
injected by generator g and DER d at time t. Note that
unlike (40), the problem in (45) is not intended for dispatch.
It is purely intended as a stepping stone to engineer the DER
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droop slopes and synthetic inertias. The cost function in (45)
builds off the one in (40a). There are two key points of
departure: i) the integral is intended to optimally engineer
the DER power injections over a time horizon corresponding
to primary-frequency and inertial response, and ii) the terms
capturing the cost attributable to conventional generators are
dropped since the generator dynamics (1) are fixed (the
parameters DG,g, RG,g,MG,g are fixed). The problem in (45)
is patently difficult to solve and yields limited insights. This
is because it is infinite dimensional and the droop slopes
and synthetic inertias of the DERs—the terms we set out
to engineer—do not appear as decision variables. Leveraging
insights from the generator and DER dynamical models in (1)
and (3), we claim that the problem below is a surrogate to (45):

min
MD,d,DD,d,d∈D

∫ ∞
t=0

∑
d∈D

c̃D,d(MD,d, DD,d)dt (46a)

s. t.
(∑
d∈D

MD,d +
∑
g∈G

MG,g
)

∆ω̇(t) (46b)

+
(∑
d∈D

DD,d +
∑
g∈G

(RG,g +DG,g)
)

∆ω(t) + ∆Pload = 0.

Above, we define the shorthand

c̃D,d := cD,d(P
?
D,d −MD,d∆ω̇(t)−DD,d∆ω(t)), (47)

and the constraint (46b) follows from (45) by recognizing:

P in
D,d(t) = P ?D,d −DD,d∆ω(t)−MD,d∆ω̇(t),

P in
G,g(t) ≈ P r,?

G,g − (DG,g +RG,g)∆ω(t)−MG,g∆ω̇(t).

Additionally, as a design requirement, we impose the power-
balance constraint

∆Pload +Deff∆ω(t) +Meff∆ω̇(t) = 0, (48)

where Deff and Meff are the effective damping and inertia
provided by both generators and DERs; see (8) and (10).
(Given the generator and DER dynamical models in (1)
and (3), we note that (48) is exactly satisfied in the limits
t→ 0 and t→∞.) From (44), (48), we can rewrite (46) as:

min
MD,d,DD,d,d∈D

∫ ∞
t=0

∑
d∈D

c̃D,d(MD,d, DD,d)dt (49a)

s. t.
(
Meff −

∑
d∈D

MD,d −
∑
g∈G

MG,g
)

∆ω̇(t) (49b)

+
(
Deff −

∑
d∈D

DD,d −
∑
g∈G

(DG,g +RG,g)
)

∆ω(t) = 0.

Let us denote the Lagrange multiplier corresponding to the
equality constraint (49b) by λ̃(t). Since the cost function
c̃(·) is strictly convex, the Euler-Lagrange conditions [40]
indicate that the problem (46) has a unique set of optimizers
{M?
D,d, D

?
D,d}d∈D, λ̃?(t) which satisfy ∀t:

∂c̃D,d
∂MD,d

∣∣∣∣
M?
D,d,D

?
D,d,∆ω̇

?(t),∆ω?(t)

− λ̃?(t)∆ω̇?(t) = 0 (50)

∂c̃D,d
∂DD,d

∣∣∣∣
M?
D,d,D

?
D,d,∆ω̇

?(t),∆ω?(t)

− λ̃?(t)∆ω?(t) = 0, (51)

(
Meff −

∑
d∈D

M?
D,d −

∑
g∈G

MG,g
)

∆ω̇?(t) (52)

+
(
Deff −

∑
d∈D

D?
D,d −

∑
g∈G

(DG,g +RG,g)
)

∆ω?(t) = 0.

Above, λ̃?(t) is the optimal value of the Lagrange multiplier
corresponding to the equality constraint (49b), and ∆ω?(t)
and ∆ω̇?(t) are the optimal trajectories of ∆ω(t) and ∆ω̇(t)
(generated with M?

D,d and D?
D,d). Recognizing from (47) that

∂c̃D,d
∂MD,d

= −c′(P ?D,d −MD,d∆ω̇(t)−DD,d∆ω(t))∆ω̇(t),

∂c̃D,d
∂DD,d

= −c′(P ?D,d −MD,d∆ω̇(t)−DD,d∆ω(t))∆ω(t),

we get from (50) and (51), that

c′(P ?D,d −M?
D,d∆ω̇

?(t)−D?
D,d∆ω

?(t)) = −λ̃?(t). (53)

In other words, the optimal synthetic-inertia and droop slopes
should be such that the marginal cost of power provided by
the DERs is the same across all DERs. Notice that the above
formulation yields a continuous-time marginal price. This has
been observed in other applications related to power-systems
dispatch, albeit at slower time scales [41], [42].

