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Abstract

This paper focuses on the practical implementation of online transient stability assessment (TSA) tools that employ, in conjunction
with high-speed synchronized phasor measurements obtained from phasor measurement units (PMUs), classification and regression
trees (CART) and multivariate adaptive regression splines (MARS) models. To build CART and MARS models that are amenable
to real-time applications, pertinent transient stability-related system characteristics are identified; these include voltage and current
phasors, deviations from the centre-of-inertia angle and speed, and potential- and kinetic-energy related quantities. These charac-
teristic quantities are evaluated using PMU measurements and then leveraged to train CART and MARS models for the full Western
Electricity Coordinating Council (WECC) system. The resultant models are tested and validated with the full WECC system using
credible contingency scenarios in the BC Hydro subsystem. High prediction accuracy rates are observed for both CART and MARS
methods, making them attractive options for real-time TSA.

Keywords: Classification and regression trees, decision trees, multivariate adaptive regression splines, phasor measurement units,
real-time transient stability assessment, synchrophasors

1. Introduction

Real-time dynamic security assessment (DSA) is a challeng-
ing issue in modern electric power systems. Uncertainties aris-
ing from renewable electric sources, increased electricity de-
mand, and recent blackouts all highlight the need for improved
tools to monitor dynamic security in real time [1]. As an en-
abling technology for accomplishing this goal, phasor measure-
ment units (PMUs) provide synchronized voltage and current
phasor measurements with high sampling rate in the millisec-
onds range [2]. These phasor measurements are collected lo-
cally with phasor data concentrators and then transmitted to a
central decision maker. Such an architecture, along with fast
communication infrastructure, has the potential of realizing ac-
curate and efficient real-time DSA [3]. The broad class of DSA
includes assessment of system security with respect to various
types of stability, including voltage, transient, and small-signal
stability. The focus of this paper is on transient stability assess-
ment (TSA), which is related to the time evolution of a dynamic
power system trajectory when subject to a large perturbation,
e.g., a fault in a transmission line [4]. (We interchangeably re-
fer to faults as contingencies.) The ability to conduct real-time
TSA would enable power systems to operate closer to their lim-
its since the effects of unexpected faults could be accurately as-
sessed in a timely manner.

Given the obvious utility of real-time TSA tools, numer-
ous approaches have been explored in the literature. These
approaches can be divided into three main categories: time-
domain simulations, direct approaches, and automatic learning
methods. The main drawback of time-domain simulation ap-

proaches is that they are computational burdensome [5]. In di-
rect approaches, energy functions are difficult to construct for
practical large-scale systems [6–8]. On the other hand, recent
work has revealed automatic learning methods to be promis-
ing for practical real-time TSA [9–15]. For example, in [9],
a comprehensive database of the Hydro-Québec power system
along with relevant contingency cases are constructed and a de-
cision tree (DT) is used to classify stable vs. unstable scenar-
ios. A random forest classifier is shown to operate efficiently in
the presence of small changes in the network topology in [16].
In [10], regression trees are used to indicate the number of over-
loaded lines and buses with voltage magnitude violations fol-
lowing a fault. In [11], application of multiple DTs leads to im-
proved reliability for determining stable versus unstable scenar-
ios. The support vector machine method is used as the classifier
in [14] where energy-based power system features are applied,
and accurate prediction rates are demonstrated, albeit for small-
scale systems (New England 39-bus power system model) only.
In [12] and [17], in order to tailor to online applications, ensem-
ble learning machine is used to decrease the required training
and decision-making time.

In this paper, we focus on the practical implementation of
classification and regression models to assess transient stabil-
ity in real time using PMU measurements obtained from the
system. The classification model is developed using classifica-
tion and regression trees (CART), which is a well-known DT
algorithm [18]. We then use the developed model to classify
test cases as either stable or unstable with high degree of ac-
curacy. In addition to CART, which returns discrete-valued
stable versus unstable classifications, we propose to use mul-
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tivariate adaptive regression splines (MARS) [19] in conjunc-
tion with a continuous-valued transient stability index (TSI) to
assess the severity of the contingency and the system’s prox-
imity to instability. Application of this method can be use-
ful to determine probable corrective actions. Development of
both CART and MARS models proceeds as follows. First, we
identify system characteristics that are pertinent to TSA, in-
cluding voltage and current phasors, deviations from centre-
of-inertia angle and speed, and potential- and kinetic-energy
related quantities. Next, these characteristic quantities, called
“indices” or “features”, are evaluated using synthetic measure-
ments obtained from time-domain simulations of the full West-
ern Electricity Coordinating Council (WECC) system. These
evaluated quantities are used to build classification and regres-
sion models, which are then tested and verified on the WECC
system, with emphasis on transient stability issues in the BC
Hydro power system that may emerge due to high power ex-
change rates with the Bonneville Power Administration (BPA)
system. We also show the necessity and practicality of updating
the obtained models after topology changes or in the presence
of high penetration of renewable resources.

To validate the proposed CART and MARS methods in a
practical setting, we conduct test cases on the full WECC sys-
tem model, with emphasis on the BC Hydro power system. It is
worth noting that this is the same detailed model that BC Hydro
uses for its planning and operations studies. Mindful of practi-
cal field implementations of the proposed methods, our studies
assume limited number of PMUs installed, in accordance with
existing infrastructure in the BC Hydro system. Similarly, we
assume only large generating plants of the neighbouring regions
are equipped with PMUs. As a consequence of the limitation
in the number of installed PMUs, some features, such as the lo-
cation of the fault highlighted in [20], may not be readily avail-
able. Moreover, certain features proposed in the literature may
not be available in real time, such as the duration of the fault and
the time to loss of synchronism considered in [21]. Since this
paper focuses on the practical implementation of CART and
MARS methods, features used in our studies are carefully se-
lected to ensure they are available in real time while being cog-
nizant of existing infrastructure limitations. In addition to con-
sidering practical limitations, we also take advantage of recent
advances in PMU technology and assume that synchrophasor
measurements are available at the control centre through wide-
area monitoring system (WAMS) at every electrical cycle [22].

