
1

A Method to Directly Compute Synchronverter
Parameters for Desired Dynamic Response

Shuan Dong, Student Member, IEEE, and Yu Christine Chen, Member, IEEE

Abstract—This paper proposes a method to directly compute
controller parameter values in a synchronverter augmented
with a so-called damping correction loop, and in so doing,
achieve desired transient and steady-state response. The proposed
approach is grounded in a reduced third-order system model that
captures pertinent dynamic characteristics of the synchronverter
active-power loop (APL), particularly those of the dominant
mode. This reduced-order model helps to identify and explain
a shortcoming in a previous parameter tuning method. Central
to the proposed parameter computation method is to express
APL parameters of the original system as closed-form functions
of the poles of the reduced-order system. Since the reduced-order
model retains dominant-mode dynamic behaviours of the original
system, APL parameters can be directly computed according
to specified APL dominant mode. Time-domain simulations are
provided to validate the accuracy of the reduced-order model
and the proposed direct-computation parameter tuning method.

Index Terms—Damping correction loop, parameter tuning,
synchronverter, virtual synchronous generator.

I. INTRODUCTION

MOTIVATED by the shift toward environmentally
friendly electricity generation, fossil fuel-based gen-

erators are expected to be gradually displaced by renewable
energy sources (RESs), such as wind and solar. However,
due to the way in which RESs are integrated into the grid,
high penetration levels pose numerous technical challenges to
existing grid operations. For example, since RESs interface
with the AC network via power-electronic devices, such as
voltage source converters (VSCs), they provide power without
contributing inertia to the system. This results in larger fre-
quency deviations and rates of change of frequency following a
disturbance [1]. To tackle this, the virtual synchronous genera-
tor (VSG) concept [2]–[17] provides a method for mimicking
the effect of inertia support using power-electronic devices.
Among numerous VSG realizations, the synchronverter is a
representative controller design that embeds the mathematical
model of a synchronous generator (SG) into the power-
electronic converter. In this way, the synchronverter enforces
the behaviour of conventional SGs in these converters, and in
turn they provide virtual inertia to the grid [2], [6], [10]. More-
over, normal operation of the synchronverter does not depend
on phase-locked loops (PLLs) that are used in conventional
VSC control strategies, which can cause instability under weak
grid conditions [18]. Consequently, the use of synchronvert-
ers bypasses PLL-related instabilities when integrating RESs,
which are often located in remote areas and connected to weak

S. Dong and Y. C. Chen are with the Department of Electrical and Computer
Engineering at The University of British Columbia, Vancouver, BC, V6T 1Z4,
Canada. Email: {shuan, chen}@ece.ubc.ca.

grids. Another important advantage of the synchronverter is
that it realizes frequency and voltage droop controls via its
active- and reactive-power loops, respectively [2].

Although the synchronverter, as it was originally described
in [2], provides inertia support and operates well in weakly-
connected networks, its response speed cannot be adjusted
freely without affecting the steady-state frequency droop char-
acteristic. This limits the ability for the synchronverter to
achieve fast maximum power-point tracking and to provide
timely frequency regulation. To overcome this defect, our
previous work in [6] augments the original synchronverter
design with the damping correction loop, which adjusts the
active-power loop (APL) response speed freely without violat-
ing the frequency-droop regulation requirement. An important
problem that arises from [6] is the need for an accurate
and efficient method to tune relevant controller parameters.
In this paper, we propose a direct computation method to
obtain APL parameter values based on desired transient and
steady-state behaviours. Since the proposed method avoids
repeated computation of system eigenvalues, bypasses onerous
trial-and-error tuning, and simplifies the tuning process, it
represents significant improvement over [6].

Relevant VSG parameter tuning methods can be roughly
categorized into offline approaches, which tune parameters
prior to online operation, and online ones, in which parameters
are adjusted in real time during online operation. Among
offline approaches [2]–[10], parameters are tuned based on
either empirical formulas ([2]), or small-signal analysis with
the linearized system transfer function ([3]–[5]) or state-space
model ([6]–[10]). Empirical formulas used in [2] do not
precisely place the APL dominant poles, so they are unable
to tune parameters to achieve the exact desired time-domain
transient behaviour. The methods in [3] and [4] (which use
transfer-function-based models) neglect the effects of low-
pass filters (LPFs) that smooth out measured signals, which
may cause inaccurate parameters. Though the method in [5],
which is also based on transfer-function analysis, accounts for
the LPFs, potentially tedious trial-and-error work is needed
during the tuning process. This is also true for the methods
in [6]–[8], which tune parameters based on eigenvalues of the
linearized system state-space model. The method in [9] tunes
parameters using eigenvalue parametric sensitivities rather
than through trial-and-error, but it aims only to stabilize the
system instead of achieving exact pole placement. While the
method in [10] places poles at prescribed locations, the solu-
tion to a computationally burdensome nonlinear optimization
problem is required to obtain parameter values. Among online
approaches, [11] tunes parameters using the linearized system
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transfer function without considering LPFs, and thus may
result in inaccurate parameters, as in [3] and [4]; [12] runs
a self-tuning algorithm and searches for parameter values
for the VSG during online operation, which adds nontrivial
computational burden. In this paper, we propose an accurate
parameter tuning method for the synchronverter augmented
with the damping correction loop. Unlike previous approaches,
the proposed method accounts for LPFs for measured signals,
avoids trial-and-error procedures, and achieves precise pole
placement with little computational burden.

Contributions of this paper are as follows. First, we identify
a shortcoming in a previous parameter tuning method for the
synchronverter augmented with the damping correction loop
from [6]. Particularly, we reveal that during the parameter
tuning process, changing the same parameter influences system
eigenvalues differently under various operating conditions.
Analytical justification for this phenomenon is provided using
root locus analysis for the characteristic equation of a reduced-
order model. Through this analysis, we develop a precise
criterion to predict different eigenvalue variation patterns.
Thereafter, we bypass this uncertainty in the parameter tuning
process and propose a direct computation method, which
obtains the synchronverter APL parameters according to pre-
scribed pole locations. Since the proposed method relies on the
exact solution of a set of three algebraic equations, it ensures
parameter accuracy while being computationally tractable.
Finally, we validate the accuracy of the proposed criterion and
the direct computation method via numerical case studies. It
is worth noting that, in this paper, we include the LPFs in the
reduced-order APL model (unlike in [6]), which improves the
model accuracy and allows us to compute APL parameters in
analytical closed form given desired dynamic response.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the synchronverter augmented
with the damping correction loop and identifies a shortcom-
ing in tuning its parameters with small-signal analysis. In
Section III, we develop and adopt a criterion to explain the
highlighted shortcoming, and we further propose the direct
parameter computation method. Through extensive case stud-
ies, Section IV validates the proposed criterion and the direct
computation method. Finally, Section V provides concluding
remarks and directions for future research.