C. Disaggregating DER Synthetic Inertias and Damping

Considering −D?
D,d∆ω

?(t)−MD,d∆ω̇?(t) as a small per-
turbation on P ?D,d, we expand c′(P ?D,d − M?

D,d∆ω̇
?(t) −

D?
D,d∆ω

?(t)) in a first-order Taylor series around P ?D,d as

c′(P ?D,d −M?
D,d∆ω̇

?(t)−D?
D,d∆ω

?(t)) ≈ c′D,d(P ?D,d)
− c′′D,d(P ?D,d)M?

D,d∆ω̇
?(t)− c′′D,d(P ?D,d)D?

D,d∆ω
?(t).

Leveraging (41) and (53), and defining ∆λ(t) := λ̃?(t)− λ?,
we can reorganize terms above to get

c′′D,d(P
?
D,d)M

?
D,d∆ω̇

?(t) + c′′D,d(P
?
D,d)D

?
D,d∆ω

?(t) = ∆λ(t).

Since the above constraint is true ∀d ∈ D, we get ∀d, d′ ∈ D

(c′′D,d(P
?
D,d)M

?
D,d − c′′D,d′(P ?D,d′)M?

D,d′)∆ω̇
?(t)

+ (c′′D,d(P
?
D,d)D

?
D,d − c′′D,d′(P ?D,d′)D?

D,d′)∆ω
?(t) = 0.

Since this constraint must hold ∀d, d′ ∈ D and ∀t ≥ 0, the
optimal synthetic-inertia and droop coefficients satisfy

c′′D,d(P
?
D,d)M

?
D,d = c′′D,d′(P

?
D,d′)M

?
D,d′ ,

c′′D,d(P
?
D,d)D

?
D,d = c′′D,d′(P

?
D,d′)D

?
D,d′ ,

(54)

Taken together, (52) and (54) indicate that the optimal
synthetic-inertia and droop slopes satisfy:

M?
D,d =

Meff −
∑

g∈GMG,g

c′′D,d(P
?
D,d)

∑
`∈D 1/c′′D,`(P

?
D,`)

, (55)

D?
D,d =

Deff −
∑

g∈G(DG,g +RG,g)

c′′D,d(P
?
D,d)

∑
`∈D 1/c′′D,`(P

?
D,`)

. (56)

Next, the cost function that guarantees power sharing is
derived.
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Fig. 2. Modified New England 39-bus system with 10 conventional generators
and 6 frequency-responsive DERs (marked as squares). The DERs at buses
20, 22, 17 have twice the power rating as the ones at buses 23, 19, 13.

D. Ensuring DER Contributions are Proportional to Ratings

Consider the setting where the excess power provided by
the DERs for primary-frequency and inertial response is in
proportion to their ratings. In particular,

D?
D,d∆ω

?(t) +M?
D,d∆ω̇

?(t)

PD,d

=
D?
D,d′∆ω

?(t) +M?
D,d′∆ω̇

?(t)

PD,d′
, ∀ d, d′ ∈ D.

Recognizing (54), we see that this translates to requiring
PD,dc′′D,d(P

?
D,d) = PD,d′c′′D,d′(P

?
D,d′), which further implies

that the cost functions should be such that c′′D,d(P
?
D,d) =

κP
−1

D,d, where κ > 0 is some constant. An example of such

a cost function is cD,d(PD,d) = 1
2

P 2
D,d

PD,d
, which results in the

following droop slopes and synthetic-inertia constants:

M?
D,d =

Meff −
∑

g∈GMG,g

P
−1

D,d
∑
`∈D PD,`

, (57a)

D?
D,d =

Deff −
∑

g∈G(DG,g +RG,g)

P
−1

D,d
∑
`∈D PD,`

. (57b)

VI. NUMERICAL SIMULATION RESULTS

We simulate the 10-machine New-England power system,
where N = {1, 2, 3, . . . , 39}, with generators connected at
buses in G = {1, 2, . . . , 10} [43], [44], and aggregated DERs
modeled at buses D = {13, 17, 19, 20, 22, 23}. A schematic
is shown in Fig. 2. Although we consider an aggregated
DER model for designing the synthetic inertias and droop
coefficients, for simulation purposes we consider the IEEE
37-node test feeder shown in Fig. 3 with the actual DERs
shown as blue circles. The feeder capacities at buses 20, 22, 17
have twice the power rating as the ones at buses 23, 19, 13;
i.e., PD,20 = PD,22 = PD,17 = 2PD,23 = 2PD,19 =
2PD,13. Pertinent model parameters and ratings are listed in
Appendix B. For convenience, power and impedance values
are in per unit [pu] with base 1000 [MVA], unless otherwise
specified.