This paper builds upon our work in [23] and extends it in sev-
eral directions. First, the modified data set includes 200 power-
flow scenarios and 3 different topologies leading to 9474 dif-
ferent simulation cases, which is more comprehensive than the
data set used in [23] and highlights the necessity for an adaptive
framework. Second, MARS is used to fit a closed-form equa-
tion for the transient stability margin of the system. Further-
more, we test the resulting CART and MARS models with data
obtained at sampling times other than used to train the models
in order to uncover their sensitivity to erroneous data fed from
a later or earlier sampling time. Finally, we demonstrate the
sensitivity of MARS model prediction accuracy with respect to
two relevant parameters.

The remainder of the paper is organized as follows. Section 2
outlines TSA indices used to build CART and MARS mod-
els. In Section 3, fundamentals of CART and MARS model
building procedures are described. Section 4 presents WECC
system specifications, data set generation, PMU measurement
sampling, and model training. Simulation results are reported
and the necessity for updating models is discussed in Section 5.
Finally, Section 6 offers concluding remarks and directions for
future work.

2. Transient Stability Assessment Indices

The first step to building classification and regression models
for TSA is to identify system characteristics that are relevant
to determining transient stability. With regard to this, numer-
ous features have been used in the literature, including direct
phasor measurements and computed quantities involving these
measurements [9–12, 16, 21]. (We interchangeably refer to fea-
tures as indices.) In this section, we enumerate and describe
TSA indices used in our work.

2.1. Direct Measurement Indices

Most commonly used indices are time-synchronized mea-
surements of, e.g., generator rotor angles, rotor speeds, bus
relative voltage phase angles and magnitudes, and current
flows [10–12, 21]. Note that generator rotor and voltage phase
angles are obtained as relative angles with respect to a system
reference. Other basic indices are obtained from simple calcu-
lations involving voltage and current phasors, such as active and
reactive generation, active and reactive load, and voltage drop
across transmission lines [10–12].

Based on the practical availability of WAMS, we select sev-
eral synchronized measurements from the pre- and post-fault
systems and use them as TSA indices. In a practical power sys-
tem, major power plants with large generation capacity as well
as critical transmission corridors are candidates for PMU instal-
lations and real-time monitoring [24]. Under pre-fault normal
operating conditions, we collect the total and individual active-
power generation of major power plants in each balancing au-
thority region (with respect to the WECC system, the balancing
authority regions are BC Hydro, BPA, and Alberta power sys-
tems). We also use the relative voltage phase angles of buses
connected to these major power plants and those of buses that
interface between two regions. Furthermore, we make use of
the active-power flows across inter-ties connecting the regions
and along critical long transmission lines. Under post-fault con-
ditions, we use only measurements of relative voltage phase an-
gles of buses connected to major power plants and of buses that
interface between two regions.

2.2. Centre-of-inertia-referred Indices

Since deviation from the centre-of-inertia (COI) angle can
indicate system stress, below, we introduce COI-referred sys-
tem characteristics. Consider an interconnected power system
in which the monitored region has K − 1 neighbouring regions.
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Assume we monitor region k which contains N buses. Also as-
sume region k contains G major synchronous generators that
are equipped with PMUs. Denote, by Pmi(t) and Pei(t), the
mechanical-power input [p.u.] and the electrical-power out-
put [p.u.], respectively, of generator i at time t. Let δi(t) and
ωi(t) denote the rotor angle [rad] and speed [rad/s], respectively,
of generator i at time t; and let Mi denote the inertia constant
[s2/rad] of generator i. Then, the COI angle of the monitored
region is defined as [4]

δCOI,k(t) :=
1

Mtotal

G∑
i=1

Miδi(t), (1)

where Mtotal =
∑G

i=1 Mi; and the COI rotor speed is analogously
defined as [4]

ωCOI,k(t) :=
1

Mtotal

G∑
i=1

Miωi(t). (2)

Using (1) and (2), define the COI-referred angle and speed of
generator i in region k as δ̃i(t) = δi(t) − δCOI,k(t) and ω̃i(t) =

ωi(t) − ωCOI,k(t), respectively. We next describe COI-referred
indices that are used to develop CART and MARS models.

First, we compare the pre- and post-fault conditions and pro-
pose to use the following centre-deviation index:

∆δ(t) =
δCOI,k(t) − δpre-fault

COI,k

δ
pre-fault
COI,k

, (3)

where δpre-fault
COI,k represents the pre-fault COI angle of the moni-

tored region k. Moreover, based on energy function concepts,
products involving post-fault power mismatches and angle and
speed deviations are good indicators of system stress [25].
Thus, we also apply the following indices [9, 25]:

αk(t) =

G∑
i=1

fi(t)ω̃i(t), (4)

where fi(t) = Pmi(t) − Pei(t) − Mi
Mtotal

PCOI,k(t), with PCOI,k(t) =∑G
i=1(Pmi(t) − Pei(t)),

βk(t) =

G∑
i=1

fi(t)̃δi(t), γk(t) =

G∑
i=1

ω̃i(t)
(̃
δi(t) − δ̃

pre-fault
i

)
, (5)

where δ̃pre-fault
i denotes the pre-fault COI-referred angle of gen-

erator i. In addition to the indices described in (3)–(5), we mod-
ify γk(t) in (5) to reflect the behaviour of the COI angle and
speed, and include the following index:

σk(t) = ωCOI,k(t)
(
δCOI,k(t) − δpre-fault

COI,k

)
. (6)

Not captured by indices in (3)–(6), we may wish to penal-
ize generators whose rotor angles deviate further from the COI
angle. Thus, aimed at an index that is sensitive to loss of syn-
chronism, we make use of the integral square generator angle
(ISGA) index, which is expressed as [26]

J =
1
T

∫ T

0

1
Mtotal

G∑
i=1

Mi
(
δi(t) − δCOI,k(t)

)2 dt, (7)

where T represents the observation time window. Note that,
in (7), the ISGA index is normalized with respect to both Mtotal
as well as T . Thus, in the case of disconnection of any genera-
tor, its contribution to both Mtotal and δCOI,k(t) must be removed
from (7).