II. PRELIMINARIES

The synchronverter comprises active- and reactive-power
loops, which regulate the synchronverter active- and reactive-
power outputs, respectively. Our previous work in [6] appends
the damping correction loop (see Fig. 1) to the synchronverter
APL so that its response speed can be adjusted without
violating the frequency regulation requirement. To tune APL
parameters, [6] adopts an iterative method based on small-
signal analysis, in which system eigenvalues are checked
repeatedly with different parameter values in an effort to place
the APL dominant poles at desired locations. However, we
find that the damping correction loop parameter influences the
APL dominant mode differently under different conditions,
which introduces uncertainty to the iterative tuning process

Fig. 1. Synchronverter augmented with damping correction loop [6]. In [6],
parameters are tuned via an iterative method, which requires repeated compu-
tation of system eigenvalues and onerous trial-and-error effort. The parameter
tuning method proposed in this paper avoids these shortcomings.

proposed in [6]. In this section, we provide an overview of the
synchronverter with the damping correction loop and motivate
the need to improve the parameter tuning method in [6].

A. Synchronverter with Damping Correction Loop [6]

As shown in Fig. 1, the synchronverter with the appended
damping correction loop consists of the active-power loop
(Fig. 1(a)), the reactive-power loop (Fig. 1(b)), and the in-
terface to the grid (Fig. 1(c)). We assume that the dc-bus
voltage udc remains constant due to the presence of sufficiently
large energy storage devices (e.g., a battery or a supercapac-
itor) on the dc side. Below, we describe each subsystem in
detail.

1) Active-power loop: The active-power loop (APL), as
depicted in Fig. 1(a), emulates SG rotor dynamics modelled
by the swing equation. Let ωg , Tef , and ψff , respectively,
denote the rotating speed of the virtual rotor, the filtered
electromagnetic torque, and the filtered excitation flux. The
swing equation considering the damping correction loop is [6]

Jg
dωg
dt

= Tm − Tef −Dp(ωg − ω?g)−Df
d

dt

(
Tef

ψff

)
, (1)

where Jg denotes the synthetic inertia constant, Tm the input
torque, and ω?g the reference value of ωg . Suppose P ?t denotes
the reference value of the synchronverter active-power out-
put Pt, and let ωN represent the rated rotating speed. Then the
input torque in (1) is Tm = P ?t /ωN . The term −Dp(ωg−ω?g)
in (1) models a simplified governor (neglecting the mechanical
time-delay). If the frequency droop coefficient Dp = 0, Pt
tracks P ?t with zero steady-state deviation; if Dp > 0, the APL
achieves primary frequency control. Note that the value of Dp
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is usually set by local grid codes based on the change in input
torque required for a certain amount of frequency deviation,
so Dp may take different values depending on geographical
location [2]. The term Df

d
dt

(
Tef

ψff

)
represents the damping

correction loop, which adjusts the synchronverter damping
torque during the transient period. This can be deduced by
neglecting the low-pass filters (LPFs), which are marked in
red in Fig. 1(a), and noticing that Df

d
dt

(
Tef

ψff

)
is proportional

to (ωg − ω∞), where ω∞ is the angular frequency of the
grid voltage u∞ [6]. It is worth noting that the damping
correction loop does not affect the steady-state frequency
droop characteristics, as its steady-state value is zero. Finally,
Tef and ψff are filtered signals that are obtained by

τf
dTef

dt
= −Tef + Te, (2)

τf
dψff

dt
= −ψff + ψf , (3)

where Te = Pt/ωN is the electromagnetic torque, ψf is the
excitation flux, and τf is the time constant of the LPFs. The
rotor angle is obtained as θg =

∫ t
0
ωg(τ)dτ .

2) Reactive-power loop: As depicted in Fig. 1(b), the
synchronverter reactive-power loop (RPL) governs the ψf
dynamics in order to regulate the reactive-power output Qt
or the line-to-line RMS value Ut of the terminal voltage ut,
depending on the states of Switches 1 and 2. The excitation
flux ψf dynamics are expressed as

Kg
dψf
dt

= S1(Q?t −Qtf ) + S2

√
2

3
Dq(U

?
t − Utf ), (4)

where Kg is a tuneable parameter, Q?t and U?t are, respectively,
the reference values of Qt and Ut, Si (i = 1, 2) represents
the state of Switch i (Si = 1 corresponds to Switch i being
ON, and Si = 0 to Switch i being OFF). If the voltage
droop coefficient Dq = 0 or S2 = 0, then Qt tracks Q?t
without steady-state error; if Dq > 0 and S2 = 1, the RPL
achieves voltage droop control. We assume that Dq = 0 in
this paper, but this does not influence our analysis and results
significantly. Finally, in (4), Qtf and Utf are, respectively, the
filtered signals of Qt and Ut and are expressed as

τf
dQtf

dt
= −Qtf +Qt, τf

dUtf

dt
= −Utf + Ut. (5)

3) Grid interface: As shown in Fig. 1(c), the synchron-
verter is interfaced to the external grid via a predominantly
inductive filter with impedance Rs + jXs and a transmission
line with impedance Re + jXe. We assume that the value of
total reactance Xt = Xs + Xe is much larger than that of
the resistance Rt = Rs +Re, which is valid for high-voltage
transmission. With ωg , θg , and ψf obtained from the APL and
RPL, the inner voltage eg is expressed as

eg = ωgψf
[
sin θg sin (θg − 2π

3 ) sin (θg + 2π
3 )
]T
, (6)

and its line-to-line RMS value is Eg =
√

3/2ωgψf . Let θg∞
denote the phase-angle difference between eg and u∞, and
let U∞ denote the line-to-line RMS value of u∞. Then, θg∞
satisfies

dθg∞

dt
= ωg − ω∞, (7)

and Te, Qt, and Ut are, respectively, expressed as [6]

Te =
Pt
ωN
≈
√

3

2

ψfU∞ sin θg∞

Xt
, (8)

Qt =
Xe

X2
t

E2
g −

Xs

X2
t

U2
∞ +

Xs −Xe

X2
t

EgU∞ cos θg∞, (9)

Ut =

√
X2
e

X2
t

E2
g +

X2
s

X2
t

U2
∞ +

2XeXs

X2
t

EgU∞ cos θg∞. (10)