Fig. 3. Modified IEEE 37-node distribution test feeder model. The model
includes nine frequency-responsive DERs (blue circles), D1, . . . ,D9. Five
instances of this feeder with similar topology but different ratings are
connected to buses D = {13, 17, 19, 20, 22, 23} in the transmission sys-
tem in Fig. 2 (illustrated as colored squares). The ratings are as follows
PD,20 = PD,22 = PD,17 = 2PD,23 = 2PD,19 = 2PD,13.

Fig. 4. Frequency overshoot, ω%
peak, versus the inertia contributed by

the DERs for different values of steady-state frequency regulation, RP/ω .
The solid-red square corresponds to the case without frequency support
from DERs, and the solid-blue square corresponds to the case with DERs.
Corresponding time-domain results are in Figs. 5(a), 5(b).

A. Exploring the Design Space

Here, we examine the impact of DER penetration level—
quantified in terms of the fraction of total inertia in the
system provided by the DERs—on the frequency response of
the system, from both steady-state and dynamic perspectives.
Figure 4 denotes the peak frequency overshoot, ω%

peak, as
a function of the inertia provided by the DERs (expressed
as a fraction of the effective inertia) for different values of
the steady-state frequency regulation, RP/ω . The plots are
obtained from (33) and (39). When inertial contributions from
the DERs are small, the damping has a pronounced impact
on the overshoot. When DERs contribute approximately 70%
of the total inertia in the system, there are diminishing re-
turns in increasing damping to achieve further reduction in
overshoot. The red square represents the case with no DERs
(only generators provide frequency response) and it yields a
frequency-regulation RP/ω = 128[MW/0.1Hz] and overshoot
ω%

peak ≈ 57%. Now, suppose we wish to improve performance
to obtain overshoot ω%

peak = 30% and regulation RP/ω =
200[MW/0.1Hz] (this is marked as the solid-blue square in
Fig. 4). This would require DERs to provide (in aggregate)∑
d∈DDD,d = 43.07 and

∑
d∈DMD,d = 61.44 (which is

approximately 30% of Meff ). The individual synthetic inertias
and damping coefficients for the DERs are then determined
from (57a) and (57b), respectively.
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(a)

(b)
Fig. 5. [Top panes] (a),(b) Dashed (red and blue) lines are generated by
simulating the second-order model, circles represent the analytically predicted
frequency nadirs, and solid (red, green, and blue) lines are obtained from
the PST simulation, with the green curve corresponding to UFLS. The blue
curves correspond to the setting where DER frequency support is engineered
to yield steady-state frequency regulation RP/ω = 200[MW/0.1Hz] and
overshoot ω%

peak = 30%. [Bottom panes] (a) Power outputs of aggregated
DERs indicate power sharing in proportion to capacities; (b) power outputs
of aggregated DERs are not optimized.

B. Time-domain Simulations

With the DER damping and inertia constants in place, we
now present time-domain simulation results to validate the
design process. These are performed with the Power System
Toolbox (PST) [45]. At time t = 0, the load at bus 17 under-
goes a step increase of ∆Pload = 0.3. Consider the trajectories
in the top pane of Fig. 5(a). Dashed traces correspond to
simulations from the reduced-order model, while solid traces
correspond to those obtained from PST. Trajectories in red
correspond to the case where the DERs do not participate
in frequency response (i.e., DD,d = MD,d = 0,∀d ∈ D).
Compared to this base case, we show the frequency response
due to the same load increase with the DER synthetic-
inertia and droop-control parameters designed as described
in Section VI-A with blue traces. Notice that the frequency
support provided by the DERs yields a damped response, a
smaller frequency nadir, and a lower steady-state frequency
offset. In both cases, we notice that trajectories generated
from the second-order model closely match those obtained
from the PST simulation. This establishes the accuracy of the

reduced-order model and validates the assumptions leading
up to it (note that the PST model considers a lossy network,
and includes voltage-regulator dynamics and a detailed two-
axis machine model). Solid red and blue circles mark the
analytically computed frequency-nadir points (from (38)).