To assess transient stability, it is not only important to con-
sider characteristics of the monitored region, but to also account
for interactions between the monitored region and its neigh-
bours. To this end, we consider the centre-of-angle stability
index, expressed as [27]

∆δk, j(t) =

∣∣∣∣∣∣δCOI,k(t) − δCOI, j(t)

δ
pre-fault
COI,k + δ

pre-fault
COI, j

∣∣∣∣∣∣ × 100, (8)

which can be interpreted as the angle deviation between regions
k and j, k , j.

Rotor angles and speeds are very important indicators of
power system transient stability [4]. The phase angle and fre-
quency differences between two buses are combined in [28] to
calculate the rms-coherency between those buses in order to
partition a system. Inspired by this, to assess the coherency be-
tween region k and its neighbouring regions following a fault,
we consider COI angle and rotor speed of regions k and j and
calculate the rms-coherency between them, as follows:

ψk, j =

[ 1
T

∫ T

0

((
δCOI,k(t) − δCOI, j(t)

)2

+
(
ωCOI,k(t) − ωCOI, j(t)

)2
)
dt

]1/2
, (9)

where T represents the observation time window.
To summarize, we consider COI-referred indices in (3)–(9)

in training CART and MARS models for real-time TSA.

2.3. Energy Function-based Indices
Assuming the remainder of the system can be modelled as an

infinite bus, the dynamics of generator i can be expressed using
its swing equation [4]

Mi
d2δi

dt2 = Pmi − Pei. (10)

From (10), we recover the kinetic energy function Vi(t) of gen-
erator i as [4, 29]

Vi(t) =
1
2

Mi

(
dδi

dt

)2

, (11)

and its potential energy function Ui(t) as

Ui(t) =

∫ t

0
(−Pmi + Pei(τ))

dδi

dτ
dτ. (12)

In Section 4, our simulations assume that Pei(τ) measurements
can be calculated from PMU measurements, from which Ui(t)
can be computed by numerical integration.

Based on (12), as an indicator of transient stability in region
k, we propose to use the following total potential energy index:

Utotal,k(t) =

G∑
i=1

Ui(t), (13)
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where Ui(t) is computed numerically. Similarly, from (11), we
obtain the total kinetic energy in region k as

Vtotal,k(t) =

G∑
i=1

Vi(t). (14)

As discussed in Section 2.2, the interactions between the mon-
itored region and its neighbours are also critical for transient
stability assessment. To this end, we propose the kinetic energy
separation index, formulated as

∆Vk, j(t) = |Vtotal,k(t) − Vtotal, j(t)|, (15)

to be used in our proposed TSA algorithms.
In summary, we consider energy-based features in (13)–(15)

in training CART and MARS models for real-time TSA.

3. Data Mining Fundamentals

In this section, we describe classification and regression tree
(CART) as the classification method and multivariate adaptive
regression splines (MARS) as the regression method used in
the paper. In order to build and test the models from these
methods, S time-domain simulation cases are obtained by com-
bining different faults and operating conditions. For each case
i = 1, . . . , S , we obtain or compute numerical values for R TSA
features or indices. As described in Section 2, in the context of
this work, these include direct measurement, COI-referred, and
energy function-based indices. Collect feature values for each
simulation case in the S × R matrix X = [xir], where xir rep-
resents the value of feature r for case i. Denote the entire data
set by D = {(eT

i X, yi), i = 1, 2, . . . , S }, where ei ∈ RS denotes a
column vector of all zeros except in the ith entry, which is equal
to 1, and yi is a target variable related to the stability of simu-
lation case i (we elaborate on this later). To build a CART or
MARS model, the data set D is divided into two subsets. The
training set, denoted by T consisting of S T simulation cases,
is used to train the CART and MARS models. The remainder
partitionD\T , called the test set, is used to ensure the validity
of the CART and MARS models built using T .

3.1. Classification and Regression Tree
In order to build the CART model, denote the target vari-

able for case i by yi, which takes the value of either 0 or 1,
representing unstable or stable case, respectively. The objec-
tive is to construct a decision tree model from the training set
and subsequently, use it for prediction of new unseen simula-
tion cases involving other credible contingencies. Such a tree is
constructed in three stages: (i) tree growing, (ii) tree pruning,
and (iii) optimal tree selection. These stages are summarized
below. Interested readers may refer to [18] for more details.

3.1.1. Tree Growing
Beginning from a root node, a feature, called the “splitting

feature”, is selected and a value for that feature, called the
“splitting value”, is chosen to divide the training into two sub-
sets. The result is two child nodes, either internal or terminal.

An internal child node becomes a parent node, at which another
splitting feature and corresponding splitting value are selected.
This sequential splitting procedure eventually leads to terminal
nodes called “leaf nodes”. Each leaf node is classified as either
stable or unstable. A path from the root node to a leaf node is
characterized by a sequence of yes/no questions. In this man-
ner, the CART model is simple and transparent to interpret.