B. Parameter Tuning with Small-signal Analysis [6]

Based on the discussion in Section II-A, we note that
the synchronverter APL dynamics are mainly influenced by
parameters Jg , Dp, Df , and τf , which is evident from (1)–
(3). Among these parameters, Dp is set according to the local
frequency regulation requirements, and τf is set to ensure
that the LPFs have desired filtering abilities. In our previous
work in [6], remaining parameters Jg and Df are tuned by
performing small-signal analysis on a model obtained from
linearizing (1)–(5), and (7) around the equilibrium point x◦,
as follows: [6]

d∆x

dt
= A∆x + B∆u, (11)

where the state vector ∆x and input vector ∆u are

∆x = [∆ωg,∆θg∞,∆ψf ,∆ψff ,∆Tef ,∆Qtf ,∆Utf ]T,

∆u = [∆P ?t ,∆Q
?
t ,∆U

?
t ,∆ω

?
g ,∆ω∞]T, (12)

respectively. In (12), ∆(·) denotes small-signal perturbations
in variable (·). Among the eigenvalues of A, denoted by λk
(k = 1, ..., 7), λ2 = −α+ jβ and λ3 = −α− jβ represent the
APL dominant mode, which is tuned by varying paramters Jg
and Df [6]. Via a numerical example below, we show that
under two different operating conditions, Df influences the
APL dominant mode in distinct ways.

Example 1 (Impact of Df on the APL Dominant Mode). In
this example, for the system in Fig. 1, we adjust the APL
dynamic response, which is mainly governed by the APL
dominant mode, by varying parameter Df [6]. To highlight
the impact of varying Df on the dominant mode under differ-
ent operating conditions, we consider cases corresponding to
two values of Dp, which may differ depending on different
grid codes at different areas [3]. Values for other system
parameters are adopted as reported in Appendix A. As shown
in Fig. 2(a), if Dp = 1407 N ·m · s/rad, increasing Df

from −4.0 to −2.5 V · s2/rad causes the damping ratio ζ
of the APL dominant mode, represented by λ2 and λ3 of the
full linearized system in (11), to increase from 0 to 1 [6]. On
the other hand, the natural frequency ωn of the APL dominant
mode is minimally affected. This case is in accordance with
expectations, since as derived in [6], omitting LPF and RPL
dynamics yields a second-order APL model with damping
ratio and natural frequency as follows: [19]

ζ =
α√

α2 + β2
∝ 1√

Jg

(
Dp +Df

√
3

2

U∞ cos θog∞
Xt

)
,

ωn =
√
α2 + β2 ∝ 1√

Jg
, (13)
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Fig. 2. Parameter Df influences APL dominant mode (represented by
eigenvalues λ2 and λ3 of the full linearized system in (11)) differently
depending on the operating condition. This results in more trial-and-error
effort to tune synchronverter parameters via the iterative method in [6].
(a) With Dp = 1407, Df increases from −6.5 to 1. (b) With Dp = 0,
Df increases from −1.2 to 2.

where the superscript ◦ denotes the equilibrium. Particularly,
Df adjusts ζ freely without impacting ωn. In this way, the
magnitude of λ2 and λ3 remains constant while their angles
change, thus tracing out a circular path as Df varies, in
accordance with the eigenvalue pattern observed in Fig. 2(a).
On the other hand, if Dp = 0 N ·m · s/rad, as shown in
Fig. 2(b), Df does not tune ζ freely in the range (0, 1), and it
also influences ωn significantly. This case is not captured by
the relationships in (13). �

C. Problem Statement

As revealed in Example 1, varying the parameter Df

influences the APL dominant mode differently under different
operating conditions. Note that Jg influences both ζ and ωn,
as shown in (13) [6]. Thus, in the first case with Dp =
1407 N ·m · s/rad, since Df mainly influences ζ, we can
tune Jg and Df independently according to the desired ωn
and ζ via the iterative tuning process outlined in [6]. In the
second case with Dp = 0, however, ωn and ζ are both
influenced by Df and cannot be adjusted independently using
pararameters Jg and Df . In this case, (13) contradicts with
the practical results, and further investigation is needed to
explain the eigenvalue variation pattern in Fig. 2(b). Since
the pattern in which Df affects eigenvalues is uncertain, the
iterative tuning method in [6] leads to more trial-and-error
work to achieve desired APL dominant-mode behaviour. In the
next section, we develop a criterion to differentiate and predict
the eigenvalue variation patterns due to changes in Df for
different values of Dp. Subsequently, we propose to directly
compute Jg and Df based on desired ωn and ζ characteristics.

III. PROPOSED PARAMETER TUNING METHOD

This section presents two main contributions of this pa-
per. First, we develop a criterion to explain and predict the

impact of changes in parameter Df on eigenvalue variation
patterns, specifically those of eigenvalues corresponding to
the APL dominant mode. Then, we propose a method to
directly compute Jg and Df that satisfy prescribed damping
ratio and natural frequency characteristics, which leads to
desired APL time-domain response. This avoids the trial-and-
error process and represents significant improvement over the
iterative method in [6]. Here, instead of relying on the full
linearized model in (11), we develop a third-order linearized
model that captures pertinent system dynamic and steady-
state behaviours. Such a reduced-order model is satisfactory
when Xt � Rt, which leads to decoupled APL and RPL
dynamics [3]. In this case, the roots of the characteristic
equation of the third-order APL model accurately approximate
the eigenvalues λ2 and λ3, which represent the APL dominant
mode obtained from the original linearized model in (11).

Inspired by [20], here, we find that the key to ensuring
the reduced-order model captures pertinent characteristics of
the full-order model is to include LPF dynamics for the
signal Te in addition to the rotor-angle dynamics. Since the
APL transfer-function model in [6] neglects the LPF dynamics,
it does not model the phenomenon uncovered in Example 1,
and so cannot be used for accurate parameter tuning. With this
in mind, we first get from (7) that

ωg =
dθg∞
dt

+ ω∞,
dωg
dt

=
d2θg∞
dt2

+
dω∞
dt

. (14)

Then, omitting the RPL dynamics in (4), setting ψff = ψf =
ψ◦f , and assuming that ω?g remains unchanged (∆ω?g = 0), we
substitute (14) into (1) and linearize the resultant around the
equilibrium point x◦ to get the following small-signal model:

Jg

(
d2∆θg∞
dt2

+
d∆ω∞
dt

)
=

∆P ?t
ωN

−∆Tef −Dp

(
d∆θg∞
dt

+∆ω∞)− Df

ψ◦f

d∆Tef

dt
. (15)

Next, in order to account for the LPF dynamics for Te, we
substitute (8) into (2), and then linearize (2) around x◦ to get

τf
d∆Tef

dt
= −∆Tef +

√
3

2

ψ◦fU∞ cos θ◦g∞
Xt

∆θg∞. (16)

By taking the Laplace transformation of (15) and (16), and
solving them for ∆θg∞, we get the following input-output
relationship for the reduced third-order APL model:

∆θg∞ =
(τfs+ 1) (∆P ?t − ωN (Jgs+Dp)∆ω∞)

τfJgωN · (s3 + bs2 +Ks+ d)
, (17)

where

b =
Jg + τfDp

τfJg
, (18)

K =
1

τfJg

(
Dp +Df

√
3

2

U∞ cos θ◦g∞
Xt

)
, (19)

d =

√
3

2

ψ◦fU∞ cos θ◦g∞
τfJgXt

. (20)

The characteristic equation of the model in (17) is

s3 + bs2 +Ks+ d = 0. (21)
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Fig. 3. Different root loci patterns of 1 +KG(s) = 0 in the s-plane with (a) γ > 1, (b) γ = 1, and (c) 0 < γ < 1.