The proposed method is also compared to the conventional
under frequency load shedding (UFLS) approach. It is assumed
that only generators in the transmission network provide
primary frequency response and under frequency load shed-
ding (UFLS) capability of 0.05 [pu] is available when system
frequency drops below 59.75 [Hz] [15]. The corresponding
frequency trajectories are shown as green curves in Fig. 5(a)
and 5(b). It can be seen that although UFLS yields a damped
response and better frequency offset value compared to the
case when only generators offer frequency response, the trajec-
tory cannot be engineered to meet performance specifications.

Next, we comment on the power outputs from the 6 feeders
with DERs. These are plotted for two cases in the bottom
panes of Figs 5(a) and 5(b). Figure 5(a) shows the case
where droop slopes and synthetic inertias for the feeders are
selected according to the criteria (57a) and (57b). The DER
aggregations indeed share the load increase in proportion to
their power ratings across time scales pertinent to inertial and
primary-frequency response. In Fig 5(b), droop slopes and
synthetic inertias are selected randomly, but subject to satisfy
the peak overshoot and frequency offset requirements. It is
evident that in both figures 5(a) and 5(b) the system frequency
response is identical, but the power supplied by each feeder
is different. The allocation in 5(b) could be construed to be
unfair, given that the capacities of the DERs are such that
PD,20 = PD,22 = PD,17 = 2PD,23 = 2PD,19 = 2PD,13.

VII. CONCLUDING REMARKS & FUTURE WORK

This paper outlined an approach to ensure DERs partici-
pate optimally in primary-frequency and inertial response by
leveraging a reduced-order model description of frequency
dynamics. The proposed method determines DER synthetic
inertias and droop coefficients such that a collection of DERs
and synchronous generators meet specifications on frequency
overshoot and steady-state frequency regulation while ensur-
ing that DER power injections are in proportion to their
power ratings. Options for future work include extending the
method to multiple balancing areas and settings where the
common-frequency assumption does not hold. Extending the
optimization setup to account for non-convex cost functions,
power flow constraints, thermal limits on lines, reserves for
inertial- and primary-frequency response, and distribution-
network power flows (following, e.g., the approach in [26])
are other compelling directions for future work.

APPENDIX

A. Derivation of (27)

Begin with the optimization problem:

min
τ̂≥0
‖(Γ(τ̂)− I|G|+1)A‖2F. (58)

Using the variable substitution χ := 1/τ̂ , (58) can be
rewritten as minχ≥0 ‖(Γ(χ) − I|G|+1)A‖2F, where Γ(χ) =
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χdiag{χ−1,diag(τ)}. Since the first row of matrix Γ(χ) −
I|G|+1 contains all zeros, it follows that

‖(Γ(χ)− I|G|+1)A‖2F = ‖(χdiag(τ)− I|G|)Ã‖2F.

Next, using

‖χdiag(τ)Ã−Ã‖2F = Tr((χdiag(τ)Ã−Ã)(χdiag(τ)Ã−Ã)T)

problem (58) can be equivalently expressed as:

min
χ≥0

χ2 Tr(diag(τ)ÃÃTdiag(τ))− 2χTr(diag(τ)ÃÃT).

Applying the first-order optimality condition one can find the
optimal χ?, and it follows that the minimizer to (26) is:

τred =
Tr
(
diag(τ)ÃÃTdiag(τ)

)
Tr(diag(τ)ÃÃT)

. (59)

B. Parameters for the Case Studies

Synchronous frequency, ωs = 2π60 [rad sec−1].
Parameters modified from the standard IEEE New-England

system: Generator damping coefficients: DG,1 = · · · =
DG,10 = 1.5, droop coefficients: RG,1 = 2.5, RG,2 =
5.7, RG,3 = 6.5, RG,4 = 6.3, RG,5 = 5.1, RG,6 = 6.5, RG,7 =
5.6, RG,8 = 5.4, RG,9 = 8.3, RG,10 = 10, turbine time
constants: τ1 = 4, τ2 = 5, τ3 = 6, τ4 = 4.5, τ5 = 5, τ6 =
5.5, τ7 = 5, τ8 = 4.5, τ9 = 5, τ10 = 6 [sec].

Parameters modified from the standard IEEE 37-node test
feeder [46]: Balanced operation is assumed, and data from
phase 2 is utilized for the simulation. We add ysh

kk =
0.004 + i0.005,∀ k ∈ {2, . . . , 18} ⊂ B3 and ysh

kk = 0.006 +
i0.007,∀ k ∈ {18, . . . , 35} ⊂ B3. The base voltage is 4.8 [kV].
The base rating for PD,13 is 50 [MW].
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