A node is considered “pure” when a majority of cases corre-
sponding to that node are associated with one class label, either
stable or unstable. The partitioning process described above
should lead to increase in nodes’ purity. To accomplish this aim,
node impurity functions in (16) and (17) are defined in such a
way to be maximized if the cases belonging to a node include an
equal number of stable and unstable cases, making it difficult to
classify the node as “stable” or “unstable” with any confidence.
Conversely, the impurity function is minimized if all cases be-
longing to the node are either stable or unstable, so that the node
can be classified with certainty. Based on the intuition above,
we describe two possibilities for the node impurity function,
one of which is based on the Gini diversity index and the other
on the Entropy function [30]. In the context of this work, there
are only two possible classes: stable (1) and unstable (0). Thus,
denote the probability of stable cases corresponding to node z
as p(z) = Pr(1|z). Then, the impurity function based on the Gini
diversity index at node z is [30]

i(z) = 2p(z)(1 − p(z)). (16)

On the other hand, the impurity function for node z, based on
the Entropy function for two classes, is [30]

i(z) = −p(z) log p(z) − (1 − p(z)) log(1 − p(z)). (17)

Indeed, both candidate impurity functions in (16)–(17) are max-
imized with p = 0.5 and minimized with p = 0 or 1.

3.1.2. Tree Pruning
Intuitively, the tree’s prediction accuracy rate should increase

as the number of the nodes increases. However, if the growing
process is continued until no two simulation cases belong to
the same terminal node, the tree would likely be overfitting the
training set, and consequently, would not be a good classifier
for the test set. Thus, the tree obtained from the process de-
scribed in Section 3.1.1 must be pruned. We begin by introduc-
ing terminology and variables that are relevant to the pruning
process. Let Z represent the classification tree obtained from
the tree-growing process described in Section 3.1.1. A node z′

is a descendant of node z if there exists a connected path down
the tree leading from z to z′. A branch Zz of Z consists of the
node z and all descendants of z, and branch Zz has z as its root
node. Pruning a branch Zz from a tree Z consists of deleting,
from Z, all descendants of z, while retaining node z, which be-
comes a leaf node of the pruned tree. Suppose Z′ is obtained
from Z by successively pruning off branches, then Z′ � Z is a
pruned subtree of Z.

The pruning process identifies branches that contribute least
to the model accuracy rate and eliminates them. In order to
do so, the misclassification rate needs to be estimated. One of

4



the most common estimation methods of misclassification rate
is the “resubstitution estimate”. At node z, the resubstitution
estimate, denoted by ρ(z), for a two-class data set, is expressed
as [30]

ρ(z) = min (p(z), 1 − p(z)) , (18)

where p(z) = Pr(1|z). Now, let Z̃ = {z1, z2, . . . , zL} denote the
set of L(Z) terminal nodes of classification tree Z and π(zl) the
proportion of all simulation cases that belong to node zl. Based
on (18), the resubstitution estimate of the misclassification rate
for Z is expressed as

%(Z) =

L(Z)∑
l=1

ρ(zl)π(zl). (19)

The method of minimum cost-complexity pruning creates a set
of subtrees from the original tree. In this method, the resubstitu-
tion estimate in (19) is modified to include a complexity param-
eter, α ≥ 0. Then, for any subtree Z′ ≺ Z the cost-complexity
pruning rate is

%α(Z′) = %(Z′) + αL(Z′), (20)

where αL(Z′) represents a penalty term for the size of subtree
Z′, which is not considered in %(Z′).

For each value of α, the subtree Z∗(α) of Z that minimizes
%α(Z′) is selected as Z∗(α) = arg minZ′�Z %α(Z′). The value of
α determines the size of the tree. If α is small, then the penalty
term in (20) would be small, causing %(Z′) to dominate. In turn,
the size of the subtree Z∗(α) would be large. Conversely, for
sufficiently large values of α, Z∗(α) would consist of the root
node z only. It is worth noting that although α is defined on the
continuous interval [0,∞), the number of subtrees of Z is finite.
Thus, for a sequence of complexity parameters 0 < α0 < α1 <
· · · < αM , nested subtrees are obtained as

Z � Z∗(α0) � Z∗(α1) � · · · � Z∗(αM). (21)

3.1.3. Optimal Tree Selection
From the set of subtrees generated in the pruning procedure,

namely Z∗(α0), . . . ,Z∗(αM), the subtree with the minimum mis-
classification rate (as computed from (19)) is selected as the
final CART model [30].

3.2. Multivariate Adaptive Regression Splines
Recall that the S × R matrix X contains the values of each

feature r = 1, . . . ,R associated with each case i = 1, . . . , S .
Denote feature r as variable wr, and collect all feature variables
into w = [w1, . . . ,wR]T. Instead of considering a discrete output
of 0 or 1, as in the CART model, here, we use MARS to map
the feature variable w to a continuous-valued target variable,
which is indicative of system stability. Particularly, we use the
transient stability index (TSI) defined as

TSI :=
360 − ∆δmax

360 + ∆δmax
× 100, (22)

where ∆δmax denotes the maximum angle separation between
any two generators in the system. Stable and unstable condi-
tions are indicated by TSI > 0 and TSI < 0, respectively [31].

Let yi denote the TSI metric computed in simulation case i.
Then, the goal of MARS is to fit this output observation to a
function of features, i.e., yi = f (w) + ε, where f (w) : RR → R,
while minimizing ε. The MARS method results in a model of
the form f (w) =

∑Q
q=0 βqhq(w), where hq(w) denotes a basis

function (BF) or a product of two or more BFs (we elaborate on
these later), βq represents a constant multiplicative coefficient,
Q denotes the number of additive terms in the final model, and
for case i, w is evaluated as w = [xi1, xi2, . . . , xiR]. Similar to
the CART algorithm, the MARS method first creates an overfit
model and then prunes it back. This process is composed of
two stages—forward and backward, which we summarize be-
low [30]. Interested readers may refer to [19] for details.