Note that if the LPF dynamics were neglected as in [6],
we would obtain a second-order model with lower accuracy.
Next, we conduct root locus analysis for (21), which helps to
establish a criterion to predict the pattern in which Df affects
the roots of (21), and in turn, the APL dominant mode of the
full model in (11).

A. Criterion for Different Eigenvalue Variation Patterns

By performing root locus analysis on the characteristic
equation in (21), we evaluate the influence of varying Df on
the APL dominant mode under different operating conditions.
The eigenvalue variation patterns resulting from varying Df

can be categorized into three different types, depending on the
number of breakaway points (0, 1, or 2) in the root loci.

The root locus analysis begins by rewriting (21) as

1 +KG(s) = 0, (22)

where
G(s) =

s

s3 + bs2 + d
. (23)

According to (19), K is a linear function of Df , so variations
in Df and K produce the same trends on the root loci of (22).
Moreover, according to (21), K > 0 is a necessary condition
for the system in (17) to be stable. Thus, we increase K
from 0 to +∞ (by varying Df ), and determine the root
loci [21]. Please refer to Appendix B for details of the root
locus analysis, which is summarized as Fig. 3.

Based on the analysis in Appendix B, we find that as Df

varies, the root loci of 1 + KG(s) = 0 have three different
types of patterns depending on the value of

γ :=
1

3
3

√√
2

3

Xt

ψ◦fU∞ cos θ◦g∞

(
3

√
Jg
τ2f

+Dp
3

√
τf
J2
g

)
. (24)

These cases are summarized as follows: (i) if γ > 1, as shown
in Fig. 3(a), the root loci of (22) have two breakaway points δ1
and δ2, (ii) if γ = 1, as shown in Fig. 3(b), the root loci of (22)
have one breakaway point δ1 = δ2, and (iii) if 0 < γ < 1, as
shown in Fig. 3(c), the root loci of (22) have no breakaway
points. Note that only if γ ≥ 1 can the damping ratio of
the APL dominant mode be tuned freely in the range (0, 1)
by varying only Df . In the remainder of the paper, we refer
to these conclusions on γ as the γ-criterion. As Df varies,
the two branches of the root loci beginning at p2 and p3

Fig. 4. Desired APL pole locations in the s-plane used to directly compute
parameters Jg and Df .

correspond to the trajectories of λ2 and λ3 in the eigenvalue
variation patterns, which can be verified using (11). Thus, we
can readily use the γ-criterion developed from the third-order
model to predict the eigenvalue variation patterns of λ2 and λ3
due to changes in Df .

Example 2 (Differentiating Eigenvalue Variation Patterns).
The proposed γ-criterion can be used to explain the different
eigenvalue variation patterns resulting from varying Df in
Example 1. In the first case where Dp = 1047 N ·m · s/rad,
we have that γ = 3.58 > 1 (i.e., Fig. 3(a)). Indeed, as
shown in Fig. 2(a), varying only Df adjusts the damping
ratio of the APL dominant mode freely in the range (0, 1).
On the other hand, in the case where Dp = 0, we have
that γ = 0.60 ∈ (0, 1) (i.e., Fig. 3(c)). Accordingly, as
shown in Fig. 2(b), tuning only Df cannot adjust the damping
ratio of the APL dominant mode freely in the range (0, 1).
Moreover, as predicted in Fig. 3(c), the root loci go to ∞
along the asymptotes as K (or Df ) increases. Thus, in this
case, variations in Df also significantly influence ωn. �

With the proposed γ-criterion in place, we are able to
predict the effects of Df variations on eigenvalues of (11)
corresponding to the APL dominant mode under different
operating conditions. Next, in order to avoid the shortcoming
of the iterative tuning method in [6], we propose a method
to compute APL parameters Jg and Df directly to satisfy
prescribed damping ratio and natural frequency requirements.

B. Direct Computation of APL Parameters

Here, we propose a direct computation method to obtain
the APL parameters Jg and Df for given APL dominant
mode requirements, regardless of the value of γ. Using this
method, we avoid the trial-and-error process in tuning the
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APL parameters, which plagued the iterative method in [6].
First, denote ζ? and ω?n as, respectively, the required damping
ratio and natural frequency for the APL dominant mode. Also
denote ϕ? = arccos ζ? ∈ (0, π/2). Then, as depicted in Fig. 4,
the desired APL dominant pole locations are

λ?2 = −ω?n cosϕ? + jω?n sinϕ?,

λ?3 = −ω?n cosϕ? − jω?n sinϕ?. (25)

The proposed direct computation method leverages the fact
that the poles of the third-order system in (17) closely approx-
imate the APL dominant mode, which is represented by λ2
and λ3 (eigenvalues of the full linearized system in (11)). In
this way, we translate the problem of achieving desired pole
locations for the full system in (11) to one for the reduced
third-order system in (17). To this end, denote poles of (17) (or
the roots of (21)) as s1, s2, and s3. By tuning Jg and Df , we
wish to place two complex-conjugate roots of the characteristic
equation in (21) at the locations of λ?2 and λ?3 in the s-plane,
so we set s2 = λ?2 and s3 = λ?3. Further set s1 = −α1

(α1 > 0), which is an unspecified real-valued root of (21).
Then, according to Vieta’s formulas [22], for (21), we have

−b = s1 + s2 + s3 = −α1 − 2ω?n cosϕ?, (26)

K = s1s2 + s2s3 + s1s3 = 2α1ω
?
n cosϕ? + ω?n

2, (27)

−d = s1s2s3 = −α1ω
?
n
2, (28)

where the second equality in each of (26)–(28) results by
substituting s2 = λ?2 and s3 = λ?3 from (25), as well as
s1 = −α1. Recall that b, K, and d are functions of Jg and Df

according to (18), (19), and (20), so α1, Jg , and Df are the
three unknown variables in (26)–(28) for which to be solved.
We first obtain from (28) that

α1 = d/ω?n
2. (29)

Then, by substituting (29) into (26) and (27), and then solving
them for Jg and Df , we get the following closed-form
expressions for tuneable controller parameters Jg and Df :

Jg =

√
3
2ψ
◦
fU∞ cos θ◦g∞ − τfDpXtω

?
n
2

ω?n
2Xt(1− 2τfω?nζ

?)
, (30)

Df =
2ψ◦fζ

?