3.2.1. Forward Procedure
The MARS method first collects pairs of BFs for each feature

wr. The BF may be a constant value or a hinge function. A
hinge function takes the form of max(0,wr − xir) for wr ≥ xir,
and max(0, xir−wr) for wr < xir, where the constant xir is called
a “knot” and is the value of feature r for a particular simulation
case i in the training set. With the above in mind, the pair of
BFs for the rth feature and ith knot value is expressed as the set

Cr,i = {max(0,wr − xir),max(0, xir − wr)}. (23)

Given R features and S T training cases, by taking the union
of all enumerated basis function sets, 2RS T BFs in C =

∪R
r=1 ∪

S T
i=1 C

r,i are established. With the set of BFs C in place,
let the model obtained at the end of the forward procedure be
fQmax (w) =

∑Qmax
q=0 βqhq(w) with Qmax denoting the total number

of the added terms in the model. The forward procedure is iter-
ative and begins with a constant function f0(w) = h0(w) = c
which is set as the mean of the training cases’ output, i.e.,
c = 1

S T

∑S T
i=1 yi, in order to minimize ε.

At each iteration q = 1, . . . ,Qmax, for each r = 1, . . . ,R and
simulation case i = 1, . . . , S T in the training set, the following
function is constructed:

hr,i
q = βr,i

q1hq−1max(0,wr − xir) + βr,i
q2hq−1max(0, xir − wr) (24)

from which the function

f r,i
q (w) = fq−1(w) + hr,i

q (w) (25)

is formed. In (24), the coefficients βr,i
q1 and βr,i

q2 are calculated
based on least-squares criterion as

βr,i
q1, β

r,i
q2 = arg min

S T∑
j=1

∣∣∣∣∣y j − f r,i
q (w)

∣∣∣
w=[x j1,...,x jR]T

∣∣∣∣∣2, (26)

where, with slight abuse of notation, βr,i
q1 and βr,i

q2 denote the
values that minimize the objective function above. Repeatedly
solving the optimization in (26) for each value of r and i yields
a pool of candidate functions, f r,i

q , each containing the minimiz-
ing βr,i

q1 and βr,i
q2. Next, from this pool, r? and i? are chosen so

that f r?,i?
q leads to the minimum least-squares error, as defined

in (26), when compared against all other candidate functions.
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Finally, set fq(w) = fq−1(w) + hr?,i?
q (w) and remove the corre-

sponding basis functions in the set Cr?,i? from consideration in
the next iteration, i.e., set C = C \ Cr?,i? . The iterative forward
procedure is continued until the change in the residual squared
error is

S T∑
j=1

∣∣∣∣∣y j − fq(w)
∣∣∣
w=[x j1,...,x jR]T

∣∣∣∣∣2 < ε0, (27)

where ε0 > 0 is a predetermined threshold, or until the preset
maximum iterations Qmax is reached [19]. This forward pro-
cedure is hierarchical, i.e., the terms from the collection C are
multiplied by the terms already involved in the model to build
a multiway product. In this way, we can identify higher-order
interactions between the features [30].

3.2.2. Backward Procedure
The large model obtained at the end of the forward process

typically overfits the data set, so, a backward procedure is nec-
essary. In this procedure, terms in fQmax are removed to suc-
cessively improve the accuracy of the final resulting MARS
model [30]. The iterative backward procedure begins with
fQmax (w) obtained from the forward procedure and initializes
f̂λ+1(w) = fQmax (w). At each iteration, λ = Qmax, . . . , 1, λ + 1
functions, each denoted by f̂ `λ (w), are formed by removing the
`th term from f̂λ+1(w), where ` = 0, . . . , λ. Among the λ + 1
functions, f̂ `

?

λ (w) is selected, such that

`? = arg min
`=0,...,λ

S T∑
i=1

∣∣∣∣∣yi − f̂ `λ (w)
∣∣∣
w=[xi1,...,xiR]T

∣∣∣∣∣2. (28)

At the end of each iteration λ, set f̂λ+1(w) = f̂ `
?

λ (w) and re-
peat the process above. Finally, from the pool of candidate f̂λ
functions, λ = 1, . . . ,Qmax, the final MARS model is chosen as
f̂λ? (w) where

λ? = arg min
λ=1,...,Qmax

∑S T
i=1(yi − f̂λ(w))2

(1 − M(λ)/S T )2 , (29)

M(λ) can be interpreted as a penalty factor for greater model
complexity. Specifically, suppose the model includes F linearly
independent BFs, then M(λ) is obtained as [30]

M(λ) = F + c1(Qmax − 1), (30)

where the penalty coefficient c1 is a user-defined constant. In-
terested readers may refer to [19] for more details.

4. Training

We consider the full WECC bulk transmission system model
from summer 2013, which includes 17724 buses, 22005 trans-
mission lines and transformers, and 170 GW generation capac-
ity [32]. We monitor the BC Hydro (BCH) system, which is
connected to two neighbouring regions, the Alberta electricity
system (AES) and the Bonneville Power Administration (BPA)
system. The interconnection between BCH and BPA is the
Northern Intertie, which consists of a 500-kV double-circuit

and a 230-kV transmission line, and transfers around 2500 MW
between BCH and BPA. In addition, BCH is connected to AES
on the east, via two interties, a 500-kV and a 230-kV transmis-
sion line, enabling BCH and AES to exchange up to 800 MW.

According to the North American Synchrophasor Initiative,
PMUs ought to be installed at major power plants with high
generation capacity as well as along critical transmission corri-
dors [24]. The present study assumes that PMU measurements
are available at major power plants with high generation capac-
ity in the three power systems (5 in BCH, 12 in BPA, and 7
in AES), the interties between these three regions, and a ma-
jor transmission corridor transferring power southward from
northern BC. This assumption is consistent with the existing
infrastructure in the BCH system. Consequently, power flows,
angles, voltage magnitudes, and frequencies at these locations
listed above are accessible at the control centre.

To cover a wide range of operating conditions, the data set
consists of 9474 time-domain simulation cases that include
three possible topologies, 200 WECC power-flow base cases
from summer 2013, and 48 credible N − k (k = 1, . . . , 4) con-
tingencies in the 500-kV and 230-kV levels. As a standard in
the BCH power system, the faults occurring on these transmis-
sion voltage levels are cleared after three cycles [33]. There-
fore, each simulation assumes that a fault occurs at t = 100 ms
and lasts for three cycles, i.e., 50 ms, before it is cleared. We
conduct these simulations in TSAT [31] and find 1098 cases
to be unstable. Based on the simulations, values for TSA in-
dices or features discussed in Section 2 are obtained for differ-
ent faults under various power flow patterns. Synthetic time-
synchronized measurements in the present study are obtained
from these time-domain simulations in each of five cycles af-
ter fault clearance, which is possible with P-class PMUs [34].
Each electric cycle lasts 16.666 ms, which is the measurement
sampling time in our study.

The synchronized measurements of the first five cycles af-
ter fault-clearance time, along with pre-fault measurements de-
scribed in Section 2.1, are used to train five CART and MARS
models via the procedures described in Sections 3.1 and 3.2,
respectively. The training set consists of 70% of the full data
set. The training set is used to train CART and MARS models
for the first five cycles of the post-fault instants. The remain-
ing 30% of the data set is applied for testing the accuracy of
the trained CART and MARS models. We make use of exist-
ing commercial software SPM [35, 36] to build the CART and
MARS models from the training set data.

5. Case Study Results

In this section, CART and MARS models from the training
stage are used to predict transient stability for the test set data.
Relevant results are presented and discussed.

5.1. CART Results

As mentioned in Section 4, five CART models are trained us-
ing synthetic measurements of each of the first five cycles after
fault clearance, along with pre-fault measurements described in
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Figure 1: CART model trained and built using synthetic measurements obtained in the fourth cycle after fault clearance.

Table 1: TSA indices selected in CART models built using data
obtained in 5 cycles after fault clearance.

Level CART 1 CART 2 CART 3 CART 4 CART 5
1 αBCH αBCH αBCH αBCH αBCH

2 σBCH ∆VBCH,BPA, ∆VBCH,BPA. ∆VBCH,BPA, JAES ,
Vtotal,BPA. γBCH . ∆δBCH,BPA.

3
αBCH , αBCH , αBCH , αBCH , ∆δBCH ,
Vtotal,BCH , βAES . βAES . βBPA, αBPA,
βAES . γBPA. ∆VBCH,BPA.

Section 2.1. The CART model obtained from the fourth-cycle
measurements is shown in Fig. 1, which is typical of result-
ing trees from the other four cycles. In Table 1, we summa-
rize the selected features for the top three levels in each of the
five CART models. The root node in all five models is the in-
dex αBCH . The index ∆VBCH,BPA emerges in the second level
in three of the five models. Moreover, the indices σBCH , γBCH ,
∆δBCH,BPA, and Vtotal,BPA are selected in the second level. All the
indices selected in the first three levels are either COI-referred
or energy function-based ones. This observation indicates the
importance of these indices in TSA. Moreover, indices related
to the BCH system play an essential role in the trees’ structures.

We report accuracy rates of the resulting CART models in
Table 2, in which the CART model built using the indices from
each cycle is tested against the data obtained at all five cycles.
In other words, the diagonal entries in Table 2 indicate the ac-
curacy of each CART model when data from the expected sam-
pling time is fed to it, while the off-diagonal entries indicate the
model accuracy when data from a later or earlier time are used.
For accuracy rates other than those shown on the diagonal, the
CART models are tested using the whole data set of the other
cycle (instead of only the test set). We note that, in Table 2, the
accuracy rates of the corresponding cycles (diagonal elements)
are about 99%. When the trained CART model is tested against
data obtained from one cycle before or after the correspond-

Table 2: Accuracy results of obtained CART models when
tested using data from various time instants.

Test Data Trained CART Model
CART 1 CART 2 CART 3 CART 4 CART 5

Cycle 1 99.50% 93.98% 80.15% 85.49% 74.87%
Cycle 2 93.38% 99.18% 84.58% 84.58% 82.38%
Cycle 3 96.78% 96.62% 99.61% 91.85% 90.39%
Cycle 4 96.89% 96.71% 95.52% 98.97% 92.90%
Cycle 5 96.41% 94.46% 94.41% 96.04% 99.43%

Table 3: Computational times required for various CART mod-
els.

Test Data Computation Time [s]
CART 1 CART 2 CART 3 CART 4 CART 5

Cycle 1 12 16 17 21 20
Cycle 2 18 12 17 21 19
Cycle 3 19 17 12 20 20
Cycle 4 18 18 19 12 19
Cycle 5 17 19 19 19 11

ing cycle, the accuracy rates are around 90% and in some cases
close to 95%. These off-diagonal entries are relevant for cases
in which fault-clearance time is not detected properly by the
PMUs and the data is fed into the wrong tree. Also, consider-
ing the off-diagonal entries in Table 2, the decrease in accuracy
is particularly noticeable when the training data belongs to cy-
cles 4 and 5, and the testing data belongs to the earlier cycles
1 and 2. Thus, our results suggest that the obtained models are
more sensitive when they are trained using data obtained from
the later cycles and tested with data from earlier cycles.