ω?n
+

τfψ
◦
f

1− 2τfω?nζ
?

−
√

2

3

XtDp

U∞ cos θ◦g∞

(
1 +

τf
2ω?n

2

1− 2τfω?nζ
?

)
, (31)

which achieve the desired pole locations as defined in (25).
Note that Jg and Df can be recomputed easily for different
operating points. In fact, through extensive simulations, we
find that these parameters do not vary significantly over the
range of normal operating points.

After obtaining the APL parameters Jg and Df with (30)
and (31), we verify that Jg > 0 and s1 < Re(s2). Among
these two requirements, Jg must be positive since Jg ≤ 0
causes the system to be unstable. The condition s1 < Re(s2)
ensures that s2 and s3 represent the APL dominant mode as
shown in Fig. 4. If Jg ≤ 0 or s1 ≥ Re(s2), the prescribed ω?n
is too large and must be reduced. The conditions on ω?n are

not within the scope of this paper, but we reserve this as an
important avenue of future work.

Remark 1 (Effective Inertia and Damping Constants). Due
to the effects of the damping correction loop in the modified
APL swing equation in (1) and the LPF dynamics, Jg alone
does not fully capture the synchronverter inertia characteristic.
In this remark, we characterize the effective synchronverter
inertia and damping. With Jg and Df chosen as in (30)
and (31), respectively, and assuming that ∆ω∞ = 0, (17) can
be expressed as

∆θg∞ =
(τfs+ 1) ∆P ?t

τfJgωN · (s− s1)(s− s2)(s− s3)

=
(τfs+ 1) ∆P ?t

τfJgωNα1( 1
α1
s+ 1)

(
s2 + 2ζ?ω?ns+ ω?n

2
) . (32)

In practice, α1 � 1, and moreover, the dynamics associated
with the pole s1 = −α1 are faster than those associated
with poles s2 and s3, so here, we approximate 1

α1
s + 1 ≈ 1

in (32) [21]. Also, it turns out that by choosing τf to satisfy
noise rejection requirements, 0 < τf � 1 and the zero −1/τf
is sufficiently far away from the APL dominant poles, so
its effect on the time-domain response is small, and we
approximate τfs+1 ≈ 1 in (32) [21]. With these assumptions
in place, inverse Laplace transformation of (32) yields

d2∆θg∞
dt2

=
∆P ?t

τfJgωNα1
− 2ζ?ω?n

d∆θg∞
dt

− ω?n
2∆θg∞. (33)

Next, to incorporate ∆Te into (33), linearize (8) with respect
to θg∞ to get

∆Te =

√
3

2

ψ◦fU∞ cos θ◦g∞
Xt

∆θg∞. (34)

Also, since ∆ω∞ = 0, we have from (14) that

∆ωg =
d∆θg∞
dt

,
d∆ωg
dt

=
d2∆θg∞
dt2

. (35)

Solving for ∆θg∞ in (34) and substituting the resultant along
with (35) and (29) into (33), we get that

Jeff
d∆ωg
dt

= ∆Tm −∆Te −Deff ∆ωg, (36)

where ∆Tm = ∆P ?t /ωN , the effective inertia constant is

Jeff =

√
3

2

ψ◦fU∞ cos θ◦g∞
Xt

·
(

1

ω?n

)2

, (37)

and the effective damping constant is

Deff =
√

6ψ◦fU∞ cos θ◦g∞ ·
(
ζ?

ω?n

)
. (38)

Note that, according to (37), Jeff ∝ (1/ω?n)
2 and Jeff is

independent of the desired APL damping ratio ζ?. Thus, in
our proposed method, by specifying the natural frequency ω?n
for the APL dominant poles, we conveniently achieve the
desired inertia characteristic. We also note that the effective
inertia Jeff may be larger, smaller, or the same as the inertia
constant Jg , depending on the system parameters, operating
point, and desired time-domain performance. Once the desired
Jeff is satisfied, the desired effective damping constant Deff

can be achieved by specifying ζ?, in accordance with (38). �
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Fig. 5. Verification of the reduced third-order APL model and the proposed γ-
criterion in the s-plane, i.e., varying Df influences the APL damping
ratio differently when γ takes values in different ranges. Particularly, only
when γ ≥ 1 can the APL damping ratio be adjusted freely in the range (0, 1).
(a) γ = 3.58, −6.2 ≤ Df ≤ 0.7 (Jg = 2.814, Dp = 1407.0, τf = 0.01).
(b) γ = 1.00, −1.6 ≤ Df ≤ 0.5 (Jg = 2.814, Dp = 190.25, τf = 0.01).
(c) γ = 0.60, −0.9 ≤ Df ≤ 0.7 (Jg = 2.814, Dp = 0, τf = 0.01).

C. Summary of Proposed Parameter Tuning Method

Based on the discussion above, we propose to tune the
synchronverter APL parameters Dp, τf , Jg , and Df as fol-
lows. First, Dp is specified to satisfy local grid frequency-
droop requirements, which may differ in different geographical
locations. Next, we choose τf based on the LPF noise rejection
requirements. Then, according to the desired ω?n and ζ? of
the APL dominant mode, we compute Jg and Df using (30)
and (31). Finally, with the chosen parameter values, we verify
that (i) Jg > 0 and (ii) s1 < Re(s2). Note that the RPL
parameters can still be chosen based on the method proposed
in [2]. In the next section, we validate the proposed γ-criterion
and the direct computation method.