The computational times required to obtain the CART mod-
els are reported in Table 3. As evident from the table, the time
required to obtain a CART model using the data set from the
same cycle (diagonal entries) is around 12 s, and it increases
to around 19 s in the case of using data from different cycles
(off-diagonal entries). This increase is the result of the increase
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Table 4: TSA indices selected in MARS models built using data
obtained in 5 cycles after fault clearance.

Model Transient Stability Assessment Indices

MARS 1 αBCH , βBCH , γBCH , σBCH , αBPA,
δBCH,BPA

intercon,1 , PG2
BPA.

MARS 2 αBCH , βBCH , σBCH , ωCOI,BCH , Vtotal,BCH ,
δBCH,BPA

intercon,1 , PG3
BPA.

MARS 3 αBCH , σBCH , ωCOI,BCH , Vtotal,BCH , Utotal,BCH ,
δBCH,BPA

intercon,1 , ψBCH,BPA.

MARS 4 αBCH , βBCH , σBCH , Utotal,BCH , ∆VBCH,BPA,
βAES , δBCH,BPA

intercon,1 , δG3,Pre
BPA .

MARS 5 αBCH , βBCH , γBCH , σBCH , δBCH,BPA
intercon,1 , δBCH,BPA

intercon,2 .

in the size of training and testing data sets. Note that the com-
mercial software SPM provides the total time required to train
and test the models.

5.1.1. Comparison with the Existing Methods
Here, we compare our CART results in Table 2 with existing

studies in the literature. In [15] and [20], authors demonstrate
accuracy rates of 97–98% using only pre-fault features. How-
ever, all probable faults are pre-defined and used as features to
train and test DT models. Similarly, in [37], the fault location
is used as a feature to obtain prediction accuracy rate of 97%.
Unsurprisingly, the fault type and location are very effective
features for assessing transient stability. However, in practi-
cal implementation with limited number of PMUs installed, it
is impossible to determine the type and location of all credi-
ble faults in real time. As shown in Table 2, models developed
in this paper lead to similar prediction accuracy rates without
knowledge of the particular fault type and location.

In [9] and [21], authors use post-fault features obtained 1–
2 s after fault clearance. This time is reduced to 150–300 ms
in [38]. The accuracy rates reported in these works are in the
range of 93% with simple DTs and 99% with ensemble DTs.
However, duration of simulation until normal end (in stable
cases) or loss of synchronism (in unstable cases) is used as a
feature, which is not available in real-time TSA. Models de-
veloped in this paper take advantage of new PMU technologies
that are capable of transmitting post-fault measurements imme-
diately after fault clearance. As shown in Table 2, prediction
accuracy rates resulting from simple DTs are comparable to
prior work using the more complicated ensemble DTs without
knowledge of offline simulation duration.

5.1.2. Adaptive Training
As mentioned in Section 4, we train the CART model based

on the synthetic measurements obtained from three different
topologies. This can be viewed as having updated the model
with two additional topologies. In order to showcase the neces-
sity of updating the CART model when new topologies arise,
we train a CART model using only data from one topology and
subsequently test this model using data obtained from another
topology. In this case, the prediction accuracy rate decreases to
94.62%. This result clearly shows the necessity for an adaptive
framework with the capability of updating the classification or
regression model after topology changes. Such a framework
is also important in the case of high penetration of renewable

Table 5: Accuracy results of obtained MARS models when
tested using data from various time instants.

Test Data Trained MARS Model
MARS 1 MARS 2 MARS 3 MARS 4 MARS 5

Cycle 1 5.323 10.72 9.167 10.04 9.786
Cycle 2 5.326 4.998 6.944 7.714 7.645
Cycle 3 8.102 7.678 5.333 6.479 7.034
Cycle 4 11.16 9.657 6.747 5.026 6.672
Cycle 5 15.40 12.30 7.030 7.544 4.834

Table 6: Computational times required for various MARS mod-
els with 15 maximum basis functions and 1 maximum interac-
tion.

Test Data Computation Time [s]
MARS 1 MARS 2 MARS 3 MARS 4 MARS 5

Cycle 1 8 13 14 14 14
Cycle 2 13 7 14 14 13
Cycle 3 13 14 7 14 14
Cycle 4 13 14 14 7 13
Cycle 5 13 14 14 14 8

resources that leads to more frequent changes in operating con-
ditions. To account for these aspects, the trained models can be
updated using the adaptive framework described in [20].

5.2. MARS Results

Similar to CART models, five different MARS models are
obtained for the first five cycles after fault clearance. Also in
this case, since there are synthetic measurements obtained from
three different topologies, we can assume that we have updated
the obtained model based on the first topology for two more
topologies. First, we select a simple model with a maximum of
15 possible BFs and no interactions between the indices, i.e.,
multiplication of different BFs. As an example, the model ob-
tained for the first cycle is shown below:

MARS 1 = −19.54 − 1.925 ·max(0, 7.709 − σBCH)
− 97.74 ·max(0, αBCH − 0.319)
+ 60.04 ·max(0, 0.319 − αBCH)

− 7.497 ·max(0, δBCH,BPA
intercon,1 − 6.219)

+ 0.665 ·max(0, 6.219 − δBCH,BPA
intercon,1 )

− 10397 ·max(0, γBCH − 0.0138)
+ 890.3 ·max(0, 0.0138 − γBCH)
+ 9.315 ·max(0, βBCH + 1.138)
− 60.89 ·max(0,−1.138 − βBCH)
+ 50.73 ·max(0, αBPA + 0.050)
+ 3453 ·max(0,−0.050 − αBPA)
− 22.41 ·max(0, σBPA − 8.368)

− 0.057 ·max(0, PG2
BPA − 1339.1). (31)

The TSA indices selected in all five MARS models are shown
in Table 4. The COI-referred and energy function-based indices
have the most participation in the models, especially those re-
lated to BCH. Also, δBCH,BPA

intercon,1 , the relative angle of the 500 kV
bus connecting BCH to BPA, emerges in all five models. On
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Figure 2: Sensitivity analysis of MARS model trained using synthetic measurements obtained in the second cycle after fault
clearance to maximum number of interactions and maximum number of basis functions.

Table 7: Accuracy results of the obtained MARS models with
60 maximum basis functions and 6 maximum interactions.

Model MARS 1 MARS 2 MARS 3 MARS 4 MARS 5
MAE 2.479 1.784 1.725 2.004 1.982

Table 8: Computational times required for various MARS mod-
els with 60 maximum basis functions and 6 maximum interac-
tions.

Model MARS 1 MARS 2 MARS 3 MARS 4 MARS 5
Computational 53 53 49 50 50Time [s]

the whole, we conclude that COI-referred and energy function-
based indices from Sections 2.2 and 2.3 act as important TSA
characteristics in both classification and regression, more than
direct measurements from Section 2.1.

The MARS model accuracy is evaluated by comparing the
TSI values obtained from MARS models on the benchmark
computed via (22). The mean absolute errors (MAEs) obtained
for each of the five models based on the test set data are re-
ported in Table 5. Also, MAEs are reported for cases in which
the test data from a cycle other than the cycle used to train the
MARS model is fed to it. As is evident from Table 5, the error
is around 6 for all the models when the test data is from the cor-
rect cycle. When the test data is from one cycle prior or after,
MAE usually increases to not more than 8. According to Table
6, the computational time required to build MARS models with
15 maximum BFs and 1 maximum interaction is approximately
8 s using the data set from the same cycle (diagonal entries).
However, the computational time increases to about 14 s in the
case of using training and testing data from different cycles (off-
diagonal entries). Note, again, that SPM provides the total time
required for the training and testing stages.

In an effort to reduce MAEs in the MARS model, we have
the option of increasing the maximum number of BFs and the
maximum number of interactions. Increasing both of these pa-
rameters in the models makes them more complex, but reduced
MAEs can be achieved. We vary the maximum number of BFs
in the range of 15 to 65 and the maximum number of interac-
tions in the range of 1 to 7 and obtain MARS models for each
case. In Fig. 2, we plot the sensitivity of model accuracy to
the maximum number of interactions and BFs for the MARS

Table 9: Accuracy results of obtained CART models when
white Gaussian noise is added to data set.

SNR [dB] CART 1 CART 2 CART 3 CART 4 CART 5
No noise 99.50% 99.18% 99.61% 98.92% 99.43%
40 99.00% 98.93% 98.72% 98.58% 99.04%
30 98.93% 98.11% 98.33% 98.65% 98.47%
20 98.43% 98.08% 97.01% 98.33% 97.40%
10 96.72% 96.79% 95.98% 97.93% 96.55%

Table 10: Accuracy results of obtained MARS models when
white Gaussian noise is added to data set.

SNR [dB] MARS 1 MARS 2 MARS 3 MARS 4 MARS 5
No noise 5.323 4.998 5.333 5.026 4.834
40 6.297 5.464 5.347 5.309 5.315
30 6.015 5.501 5.566 5.328 5.493
20 7.357 7.249 6.710 6.577 5.975
10 8.768 8.405 7.878 7.569 7.499

model trained using data obtained from the second cycle after
fault clearance. According to Fig. 2, as the maximum number
of interactions increases to 3 or more and the maximum number
of BFs increases to 50 or more, the MAEs decrease to less than
2, significantly lower than the MAEs resulting from the simple
models reported in Table 5. In Table 7, we report MAEs for
MARS models obtained with 60 BFs and 6 interactions. Also,
referring to Table 8, we find that the computational time re-
quired to obtain the MARS models with 60 maximum BFs and
6 maximum interactions is approximately 50 s.

5.3. Sensitivity to Noise
In order to assess the proposed methods’ sensitivity to noisy

measurements, we add white Guassian noise to the data set with
different levels of signal-to-noise ratio (SNR). The obtained re-
sults are shown in Tables 9 and 10. As expected, as the SNR
decreases, the accuracy rates in the CART models decrease and
the MAEs in the MARS models increase. However, the mod-
els are quite robust against injected measurement noise as com-
pared to rates reported in the existing literature. For example, in
[38], accuracy rates decrease to 81% when models are trained
and tested in the presence of noise with 30 dB SNR.

6. Concluding Remarks

Using PMU measurements obtained from the system, we de-
velop practical CART and MARS models to assess transient
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stability in real time. In order to train these models, we apply
direct measurement, COI-referred, and energy function-based
indices, which are chosen based on their availability in real
time. Via case studies involving the full WECC system, we
show that the trained CART and MARS models predict stable
and unstable cases with high accuracy rates and provide a tran-
sient stability margin of the system based on the applied fea-
tures, respectively. We observe that COI-referred and energy
function-based features have more impact in the classification
and regression models. Moreover, we study the sensitivity of
the trained models to the data obtained from earlier or later sam-
pling times. Avenues for future work include analyzing the ro-
bustness of the obtained models to missing and bad data which
are probable occurrences in a practical WAMS. Another com-
pelling topic for future work is the use of trained models to
assess the fidelity or quality of real-time measurements.
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