IV. CASE STUDIES

In this section, we first verify that two complex-valued roots
of the characteristic equation for the third-order model closely

TABLE I
DIRECT COMPUTATION OF APL PARAMETERS Jg AND Df

Desired λ?2 and λ?3 Jg Df Actual λ2 and λ3 Error ε

1 −9.239± j3.827 57.86 2.221 −9.380± j4.076 2.86%

2 −7.071± j7.071 54.94 1.602 −7.194± j7.057 1.24%

3 −3.827± j9.239 51.08 0.6781 −3.952± j9.188 1.36%

4 −18.48± j7.654 16.44 0.9433 −18.31± j7.801 1.11%

5 −14.14± j14.14 14.45 0.6154 −14.27± j13.99 0.982%

6 −7.654± j18.48 12.24 0.1334 −7.929± j18.41 1.42%

7 −27.72± j11.48 7.965 0.5269 −27.34± j11.24 1.49%

8 −21.21± j21.21 6.166 0.2770 −21.57± j20.82 1.78%

9 −11.48± j27.72 4.608 −0.06764 −12.08± j27.71 1.98%

approximate eigenvalues λ2 and λ3 of the full linearized
model in (11), which represent the APL dominant mode. We
also show that the proposed γ-criterion accurately predicts
the eigenvalue variation patterns resulting from varying Df .
Then, via several case studies, we verify that the proposed
direct computation method is highly effective in obtaining
the APL parameters and placing the eigenvalues λ2 and λ3
at their respective desired locations. Moreover, we validate
that in actual grid conditions, the proposed direct computation
method is still effective in achieving desired APL response
speed. The system under study in Sections IV-A and IV-B is
the single-synchronverter infinite-bus system shown in Fig. 1,
with parameter values reported in Appendix A, unless other-
wise specified. The system under study in Section IV-C is a
six-bus test system, with component parameters provided in
Appendix C.

A. Verifying the Reduced-order Model and the γ-Criterion

In this case study, we vary Df with Dp taking values
of 1407.0, 190.25, and 0 N ·m · s/rad, and correspondingly,
Figs. 5(a)–(c) show the trajectories of the APL characteristic
equation roots si (i = 1, 2, 3) and the state matrix A eigen-
values λk (k = 1, ..., 7). In Fig. 5, si and λk are, respectively,
marked with ◦ and ×, and the root loci of 1 + KG(s) = 0
are indicated by the solid lines. Note that γ > 1 when Dp >
190.25 N ·m · s/rad, γ = 1 when Dp = 190.25 N ·m · s/rad,
and γ < 1 when Dp < 190.25 N ·m · s/rad.

Based on visual inspection of Fig. 5, we make two observa-
tions. First, the roots s2 and s3 of (21) and the eigenvalues λ2
and λ3 of the state matrix A in (11) are well matched. Thus,
the reduced third-order APL model in (17) is sufficiently
accurate, and its characteristic equation roots s2 and s3 provide
satisfactory approximations for λ2 and λ3, which represent
the APL dominant mode. Moreover, with γ ≥ 1 (as shown
in Figs. 5(a)(b)), the trajectories of s2 and s3 (and those
of λ2 and λ3) have at least one breakaway point in the left
half s-plane. Otherwise, when 0 < γ < 1 (as shown in
Fig. 5(c)), the trajectories of s2 and s3 (and also λ2 and λ3)
have no breakaway points in the left half-plane. In other words,
varying Df adjusts the damping ratio of the APL dominant
mode freely in the range (0, 1) only when γ ≥ 1. This
agrees well with the root locus analysis results summarized
in Fig. 3. Thus, we conclude that the proposed γ-criterion
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Fig. 6. Verification of the proposed direct computation method achieving
(a) accurate APL pole placement in the s-plane. (b) desired APL dynamic
response in the time domain.

indeed accurately predicts the eigenvalue variation patterns
arising from varying Df .

B. Validating the Proposed Parameter Computation Method

In this case study, via comparison with the iterative tuning
method in [6], we demonstrate the accuracy and effectiveness
of the proposed direct computation method. The compar-
isons are summarized in Table I, in which (i) the natural
frequency ω?n of the desired APL dominant mode in rows 1–
3, rows 4–6, and rows 7–9 are, respectively, 10, 20, and 30;
and (ii) the damping ratio ζ? of the desired APL dominant
mode in rows (3m+ 1), rows (3m+ 2), and rows (3m+ 3)
are, respectively, 0.924, 0.707, and 0.383 (m = 0, 1, 2).
Based on these desired characteristics, we compute the APL
parameters Jg and Df using (30) and (31). Next, we substitute
the resulting Jg and Df into the state matrix A, and compute
the eigenvalues λ2 and λ3. We also obtain the relative error ε
between the desired λ?2 and the actual λ2 according to

ε =
‖λ?2 − λ2‖
‖λ?2‖

× 100%. (39)

The resulting Jg , Df , λ2, λ3, and ε for all cases are reported in
Table I, and both the desired λ?2 and the actual λ2 are plotted
in Fig. 6(a) for comparison. By graphically comparing λ?2
and λ2, we find that they are well matched. Moreover, their
relative errors ε are all less than 3%. This is also true for λ?3
and λ3. Thus, we conclude that, with the proposed method,
we can directly compute Jg and Df to effectively place the
eigenvalues λ2 and λ3, which represent the APL dominant
mode, at their desired locations λ?2 and λ?3 with minimal error.

Via time-domain simulations, we show that the minor
errors between actual and desired eigenvalues do not cause
noticeable differences in the APL dynamic response. We
take cases corresponding to rows 2 and 8 in Table I as
examples. Using the iterative tuning method in [6], we find
that when Jg = 55.66 kg ·m2 and Df = 1.597 V · s2/rad,
λ2 and λ3 are exactly equal to desired λ?2 and λ?3 in row 2
(Case B1). Via a similar method, when Jg = 6.081 kg ·m2

and Df = 0.2627 V · s2/rad, λ2 and λ3 are exactly equal
to desired λ?2 and λ?3 in row 8 (Case B2). We model the
synchronverter-connected system as shown in Fig. 1 in the
PSCAD/EMTDC. At t = 0.1 s, the active-power reference
value P ?t increases from 0 MW to 0.6 MW. Figure 6(b)

Fig. 7. Six-bus test system used to verify the proposed parameter computation
method.

Fig. 8. Equivalent single-synchronverter infinite-bus system obtained from
six-bus test system via network reduction.

shows the time-domain simulation results when we adopt 4
different set of parameters Jg and Df . Cases A1 and A2 use
the APL parameters computed from (30) and (31) in rows 2
and 8, respectively, of Table I. Cases B1 and B2 adopt the
APL parameters obtained with the iterative tuning method. As
shown in Fig. 6(b), traces (a1) and (b1), which correspond to
Cases A1 and B1, respectively, are nearly identical. This is also
true for traces (a2) and (b2), which correspond to Cases A2
and B2. Thus, we conclude that the APL parameters obtained
from the proposed direct computation method achieve desired
APL dynamic response.

C. Applying the Proposed Parameter Computation Method

To further validate the proposed method, we implement it
to tune parameters of a synchronverter connected to a six-
bus system with one-line diagram shown in Fig. 7. In this
system. a synchronverter and two SGs (SG1 and SG2) supply
power, via three transformers (T1, T2, and T3, respectively),
to three constant-impedance loads (Load1, Load2, and Load3)
in the system. Generators SG1 and SG2 are each equipped
with a Woodward governor (see Fig. 10) to achieve pri-
mary frequency control and a standard excitation system (see
Fig. 11) to regulate terminal voltages. The high-voltage sides
of transformers T1, T2, and T3 are, respectively, connected
to buses 4–6. Three transmission lines (Line45, Line46, and
Line56) connect buses 4–6, forming a ring structure.

Since the proposed direct computation method is based on a
single-synchronverter infinte-bus system as shown in Fig. 1(c),
here, we compute an infinite-bus equivalent of the external
system as seen from the synchronverter via network reduction.
First, we use Kron reduction [23] to eliminate buses 4–6
in the test system, since they are connected to only passive
components. Then, following the method proposed in [24],
we further merge buses 2 and 3, and get an equivalent single-
synchronverter infinite-bus system shown in Fig. 8, in which
the infinite-bus voltage is U∞ = 6.80 kV, and the equivalent
impedance is Ze ≈ jXe = j3.45 Ω (we retain only the
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TABLE II
CASES I–IV USED TO VERIFY THE PROPOSED DIRECTION COMPUTATION

METHOD IN ACTUAL GRID CONDITIONS

Case
Desired APL

response speed
ω?
n

(rad/s)
ζ?

Hsg1

(s)

Hsg2

(s)

System inertia
level

I fast 30.0 0.707 8.00 8.00 high

II fast 30.0 0.707 3.00 3.00 low

III slow 10.0 0.707 8.00 8.00 high

IV slow 10.0 0.707 3.00 3.00 low

reactance Xe, since the network in Fig. 7 is assumed to be
predominantly inductive).

Using the infinite-bus equivalent of the external system,
we tune the APL parameters Jg and Df with the proposed
method in four different cases, as summarized in Table II
(Hsg1 and Hsg2, respectively, denote the SG1 and SG2 inertia
time constant). In cases I and II, the synchronverter is tuned to
respond quickly with ω?n = 30.0 rad/s and ζ? = 0.707, and in
cases III and IV, the synchronverter is tuned to respond slowly
with ω?n = 10.0 rad/s and ζ? = 0.707. The system has high
inertia in cases I and III and low inertia in cases II and IV. In
all four cases, we set Dp = 0 N ·m · s/rad so that the actual
and desired APL dynamic responses can be compared conve-
niently. Then, using (30) and (31), we directly compute APL
parameters Jg = 21.4 kg ·m2 and Df = 0.953 V · s/rad in
cases I and II, and Jg = 129 kg ·m2 and Df = 2.26 V · s/rad
in cases III and IV. Note that the computed APL parameters
are the same in cases I and II (or cases III and IV), since our
method does not depend on system inertia.

With synchronverter parameters for cases I–IV summarized
in Appendix C, we simulate the six-bus test system in Fig. 7
in PSCAD/EMTDC. In each case, the synchronverter active-
power reference value P ?t increases from 0.0 MW to 0.6 MW
at t = 1.0 s. The resulting APL output Pt in cases I–IV are
marked as trace (i) in Figs. 9(a)–(d), respectively. In order
to validate the proposed method in actual grid conditions, we
also plot the corresponding desired Pt response as trace (ii)
in Fig. 9. Note that we obtain the desired Pt response in each
case from the single-synchronverter infinite-bus system using
APL parameters tuned via the iterative tuning method in [6]
to achieve the desired ω?n and ζ? precisely.

As shown in Figs. 9(a) (case I) and (b) (case II), when
the synchronverter is tuned to respond quickly, in both high-
and low-inertia systems, there is little discrepancy between the
actual Pt (trace (i) in Figs. 9(a) and (b)) and the corresponding
desired response (trace (ii) in Figs. 9(a) and (b)). This verifies
our proposed method to accurately tune the synchronverter
parameters to achieve desired fast time-domain response in
cases with high and low levels of system inertia.

As shown in Figs. 9(c) (case III) and (d) (case IV), when
the synchronverter is tuned to respond slowly, there are larger
deviations between the actual Pt (trace (i) in Figs. 9(c) and (d))
and its desired response (trace (ii) in Figs. 9(c) and (d)).
In these cases, when the synchronverter is tuned to respond
slowly, its APL dynamics act in similar time scales as those
of SG1 and SG2 rotors. We also note that the deviations in
case IV are larger than those in case III, because the lower iner-

Fig. 9. Verification of the proposed direct computation method to achieve
desired APL dynamic responses in actual grid conditions by comparing the
time-domain responses between the actual and desired Pt in cases (a) I, (b) II,
(c) III, and (d) IV.

tia level in case IV brings the SG rotor dynamics even closer in
time scales with the APL dynamics. In contrast, the fast APL
dynamics in cases I and II are essentially decoupled from the
comparatively slower SG rotor dynamics. Even though there
are larger deviations in cases III and IV, we highlight that the
desired response speed is achieved immediately following the
increase in P ?t at t = 1.0 s. Thus, we verify the efficacy of the
proposed direct computation method where slower response
speed is desirable.

V. CONCLUDING REMARKS

This paper identifies a shortcoming in tuning the syn-
chronverter APL parameters with the iterative method based
on small-signal analysis. Specifically, varying Df influences
the APL dominant mode differently under different operat-
ing conditions, and so more trial-and-error work is needed
during the parameter tuning process. In order to explain this
phenomenon, we develop a precise criterion to differentiate
between possible eigenvalue variation patterns. Moreover, we
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Fig. 10. Modified Woodward governor used in SG1 and SG2 to achieve
primary frequency regulation [25].

Fig. 11. Excitation system used in SG1 and SG2 to control their terminal
voltages [26].

propose a method to directly compute the APL parameters Jg
and Df , and in turn achieve desired APL dominant-mode
behaviour. Unlike previous VSG parameter tuning methods,
the proposed method directly computes parameter values that
achieve desired transient and steady-state behaviour, and in so
doing, greatly simplifies the tuning process. Nevertheless, the
proposed method has two limitations: (i) it does not capture
how the synchronverter interacts with actual SGs in the desired
APL time-domain response, and (ii) it assumes that external
grid is predominantly inductive, which may not hold for
low-voltage distribution systems. Directions for future work
include (i) determining feasible locations of APL dominant
poles in the s-plane, (ii) applying the proposed method to
tune other VSG designs, and (iii) combining with parameter
estimation methods to achieve adaptive control.

APPENDIX

A. Parameters of Synchronverter-connected System in Fig. 1

Rs = 0.741 Ω, Ls = 20 mH, Re = 0.0 Ω, Le = 38.5 mH,
S1 = 1, S2 = 0, τf = 0.01 s, Jg = 2.814 kg·m2,
Dq = 0 Var/V, Kg = 27980 Var· rad/V, ωN = ω?g =
376.99 rad/s, U∞ = 6.6 kV, udc = 13 kV, rated grid
frequency is 60 Hz, rated ac side voltage is 6.6 kV, and rated
synchronverter capacity is 1 MVA.

B. Proof of Proposed γ-Criterion via Root Locus Analysis

1) Start and end points: The root loci of (22) have three
branches. They start from the open-loop poles of G(s) in (23),
i.e., the three roots of the equation

s3 + bs2 + d = 0. (40)

One branch ends at z1 = 0, and the other two branches
end at ∞. We notice that since b > 0 and d > 0, the
discriminant ∆1 of the third-order polynomial in (40) is [27]

∆1 = −4b3d− 27d2 < 0. (41)

Thus, (40) has one real root, denoted by p1, and a pair of
complex-conjugate poles, denoted by p2 and p3 (p2p3 ∈ R
and p2p3 ≥ 0). According to Vieta’s formulas [22],

−b = p1 + p2 + p3, (42)
0 = p1p2 + p2p3 + p1p3, (43)
−d = p1p2p3. (44)

From (44), p1 = −d/(p2p3) < 0, and from (43), Re(p2) =
Re(p3) = (p2 + p3)/2 = −(p2p3)/(2p1) > 0. Thus, p1 is a
negative real root, and the real parts of p2 and p3 are both
positive. Note that the two branches starting from p2 and p3
provide good approximations for the trajectories of λ2 and λ3
obtained from (11).

2) Asymptotes of the root loci: Two of the branches are
asymptotic to the lines emanating from the point σa =
(p1 + p2 + p3 − z1) /2 = −b/2, with angles ϕa = ±π/2.

3) Root locus segments on the real axis: The interval (p1, 0)
is part of the root loci, since there is an odd number of poles
and zeros, i.e., p2, p3, and z1 to its right side in the s-plane.

4) Angles of departure/arrival: Denote angles of departure
from poles p1, p2, and p3 as θp1, θp2, and θp3, respectively,
then by applying the angle criterion, we have θp1 = 0, θp2 ∈
(π/2, π), and θp3 ∈ (−π,−π/2). Further denote the angle of
arrival at the zero z1 as ϕz1, we get ϕz1 = π.

5) Intersection of the root loci with the imaginary axis: By
substituting s = jω into (21), and solving it for ω and K, we
know that the root loci of (22) intersects the imaginary axis
at s = jω = ±j

√
d/b when K = d/b.

6) Breakaway points: These are determined by finding the
roots of dK

ds = 0, which boils down to

2s3 + bs2 − d = 0. (45)

The roots of (45) are denoted by, respectively, δ1, δ2, and δ3
with assumption that Re(δ1) ≤ Re(δ2) ≤ Re(δ3). Define
(which is equivalent to (24))

γ := b/
(

3
3
√
d
)
, (46)

then the discriminant ∆2 of (45) is [27]

∆2 = 4b3d− 108d2 = 108d2
(
γ3 − 1

)
, (47)

and the sign of ∆2 is determined by the relationship between γ
and 1. If γ > 1, then ∆2 > 0, and (45) has three distinct real
roots δ1, δ2, and δ3 (δ1 < δ2 < δ3). In this case, we can further
show that p1 < δ1 < δ2 < 0 < δ3, i.e., (45) has two negative
real roots δ1 and δ2 in the range (p1, 0), and one positive real
root δ3 /∈ (p1, 0). Since only the interval (p1, 0) is part of the
root loci on the real axis, the root loci of (22) have two distinct
breakaway points δ1 and δ2. If γ = 1, then ∆2 = 0, and (45)
has a pair of repeated roots and a real root. In this case, we
can further show that p1 < δ1 = δ2 < 0 < δ3, i.e., (45) has
repeated negative roots δ1 and δ2 in the range (p1, 0), and a
positive real root δ3 /∈ (p1, 0). Since only the interval (p1, 0) is
part of the root loci on the real axis, the root loci of (22) have
one breakaway point δ1 = δ2. If 0 < γ < 1, then ∆2 < 0,
and (45) has a pair of complex conjugate roots and a real root.
In this case, we can further show that Re(δ1) = Re(δ2) <
0 < δ3, i.e., δ3 /∈ (p1, 0), and thus the root loci of (22) have
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no breakaway points. With this we complete the proof of the
proposed γ-criterion in (24).

C. Parameters of Components in Six-bus Test System in Fig. 7

Generators SG1 and SG2: xd = 1.56 p.u., xq = 1.06 p.u.,
x′d = x′q = 0.296 p.u., x′′d = x′′q = 0.177 p.u., inertia
constant Hsg = 8.00 or 3.00 s, T ′d0 = 3.70 s, T ′q0 = 0.500 s,
T ′′d0 = T ′′q0 = 0.0500 s, their rated frequency is 60 Hz, their
rated voltage is 6.6 kV, and their rated capacity is 5 MW.

Modified Woodward governor (see Fig. 10) used in SG1
and SG2: ω?sg = 1.00 p.u., P ?sg = 1.00 p.u., Kw = 40.0 p.u.,
Rw = 0.0100 p.u., Tmax = 1.10 p.u., Tmin = 0.00 p.u.,
T1 = 0.0100 s, T2 = 0.0200 s, T3 = 0.200 s, T4 = 0.250 s,
T5 = 0.00900 s, T6 = 0.0384 s, and Td = 0.0240 s.

Excitation system (see Fig. 11) used in SG1 and SG2: U?sg =
1.03 p.u., KA = 140, TA = 0.0500 s, Emaxfd = 6.00 p.u.,
and Eminfd = 0.00 p.u.

Synchronverter: Rs, Ls, S1, S2, τf , Dq , Kg , ωN , ω?g , udc,
rated ac side voltage and rated capacity are the same as those in
Appendix A, Dp = 0 N ·m · s/rad, Jg = 21.3 or 129 kg ·m2,
and Df = 0.953 or 2.26 V · s2/rad.

Transformers T1, T2, and T3: turns ratio is 6.60/13.8 kV,
rated frequency is 60 Hz, leakage reactance is 0.100 p.u.,
and rated capacities are, respectively, 1.5 MVA, 6.00 MVA,
and 6.00 MVA.

Lines Line45, Line46, and Line56: rated frequency is 60 Hz,
rated voltage is 13.8 kV, and impedances are, respectively,
0.150 + j1.47 Ω, 0.100 + j1.980 Ω, and 0.100 + j0.980 Ω.

Constant-impedance loads Load1, Load2, and Load3: rated
frequency is 60 Hz, rated voltage is 13.8 kV, and impedances
are, respectively, 61.0 + j12.2 Ω, 61.0 + j12.2 Ω, and 46.9 +
j5.86 Ω.
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